砌体结构范例6篇

砌体结构

砌体结构范文1

〔关键词〕无筋砌体配筋砌体绿色建材

Inthispaper,abriefintroductiontotheachievementsinthefieldofmasonrysincethefoundingofP.R.China,whichincludetheusageofallkindsofmasonrystructures,thedevelopmentofnewmasonrymaterialsanditsstructuresandsystems,thestudiesandresearchesonmasonrytheory.Arecommendationtothedevelopmentofmasonryinfuturebasedontheauthorsknowledge.

〔keywords〕unreinforcedmasonry;reinforcedmasonry;greenbuildingmaterial.

中国是砌体大国,在历史上有举世闻名的万里长城,它是两千多万年前用“秦砖汉瓦”建造的世界上最伟大的砌体工程之一;有在春秋战国时期就已兴修水利,如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程;有在1400年前由料石修建的现存河北赵县安济桥,这是世界上最早的敞肩式拱桥。该桥已被美国土木工程学会选入世界第12个土木工程里程碑。这些都是值得我们自豪和继承的,也对弘扬我国文化遗产起到积极作用。[1]解放后我国在砌体结构方面有了很大的发展,分三个方面加以概要介绍。

一砌体结构量大面广[2]

解放以来我国砖的产量逐年增长,据统计[3],1980年的全国年产量为1600亿块,1996年增至6200亿块,为世界其它各国砖每年产量的总和。全国基建中采用砌体作墙体材料约占90%左右。在办公、住宅等民用建筑中大量采用砖墙承重。50年代这类房屋一般为3-4层,现在已为5-6层,不少城市一般建到7-8层。现在每年兴建的城市住宅建筑面积多达1亿m2以上。根据重庆市1980~1983年新建住宅建筑面积为503万m2,其中采用砖承重的占98%,7~7层以上的占50%,1972年还建成12层住宅。

在中小型单层工业厂房和多层轻工业厂房,以及影剧院、食堂、仓库等建筑也广泛采用砖墙、柱承重结构。

砖石结构还用于建造各种构筑物。如镇江市建成的顶部外经2.18m、底部外径4.78m、高60m的砖烟囱;用料石建成的80m排气塔;在湖南建造的高12.4m、直径6.3m、壁厚240mm的砖砌粮仓群;福建用毛石建造的横跨云宵—东山两县的大型引水工程—向东渠,其中陈岱渡槽全长4400m,高20m,槽支墩共258座,工程规模宏大。此外我国在古代建桥技术的基础上,于1959年建成跨度60m、高52m的石拱桥,接着又建成了敞肩式现代公路桥,最大跨度达120m——湖南乌巢河大桥。我国建成的100m以上的石拱桥有10座(包括乌巢河桥),每座都有新发展和世界纪录。

我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6度或6度以上地震设防区。地震烈度≤6度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7度区和8度区建造了大量的砌体结构房屋。据不完全统计,从80年代初至今10多年间我国主要大中城市建造的多层砌体结构房屋建筑面积已达70-80亿m2[4]。

二新材料、新技术、新结构的研究与应用

60年代以来,我国粘土空心砖(多孔砖)的生产和应用有较大的发展,在南京建造了6-8层的空心砖承重的旅馆。当时空心砖孔洞率为22%,与实心砖强度等效,但可减轻自重17%、墙厚减小20%,节省砂浆20~30%,砌筑工时少20-25%,墙体造价降低19~23%。根据节能进一步要求,近年来我国在消化吸收国外先进技术的基础上,制造出规格为380×240×190、孔洞率为40%的烧结保温空心砖(块),这种保温砖的密度为1012kg/m3,抗压强度10.5Mpa,热阻1.649m2K/W。在主要力学和热工性能的指标接近或达到国际同类产品的水平[5]。《多孔砖砌体设计与施工技术规程》行业标准,为这种砖的推广创造了条件。

近10余年来,采用砼、轻骨料砼或加气砼,以及利用河砂、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。1958年建成采用砌块作墙体的房屋,经过四十多年的实践,砌块墙体已成为我国墙体革新的有效途径之一。砌块种类、规格较多,其中以中、小型砌块较为普遍,在小型砌块中又开发出多种强度等级的承重砌块和装饰砌块。据不完全统计[6],1996年全国砌块总产量约为2500万m3,各类砌块建筑

约5000万m2,近十年砼砌块与砌块建筑的年递增都在20%左右,尤其以大中城市推广迅速,以上海推广砌块建筑为例,1994年约50万m2,1995年100万m2,1996年约150万m2,到1999年一季度累计完成的砌块建筑450万m2。这些砌块建筑大多是多层的,至于中高层、高层砌块建筑我国于80年代就着手和进行试点工作,如1982年建成的广西区科委十层砌块住宅试验楼、1986年建成的广西区建二公司十一层小砌块试验楼(7度设防),[7]为我国砌块中高层的发展作了开创性的工作。从90年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,在此基础上开展了更具代表性和针对性的试点工程[10],如1997年建成的盘锦市国税局15层砌块住宅,1998年建成的上海砼空心砖块配筋砌体住宅试点工程[8]。试点工程实践表明,中高层配筋砌块建筑具有明显的社会经济效益:前者15层砌块建筑,节省钢材45%、土建造价降低18%;上海18层节约钢材25%,土建造价降低7.4%。因此,将中高层配筋砌块结构体系纳入到我国砌体结构设计规范中是理所当然的。由此可见,作为粘土砖的主要替代材和某些功能强于粘土砖的砌块的发展前景是非常好的。

我国在50年代~70年代,采用预制大型墙板建造多层住宅,如采用振动砖墙板、烟灰煤渣、矿渣砼墙板建造了几十万m2的建筑。近10多年来北京等地采用内浇(砼)外砌的混合结构建造中高层建筑,取得了较好的经济效益。最近几年清华大学开展了多层大开间砼核心筒、砌体外墙的混合结构的试验研究和小规模试点工程,在改进和扩展砌体结构的性能和应用范围作了有益的探索。[12、13]

我国配筋砌体应用研究起步较晚,60年代衡阳和株州一些房屋的部分墙、柱采用网状配筋砌体承重,节省纲材和水泥。1958~1972年在徐州采用配筋砖柱建筑了12-24m、吊车起重量50-200t的单层厂房36万m2,使用情况良好。70年代以来,尤其是1975年海城—营口地震和1976年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。在此基础之上,通过在砖墙中加大加密构造柱形成所谓强约束砌体的中高层结构的研究取得了可喜的成果。如辽宁省沈阳市、江苏徐州、湖南长沙、兰州等地先后建造了8~9层上百万m2的这类建筑,获得了较好的经济效益。这些研究成果有的已纳入到地方标准或国家标准[14、15、16]。这是我国科研工作者在粘土砖砌体低强材料情况下,向中高层作出的贡献。利用如此低的砌体材料在地震区建造如此之高的建筑唯有中国!

和约束配筋砌体对应的是所谓均匀配筋砌体,即国外广泛应用的配筋砼砌块剪力墙结构,这种砌体和纲筋砼剪力墙一样,对水平和竖向配筋有最小含钢率要求,而且在受力模式上也类同于砼剪力墙结构,它是利用配筋砌块剪力墙承受结构的竖向和水平作用,是结构的承重和抗侧力构件。配筋砌体具有强度高、延性好,和钢筋砼剪力墙性能十分类似,可以用于大开间和高层建筑结构[6]。如美国抗震规范规定,配筋砌体的适用范围同钢筋砼结构。我国在80年代初期主持编制国际标准《配筋砌体设计规范》[11]起至今对其进行了较为系统的试验研究[7、8、9],表明用配筋砌体可建造一定高度的既经济又安全的建筑结构,如广西的10-11层、盘锦的15层、上海的18层等。目前正在筹建的配筋砌块高层有首钢十八层配筋砌块住宅工程(8度设防),辽宁抚顺6栋16层砌块住宅、哈尔滨2栋18层砌块住宅等。可见配筋砌体中高层的研究和应用具有十分广阔的前景。

我国有着用砖砌筑拱和券的丰富经验,解放以来,又向新的结构形式和大跨度方向发展。50-60年代修建了一大批砖拱屋盖和楼盖,还建成了10.5×11.3m的扁球形砖壳屋盖,16×16m的双曲扁球型砖薄壳和40m直径的园形球砖壳。60年代南京用带勾空心砖建成14×10m双曲扁壳屋盖仓库,以及10m直径的园形壳屋盖油库,在西安建成了24m双曲扁壳屋盖等。70年代我国还在闽清梅溪大桥工程中建成88m跨的(砼助)双曲砖拱桥等。

三砌体结构理论研究与计算方法

解放前直至1950年我国谈不上有任何结构设计理论。国家建委于1956年批准在我国推广应用苏联《砖石及钢筋砖石结构设计标准和技术规范》NUTY120-55,直到60年代。60~70年代初,在我国有关部门的领导和组织下,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。在砌体强度计算公式、无筋砌体受压构件的承载力计算、按刚弹性方案考虑房屋的空间工作,以及有关构造措施方面具有我国特色。在此基础上于1973年颁布了国家标准《砖石结构设计规范》GBJ3-73。这是我国第一部砖石结构设计规范。从此使我国的砌体结构设计进入了一个崭新的阶段。70年代中期至80年代末期,为修订GBJ3-73规范,我国对砌体结构进行了第二次较大规模的试验研究,其中收集我国历年来各地试验的砌体强度数据4023个,补充长柱受压试件近200个,局压试件100多个,墙梁试件200多根及2000多个有限元分析数据和进行了11栋多层的砖房空间性能实测和大量的理论分析工作等。这样在砌体结构的设计方法、多层房屋的空间工作性能、墙梁的共同工作,以及砌块的力学性能和砌块房屋的设计方面取得了新的成绩。此外对配筋砌体、构造柱和砌体房屋的抗震性能方面也进行了许多试验研究。相继出版了《中型砌块建筑设计与施工规范》JGJ5-80、《砼小型空心砌块建筑设计与施工规程》JGJ14-82、《冶金工业厂房钢筋砼墙梁设计规程》YS07-79、《多层砖房设置钢筋砼构造柱抗震设计与施工规程》JGJ13-82等,特别是《砌体结构设计规范》GBJ3-88,使我国砌体结构设计理论和方法趋于完善。我国砌体结构可靠度的设计方法,已达到当前的国际先进水平。对于多层砌体房屋的空间工作,在墙梁中考虑墙和梁的共同工作和局压设计方法等专题的研究成果在世界上处于领先地位。近10余年来,特别是《砌体结构设计规范》GBJ3-88颁行后,进入了第三次较大规模的修订时期。如1995年颁行的《砼小型空心砖块建筑技术规程》JGJ/T14-95,通过试验增强抗震构造措施,使原规范(JGJ14-82)可增加一层,扩大了地震区的应用范围。1999年6月1日颁行的《砌体工程施工及验收规范》GB50203-98,取代了《砖石工程施工及验收规范》GB203-83。它主要补充了近年来新型材料和配筋砌体施工技术、施工质量控制等级方面的内容。目前正在修编的《砌体结构设计规范》GBJ3-88,主要在砌体结构可靠度方面、配筋砼砌块砌体、墙梁的抗震方面作了调整和补充。砌体结构可靠度,根据我国当前国情,作了适当的上调。这样作主要为促进采用较高等级的砌体材料,提高耐久性和适当提高抗风险能力。配筋砌体,特别是配筋砼砌块中高层,根据我国主编的国际标准《配筋砌体结构设计规范》和我国近年来各地较大规模的试验研究和试点建筑的经验,使我国配筋砌体的理论更完善,应用范围和限制有了较大的扩展和突破。如其应用范围,已达到钢筋砼剪力墙的适用范围。配筋灌孔砼砌块砌体是作为一个体系纳入到砌体规范中的,它的未来的实施,对促进我国砌块结构向高档次发展具有重要作用。

另外本次修订增补了墙梁在地震区的设计方法,进一步扩大了这种结构形式的使用范围。另外根据多年来砌体结构,特别是新型墙体材料结构的温度裂缝、干燥收缩裂缝普遍比较严重,进行深入研究后,增加了比较有效的抗裂构造措施。

我国砌体结构理论近年来有较大提高,反映在《砌体结构设计规范》GBJ3-88颁行前后,陆续出版了许多教材和著作,如丁大钧主编的《砌石结构》、《砌体结构学》、施楚贤主编的《砌体结构理论与设计》,以及《砌体结构论文集》、《砌体结构设计手册》等。这些对促进我国砌体结构的发展有一定作用。

四展望

砌体是包括多种材料的块体砌筑而成的,其中砖石是最古老的建筑材料,几千年来由于其良好的物理力学性能、易于取材、生产和施工,造价低廉,致今仍成为我国主导的建筑材料。但是我国的砌体材料普遍存在着自重大、强度低、生产能耗高、毁田严重、施工机械化水平较低,和耐久性、抗震性能较差等弊病。因此我认为要针地这些问题开展下列方面的工作。

1、积极开发节能环保形的新型建材[3]

1988年第一次国际材料研究会议上首次提出“绿色建材”的概念,1992年6月联大巴西里约热内卢环境和发展世界各国首脑会议,通过了“21世纪议程”宣言,确认了“可持续发展”的战略方针,其目标是:依据环境再生、协调共生、持续自然的原则,尽量减少自然资源的消耗,尽可能对废弃物的再利用和净化。保护生态环境以确保人类社会的可持续发展。

近年来发达国家在实施《绿色建材》计划上取得了较大的进展,我国以1992年联合国环境与发展首脑会议为契机,遵照同志“经济的发展,必须与人口、环境、资源统筹考虑,决不能走浪费资源和先污染后治理的老路,更不能吃祖宗饭、断子孙路……。”的指示精神,迅速行动起来,广泛研制“绿色建材”产品,取得了初步成果。

1)加大限制高能耗、高资源消耗、高污染低效益的产品的生产力度。如对粘土砖(按1996年生产6000亿块的代价是毁田10万多亩、能耗6000万吨标煤)国家早就出台了减少和限制的政策。近年的限制力度越来越大,如北京、上海等城市在建筑上不准采用粘土实心砖,这间接地促进了其它新材的发展。

2)大力发展蒸压灰砂废渣制品。这包括钢渣砖、粉煤灰砖、炉渣砖及其空心砌块、粉煤灰加气砼墙板等。这些制品我国80年代以前生产量曾达2.5亿块,吃掉工业废渣几百万吨,但由于种种原因大多数厂家已停产,致使粘土砖生产回潮。今后应加大科研投入、改进工艺、提高产品性能和强度等级、降低成本,向多功能化发展。

3)利用页岩生产多孔砖。我国页岩资源丰富,分布地域较广。烧结页岩砖具有能耗低、强度高、外观规则,其强度等级可达MU15~MU30,可砌清水墙和中高层建筑。页岩砖在四川、湖北和大连等地已初步应用。如城都的“绵城苑”小区16万m2的建筑均采用这种砖。

4)大力发展废渣轻型砼墙板。这种轻板利用粉煤灰代替部分水泥,骨料为陶粒、矿渣或炉渣等轻骨料,加入玻璃纤维或其它纤维。以及其它轻材料墙板,提高砌体施工技术的工业化水平。

5)GRC板的改进与提高。这种板自重轻、防火、防水、施工安装方便。GRC空心条板是大力发展的一种墙体制品,需用先进的生产工艺和装配,以提高板的产量和质量。

6)蒸压纤维水泥板。我国是世界上第三大粉煤灰生产国,仅电力工业年排灰量达上亿吨,目前的利用率仅为38%。其实粉煤灰经处理后可生产价值更高的墙体材料。如高性能砼砌块、蒸压纤维增强粉煤灰墙板等。它具有容重低、导热系数小、可加工性强、颜色白净的特点,目前全国的产量已达700万m2。

7)大力推广复合墙板和复合砌块。目前国内外没有单一材料,既满足建筑节能保温隔热,又满足外墙的防水、强度的技术要求。因此只能用复合技术来满足墙体的多功能要求。如钢丝网水泥夹芯板。目前看来,现场湿作业,抹灰后难以克服龟裂现象有待改进。

复合砌块墙体材料,也是今后的发展方向,如采用矿渣空心砖、灰砂砌块、砼空心砌块中的任一种与绝缘材料相复合都可满足外墙的要求,目前已有少量生产。我国在复合墙体材料的应用方面已有一定基础,宜进一步改善和完善配套技术,大力推广,这是墙体材料“绿色化”的主要出路。

2、发展高强砌体材料

目前我国的砌体材料和发达国家相比,强度低、耐久性差。如粘土砖的抗压强度一般为7.5~15Mpa,承重空心砖的孔隙率≤25%。而发达国家的抗压强度一般均达到30~60Mpa,且能达到100Mpa,承重空心砖的孔洞率可达到40%,容重一般为13KN/m3,最轻可达0.6KN/m3。根据国外经验和我国的条件,只要在配料、成型、烧结工艺上进行改进,是可以显著提高烧结砖的强度和质量的。如我国中美合资大连太平洋砖厂可生产出20Mpa~100Mpa的页岩砖。由于强度高、耐久性、耐磨性和独特的色彩,可作清水墙和装饰材料,已出口和广泛用于高档建筑。高强块材具有比低强材料高得多的价格优势。

根据我国对粘土砖的限制政策,可就地取材、因地植宜,在粘土较多的地区,如西北高原,发展高强粘土制品、高空隙率的保温砖和外墙装饰砖、块材等;在少粘土的地区发展高强砼砌块、承重装饰砌块和利废材料制成的砌块等。

在发展高强块材的同时,研制高强度等级的砌筑砂浆。目前的砂浆强度等级最高为M15。当与高强块材匹配时需开发大于M15以上的高性能砂浆。我国正在起草的《砼小型空心砌块砂浆和灌孔砼》行业标准中砂浆的强度等级为M5~M30,灌孔砼的强度等级为C20~C40,这是砼砌块配套材料方面的重要进展,对推动高强砌体材料结构的发展有重要作用。

根据发展趋势,为确保质量,发展干拌砂浆和商品砂浆具有很好的前景。前者是把所有配料在干燥状态下混合装包供应现场按要求加水搅拌即可。天津舒布洛克水泥砌块公司已供应这种干拌砂浆,价格约高20%左右。商品砂浆的优点同商品砼。这类砂浆的发展一旦取代传统砂浆,将是一个多么巨大的变化!

3、继续加强配筋砌体和预应力砌体的研究。

我国虽已初步建立了配筋砌体结构体系,但需研制和定型生产砌块建筑施工用的机具,如铺砂浆器、小直径振捣棒(ф≤25)、小型灌孔砼浇注泵、小型钢筋焊机、灌孔砼检测仪等。这些机具对配筋砌块结构的质量至关重要。

预应力砌体其原理同预应力砼,能明显地改善砌体的受力性能和抗震能力。国外,特别是英国在配筋砌体和预应力砌体方面的水平很高。我国80年代初期曾有过研究,但直至最近才有少数专家研究,如重庆建筑大学的骆万康教授对预应力砖墙的抗震设计提出了建议。[17]

4、加强砌体结构理论的研究

进一步研究砌体结构的破坏机理和受力性能,通过物理和数学模式,建立精确而完整的砌体结构理论,是世界各国关心的课题。我国在这方面的研究具有较好的基础,有的题目有一定的深度,[18]继续加强这方面的工作十分有利,对促进砌体结构发展也有深远意义。为此还必须加强对砌体结构的实验技术和数据处理的研究,使测试自动化,以得到更精确的实验结果。

正如一位资深砌体结构学者,E、A、James指出“砌体结构经历了一次中古欧洲的文艺复兴,其有吸引力的功能特性和经济性,是它获得新生的关键。我们不能停留在这里。我们正在进一步赋予砌体结构的新的概念和用途”。我们对砌体结构的未来充满信心,在党的方针政策的正确指引下,坚持科学态度,敢于创新,不断努力,为我国及世界的砌体结构的发展作出更大的贡献。

参考文献

1、丁大钧.《砌体结构》教学刍议.建筑结构.1999.(3)

2、施楚贤主编.砌体结构理论与设计.中国建筑工业出版社.1992.

3、周玉琴等.浅谈新世纪“绿色建材”在国内外发展趋势.天津墙改办.墙改与节能.1999.(2)

4、建筑结构设计统一标准修订组.我国建筑结构设计可靠度设定水平分析与改进意见.1999.7

5、郑墨林.烧结保温空心砌块的性能与应用初探.天津墙改办.墙改与节能.1999.(2)

6、苑振芳.砼砌块建筑发展现状及展望.工程建设标准化.1998.(6)

7、广西建科所.抗震设防(7度)配筋小砌块高层建筑研究—成果鉴定资料.1987.12

8、肖小松.砼砌体的性质.同济大学博士后工作报告.1998.5

9、谢小军.砼小砌块砌体力学性能及其配筋砌体抗震性能的研究.湖南大学硕士论文.1998

10、苑振芳.15层配筋砌块住宅试点工程简介.施工技术.1998.(7)

11、苑振芳.国际标准《配筋砌体结构设计与施工规范》简介.工程建设标准化.1995.(5)

12、方鄂华等.砼筒一组合墙及开洞组合墙模型试验及承载力研究.建筑技术.1997

13、王绍豪等.带砼筒大开间砖混结构灵活住宅结构设计建议.建筑技术.1997

14、沈阳市建设标准《钢筋砼—砖组合墙结构技术规程》SYJB2-95

15、江苏省地方标准《约束砖砌体建筑技术规程》DB32/113-95

16、甘肃省标准《中高层砖墙与砼剪力墙组合砌体结构设计与施工规程(试行)》DBJ25-56-95

砌体结构范文2

1条文编写原则

鉴于现行国家标准《砌体结构工程施工质量验收规范》GB50203的编写原则是“验评分离、强化验收、完善手段、过程控制”,将不可避免地导致两本标准在有关施工过程的质量控制条文内容上的一些重复.对此,在编写时考虑了以下原则:1)标准不同适用范围原则:在编制《砌体结构工程施工质量验收规范》GB50203过程中,在“过程控制”的相应条文编写时,只针对为实现施工质量合格验收的某些重要施工环节作出基本要求;而对于《砌体结构工程施工规范》,则对施工全过程的质量控制作出较具体的规定.2)条文细化原则:由于现行国家标准《砌体结构工程施工质量验收规范》GB50203遵循“验评分离、强化验收、完善手段、过程控制”的编制原则,因此,与之配套使用的《砌体结构工程施工规范》的个别条文内容不可避免地要涉及规范GB50203中的“过程控制”的相应条文.对此,在编写《砌体结构工程施工规范》条文时,着重对砌体结构工程施工过程中的操作技术要求进行细化,作出详细规定,以区别于规范GB50203针对施工过程控制的原则要求.3)标准完整性原则:对《砌体结构工程施工质量验收规范》GB50203“过程控制”涉及的部分内容,在施工规范中不需要再细化时,考虑到其内容的重要性和标准编写的完整性,同时也是为了保证两本规范间的协调一致,对GB50203的相关条文进行了引用.

2关于湿拌砂浆、干混砂浆及专用砂浆使用时间的规定

砌体施工中的砂浆使用时间是特指砂浆的可操作时间,即砂浆从加水拌合后到仍能施工而不影响其性能的最长时间间隔,而非等同于砂浆的凝结时间.湿拌砂浆是由专业生产厂将加水拌合后的砂浆运到施工现场的成品砂浆.由于砌体施工速度较慢,为使砂浆在一定时间内能保持其可操作性,生产厂一般通过掺加不同种类添加剂及控制添加剂用量等方法调节砂浆的凝结时间,实际上也是调整了砂浆保持可操作性的使用时间,且通过试验保证所提供的砂浆在可操作时间内不会影响砂浆性能.因此对湿拌砂浆的使用时间应按厂房提供的说明确定.干混砂浆是专业厂家生产的除拌合水外的砂浆粉状混合物,在加水拌合后即可使用的砂浆.为了解干混砌筑砂浆使用时间与强度的关系,规范编制组对西安市3个不同生产厂家的干混砌筑砂浆进行了试验分析.试验所采用砂浆类型均为DMM5,分别放置0、2、4、6、8h后,适量加水使得砂浆稠度保持在约70mm,通过制作砂浆试块对其强度进行试验,结果表明,随着使用时间的延长,砂浆强度有所降低,其中不同厂家的砂浆在0~8h强度损失最小约12%,最大超过30%,因此,施工过程中对干混砂浆的使用时间应按厂方提供的说明书确定.专用砂浆中的外加剂种类、用量存在差异,其凝结时间也不同,因此,其使用时间应以厂方提供的说明书为准.

3关于现场搅拌砂浆使用时间3h、2h的规定

砌筑砂浆采用现场拌制时,随着使用时间的延长,砂浆的流动性降低,砂浆稠度变小,砂浆操作性变差,这时如果再加水拌合(重塑)后使用,会影响砂浆的强度.原国家标准《砖石工程施工及验收规范》GB203-83编制组曾进行了M5和M5水泥石灰砂浆、M5水泥粘土砂浆、M5微沫砂浆拌合后停放时间对强度影响的试验,试验砂浆的稠度为80mm左右,气温为20~30℃(室内实验室气温).在试验过程中,砂浆稠度随停放时间的延续而减小,为模拟施工状态,对稠度减小的砂浆再加水拌合,使砂浆稠度与初拌时基本相同.试验结果表明:在一般气候状况下,水泥砂浆和水泥混合砂浆在3h和4h使用完,砂浆强度降低一般不超过20%,虽然对砌体强度有所影响,但降低幅度在10%以内,又因大部分砂浆在之前使用完毕,故对整个砌体的影响仅局限于很小的范围.另外,砌体强度除与砌筑砂浆相关外,还与瓦工的操作方法及精心施工程度密切相关,在施工中加强现场质量控制和监督检查,完全可以保证砌体的砌筑质量.当气温较高时,水泥凝结加速,砂浆拌制后的使用时间应予缩短.同时,近年来设计中对砌筑砂浆强度普遍提高,水泥用量增加,因此对现场拌制的水泥砂浆和水泥混合砂浆统一按水泥砂浆的使用时间进行了规定,即“现场搅拌的砂浆应随拌随用,拌制的砂浆应在3h内使用完毕,当施工期间最高气温超过30℃时,应在2h内使用完毕.”该规定不仅对施工质量有利,同时便于现场施工时的控制和管理.

4施工质量控制等级施工前的评审及施工中的检查规定

砌体的施工主要由手工操作完成,质量受到许多人为因素的制约和影响,为保证砌体工程的施工质量,现行国家标准《砌体结构工程施工质量验收规范》GB50203已参照有关国际标准,按施工现场质量管理水平、砂浆强度试验及搅拌、砌筑工人技术熟练程度等因素对施工质量控制等级进行了分级规定.为了保证施工过程中的质量控制等级满足设计要求,在国家标准《砌体结构工程施工规范》中,一方面要求施工前对承建工程的施工队伍进行施工质量控制等级审查、认定,同时在施工过程中对现场质量管理、砂浆与混凝土强度、砂浆拌合、砌筑工人技术等级等四要素要求适时检查监管.当发现施工质量控制等级的有关要素变化将引起施工质量控制等级下降时,应立即停工整顿,采取有效措施,使之回复到要求状态,再进行正常施工.为便于施工质量控制等级的审查、认定和检查,规范附录中提供了相应的表格.

5块材浇水湿润程度

改用相对含水率的规定试验研究和工程实践证明,砌体施工时砌块的湿润程度对砌体的施工质量影响较大:例如采用干砖砌筑不仅不利于砂浆强度的正常增长,大大降低砌体的抗压和抗剪强度,影响砌体的整体性,而且砌筑困难;相反,采用吸水饱和的砖砌筑时,会使刚砌的砌体稳定性差,且易出现墙体平面外弯曲、砂浆易流淌、灰缝厚度不均、砌体抗剪强度降低.关于砖含水率对砌体抗压强度的影响,湖南大学曾通过试验研究得出两者之间的相关性,即砌体的抗压强度随砖含水率的增加而提高,反之亦然.根据砌体抗压强度影响系数公式得到,含水率为零的烧结粘土砖的砌体抗压强度仅为含水率为15%砖的砌体抗压强度的77%.关于砖含水率对砌体抗剪强度的影响,国内外许多学者都进行过这方面的研究,试验资料较多,但结论并不完全相同.可以认为,各国(地)砖的性质不同,是试验结论不一致的主要原因.一般来说,砖砌体抗剪强度随着砖的湿润程度增加而提高,但是如果砖浇得过湿,砖表面的水膜将影响砖和砂浆间的粘结,对抗剪强度不利.美国Robert等在专著中指出:砖的初始吸水速率是影响砌体抗剪强度的重要因素,并指出,初始吸水速率大的砖,必须在使用前预湿水,使其达到较佳范围时方能砌筑.前苏联学者认为,粘土砖的含水率对砌体粘结强度的影响还与砂浆的种类及砂浆稠度有关,砖含水率在一定范围时,砌体的抗剪强度得以提高.近年来,长沙理工大学等单位通过试验获取的数据和收集的国内诸多学者研究成果撰写的研究论文指出,非烧结砖的上墙含水率对砌体抗剪强度影响,存在着最佳相对含水率,其范围是43%~55%,并从试检结果看出,蒸压粉煤灰砖在绝干状态和吸水饱和状态时,抗剪强度均大大降低,约为最佳相对含水率的30%~40%.由于各类砌筑用块材的吸水特性,如吸水率大小、吸水和失水速度快慢等的差异(有时存在十分明显的差异,例如从资料收集中得到,我国各地生产的烧结普通粘土砖的吸水率变化范围为13.2%~21.4%),以及环境温度、湿度的不同,块材砌筑时适宜的含水率也应有所不同.因此,需要在砌筑前对块材预湿的程度采用含水率控制是不适宜的.为了便于在施工中对适宜含水率有更清晰的了解和控制,块体砌筑时的适宜含水率宜采用相对含水率规定.根据国内外学者的试验研究成果和施工实践经验,以及现行国家标准《砌体结构工程施工质量验收规范》GB50203的相关规定,本次规范制定中,按照块体吸水、失水速度快慢,对烧结类、非烧结类块体的预湿程度采用相对含水率控制,并对适宜相对含水率范围分别作出了规定.

6后置拉结筋的施工质量检查的规定

近年来,对填充墙与承重墙、柱、梁、板之间的拉结钢筋,施工中常采用后植筋,这种施工方法虽然方便,但常常因锚固胶或灌浆料质量问题,钻孔、清孔、注胶或灌浆操作不规范,使钢筋锚固不牢,导致作用在植筋上的拉力不能有效通过化学粘结剂向混凝土中传递,起不到应有的拉结作用.因此,在本次规范制定中编制组从确保工程质量考虑,增加了后置拉结筋施工工序规定及对后置拉结钢筋进行现场非破坏性检验的规定.为了保证抽样检测结果具有代表性,对填充墙与承重墙、柱、梁、板之间的拉结钢筋现场实体检测的抽检数量,参照了现行国家标准《建筑结构检测技术标准》GB/T50344对建筑结构抽样检测的最小样本容量规定,即实际检测时抽检的样本容量不应少于最小样本容量的限定量.检验结果应符合设计及现行国家标准《砌体结构工程施工质量验收规范》GB50203的有关规定.

二关于节能减排政策的贯彻

为了贯彻节能减排的方针政策,《规范》在编制中主要从以下方面进行了体现:1)在材料方面,积极推广节能环保材料(如烧结类空心砖和空心砌块、蒸压加气混凝土砌块、轻集料混凝土小型空心砌块及人工砂、山砂、海砂等)和工厂化预拌砂浆在砌体结构工程中的应用,并在《规范》中对新型材料的性能和使用要求作出了相应的规定.2)《规范》中专门纳入了环保章节,特别对施工过程中可能会对环境造成污染和危害的方面做出了明确规定.3)对复合夹心墙的施工要求作出了相应规定,有利于砌体房屋在节能减排领域的推广应用.

三标准的先进性

1)预拌砂浆、专用砂浆以及新型块材的推广应用,不仅符合节能环保、发展绿色建筑的理念,也有利于建筑施工技术的工业化发展.2)针对不同种类块材吸水率差别较大的状况,对块材浇筑前浇水湿润程度要求采用了相对含水率的控制方法.3)强化施工前及施工过程中对砌体施工质量控制等级的认定及检查、整改,并编制了专用表格.4)对夹心复合墙的砌筑技术要求提出了规定.5)按照经修订的现行国家标准《砌体结构设计规范》GB50003-2011中填充墙连接方式的要求,对填充墙与主体结构之间的连接进行了规定,并提出了填充墙砌体后置拉结钢筋的植筋工艺及实体检测要求.6)注重环保和安全施工.

四结语

砌体结构范文3

当今社会在基础设施的管理和新建等各个方面都存在着一个可持续发展的问题。随着基础建设的不断发展,愈来愈多的建筑物和构筑物已进入或即将进入老龄化阶段,修复加固在建筑业中的比重逐年增加。过去50年,在已有建筑结构型式中砌体结构占相当大的比重,且砌体结构本身抗震性能及使用年限就有局限性,所以加固砌体结构已迫在眉睫。

多层砌体房屋增层或扩建;拆除部分承重墙或承重墙开洞,扩大室内使用空间等使用功能的改造;不满足抗震要求的砌体结构进行抗震加固;承载力不够时结构及构件加固;都需要对砌体结构进行加固改造,多层砌体房屋加固方法分为结构整体加固和构件加固两种。

整体加固方法有增设抗测力结构、捆绑法增设构件、改变受力形式加固等,增设抗测力结构包括增设抗震墙、水平支撑、柱间支撑、闭合墙段、设置钢筋混凝土边框等;捆绑法是在原砌体结构中加混凝土构造柱(组合柱、约束柱)和圈梁,形成约束砌体结构体系;或拆除部分抗震墙,减小地震力;采用钢拉杆、长锚杆、外加固柱或圈梁增强纵横墙的连接;增设满足楼屋盖支撑长度的托梁;在建筑物纵向、横向、竖向增设预应力拉杆;预制楼盖或预制屋面上增浇钢筋混凝土叠合层。

对房屋中下列部位应重点关注:①承载窗间墙宽度过小或抗震能力不能满足需要时,可增设钢筋混凝土窗框或采用砂浆面从层、夹板墙等方法加固;②隔墙无拉结或拉结不牢,边框可采用混凝土梁柱形成组合构建,或埋设锚筋、钢拉杆加固;③支撑大梁等的墙段抗震能力不能满足要求时,可在两端增设砌体柱、钢筋混凝土柱或采用砂浆面层、钢筋网混凝土面层加固,大梁下墙体局部承压不够时可增设大梁垫或对墙体加固;④出屋顶的楼梯间、电梯间和水箱间不符合抗震要求时,可采用面层或外加柱加固,其上部应与屋盖构件有可靠连接,下部应与主体结构的加固措施相连;⑤出屋面的烟囱、无拉结女儿墙超过规定的高度时,宜拆矮或采用型钢、预应力钢拉杆加固;⑥砌体结构中的雨篷、阳台板等悬梁挑构件是静定结构,当锚固长度不能满足要求时,可加拉杆或采取减少悬挑长度的措施。

对于一些在20世纪五六十年代修建的体量较大的砌体公共建筑,如办公楼、教学楼、宾馆、医院等除按上述方法加固外,可将部分墙段(如楼、电梯间以及部分相交的纵横墙内壁)改为混凝土夹板墙或喷射混凝土墙,形成复合墙体,在平面中尽量连成闭合的筒体,形成带混凝土增强筒体的砌体结构体系;对于砌体结构公共建筑的中央大厅,也可在建筑平面内插入一个完整的混凝土框架结构体系或框架-剪力墙结构体系,通过新老结构的有效连接,形成新的混合结构体系,这是国内经常采用的整体加固改造做法。

砌体墙开洞时应根据墙体的受力特征、洞口位置和大小,采取相应的补强加固措施及增设洞口的边缘构件,加固措施包括:洞边粘钢板、外包型钢等,增设边缘构件包括设置钢筋混凝土梁柱、型钢梁柱等,砌体墙开洞后在洞边应设边柱,洞顶设梁。

拆除承重墙扩大使用空间改造,需要采用托梁拆墙技术,即增设混凝土或型钢托梁,然后再增设混凝土柱或钢柱,以及对地基基础进行加固处理。

构件加固法包括钢筋混凝土面层加固法、水泥砂浆面层加固法、外包型钢加固法、纤维加固法等,现就构件加固的具体技术措施加以阐述:

一、钢筋混凝土面层加固砌体墙

钢筋混凝土面层就是通常所说的钢筋网夹板墙,加固砌体墙可大幅提高墙体的受压、受剪承载力,大幅度提高刚度和抗震性能,该法施工工艺简单。并具有成熟的设计和施工经验,是砌体机构加固最常用的方法,但现场施工的湿作业时间长,对生产和生活具有一定的影响,且加固后的建筑物面积有一定的减小。

二、砂浆面层加固砌体墙

该法属于复合截面加固法的一种,其优点与钢筋混凝土加固法相近,但提高承载力不如前者,适用于砌体墙的加固。砂浆面层加固按材料组成分为三种:高强度等级的水泥砂浆面层;水泥砂浆内配置钢筋网面层或钢板网面层;聚合物砂浆和钢绞线面层。三种方法均可不同程度的提高墙体的受压、受剪承载力,提高砌体刚度提高抗震性能。砂浆面层施工可采用喷涂,也可采用手工抹制,是砌体结构加固中较常用的方法。在水泥沙浆中如果掺入短玻璃纤维丝,形成具有较高抗拉强度和抗裂性能的复合材料,经济合理,便于施工,增强加固效果。

钢筋混凝土、钢筋网砂浆围套加固砌体柱,采用钢筋混凝土增大砌体柱的截面面积,或采用钢筋网砂浆增强大砌体柱的截面面积,均可显著提高构件承载能力和变形能力。

三、外包型钢加固砌体柱

该法也称湿式外包钢加固法,在构件四周或两个角部包以型钢并焊接缀板,对原柱形成约束,提高砌体柱承载力和抗变形能力,受力可靠、施工简便、现场工作量较小,但用钢量大,且不宜在无防护的情况下用于60摄氏度以上的高温场所;适用于使用上不允许显著增大原构件截面尺寸,但又要大幅度提高其承载能力的构件加固。该法属于传统加固方法,其优点是施工简便、现场工作量和湿作业少,受力较为可靠,但需采用类似钢结构的防护措施。

四、砌体托换加固技术

砌体托换加固法是指构件有严重缺陷和裂缝的部分用新的砌体代替,适用于砌体墙的加固。必要时托换前应对原构件加以有效的支顶。应对原结构、构件在施工全过程中的承载状态进行验算、观测和控制。托换部分的材料强度是等级的,按不应低于建造时规定的强度等级,砂浆强度宜比原设计提高一级,用整砖填砌。

砌体局部拆砌;当砌体房屋局部破裂但在查清其破裂原因后尚未影响其承重及安全时,可将破裂墙体局部拆除,并按提高砂浆强度一级用整砖填砌。

五、外粘纤维材料加固技术

纤维增强复合材料在砌体结构加固中主要应用在:柱的抗剪加固,环绕形粘贴在构件四周、或u型粘贴在梁的两个侧面和底面、或粘贴在构件侧面,提高受剪承载力和抗震能力,提高柱的延性;抗震墙加固是纵横向或斜向交叉分条粘贴在墙的侧面,与水平力作用下砌体中的主应力方向相应,使砌体受力更均匀,对砌体的有效约束面积增大,有利于维持砌体的整体性,提高砌体的抗剪能力,从而使得砌体受力更均匀,对砌体的有效约束面积增大,有利于维持砌体的整体性,提高砌体的抗剪能力,从而使得砌体加固效果更明显。提高抗弯、抗剪能力,增大砌体的延性;在特种结构加固中应用,如壳体、隧道、筒仓、烟囱等工程中应用。

砌体结构范文4

【关键词】砌体结构;抗震;房屋;质量;设计

中图分类号: S611 文献标识码: A 文章编号:

一、前言

砌体结构房屋抗震设计关乎建筑的安全性,不仅与企业的信誉息息相关更是和每一个公民的生命安全联系紧密。因为砌体结构房屋抗震设计质量不过关,导致的无数无辜生命的失去以及巨大经济损失的案例不计其数。而在保证房屋安全性中砌体结构房屋抗震设计就显得尤为重要,砌体结构房屋抗震设计也成为我们研究的重要课题。

二、结构体系对抗震性的影响

抗震结构体系体型是抗震设计中应考虑的最关键问题,结构体系应根据建筑的抗震设防类别、抗震设防烈度、建筑高度、场地条件、地基、结构材料和施工等因素,经技术、经济和使用条件综合比较确定。结构体系应具有明确的计算简图和合理的地震作用传递途径,以及必要的抗震承载力、良好的变形能力和消耗地震能量的能力;宜设多道抗震防线;合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中;对可能出现的薄弱部位,应采取措施提高抗震能力。

抗震结构设计在选择建筑结构的方案和采取抗震措施时,首先要考虑地震动的性质及其对建筑的影响,应注意地震的不确定性及其一定的规律性。

结构体系应具有多道抗震防线,可避免因部分构件破坏而导致整个体系丧失抗震能力或对重力的承载能力。抗震防线应注重对第一道防线的选择:应优先选用不承受重力荷载的构件,如框架填充墙、柱间支撑或轴压比不太大的钢筋混凝土抗震墙等构件;不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。

三、地震对砌体结构房屋的破坏

在地震作用(主要是水平地震作用的影响)下,抗震措施和结构类型的不同往往是造成多层砌体结构房屋破坏情况不同的原因。主要有如下两种。

1、由结构或构件承载力不足而引起的破坏当房屋受到水平地震的横向影响时,水平地震作用主要通过楼盖传至横墙,再传至基础和地基,这时震力主要由横墙承受,当砌体抗震承载力远远小于地震作用所产生的震力时,墙体就会产生交叉裂缝或斜裂缝;当房屋受到水平地震的纵向影响时,水平地震作用主要通过楼盖传至纵墙,再传至基础和地基。如果窗间墙很窄 ,纵墙就会产生压弯破坏;如果窗间墙很宽,纵墙将以震力破坏为主。

2、由构件间连接不牢而引起的破坏一些砌体结构的房屋承载力很好,构件的尺寸也不小,可往往由于连接不牢、支撑系统不完善,整体性差而导致破坏。这种现象在地震时也是常见的,如纵横墙连接不牢以及楼板与墙体之间缺乏可靠的连接都可能造成纵墙外闪,甚至成片塌落。

四、砌体结构房屋抗震设计的要求

1、房屋高宽比的限制

随着房屋高宽比的增大,地震作用效应将增大,由整体弯曲在墙体中产生的附加应力也将增大,房屋的破坏将加重。因此,砌体房屋总高度与总宽度的最大比值宜符合《建筑抗震设计规范》要求。

2、墙体的布置

墙体是承担地震作用的主要构件,墙体的布置和间距对房屋的空间刚度和整体性影响很大。因而,对建筑物的抗震性能有重大影响。墙体布置时应注意以下几点:(1)合理确定墙体的主要承重体系结构布置应优先选用横墙承重和纵横墙共同承重的方案,纵横墙的布置应均匀对称,沿平面内宜对齐,沿竖向应上下连续,同一轴线上的窗间墙宽度宜均匀。

(2)横墙间距。在横向水平地震作用的影响下,如果楼盖有足够的刚度,横墙间距较密且有足够的承载力,则纵墙承受的作用是很小的,一般不至于出现水平裂缝。

(3)墙段的局部尺寸。从表面上看,墙体的局部尺寸不当,有时仅造成局部破坏,并不影响房屋的整体安全,事实上,它往往降低了房屋总的承载能力。

3、平立面的布置和防震缝的设置

房屋的平、立面布置宜规则、对称,房屋的质量分布和刚度变化宜均匀,楼层不宜错层。房屋的防震缝可按实际需要设置。当房屋体型复杂不设防震缝时,应选用符合实际的结构计算模型,进行较精细的抗震分析,采取措施提高抗震能力。当设置防震缝时,应将房屋分成规则的结构单元,留有足够的宽度,使两侧的上部结构完全分开。伸缩缝、沉降缝应符合防震缝的要求。

4、房屋总高度和层数的限制

随着房屋高度的增加,地震作用也将增大,因而,房屋的破坏将加重。震害调查表明,房屋的破坏程度随层数的增多而加重,基于砌体材料的脆性性能和震害经验,限制其层数和高度是主要的抗震措施。

五、砌体结构主要抗震措施

1、外加钢筋混凝土构造柱、圈梁及钢拉杆

当砌体结构房屋的整体性能不能满足要求时,可采用外加钢筋混凝土构造柱连同圈梁加固,利用外加钢筋混凝土构造柱、圈梁和替代内墙圈梁的拉杆,在水平和竖向将多层砌体结构的墙段加以分割和包围,形成对墙段的约束,用来加强房屋的整体性,提高抗倒塌能力。

2、外加钢筋网水泥砂浆面层

当砌体结构房屋的抗震强度不足时,可采用配有钢筋网片的水泥砂浆抹面层进行加固,这一方法通常称为夹板墙加固法,目前被普遍应用在砖墙的加固上。其是通过外加钢筋网片和高标号水泥砂浆面层来提高墙片的抗震承载能力,从而使房屋在地震时不致倒塌破坏。

3、粘钢加固

粘钢加固法是在砖柱的四周(或砖墙的两侧)包以型钢(或钢板),横向用缀板将钢构件连接成整体。当被加固的砖砌体截面尺寸受到限制,而又需要大幅度提高承载力时,采用粘钢加固较为合适。其主要特点是将薄钢板用环氧树脂之类的粘合剂直接粘贴在砌体的墙面或墙片的两端,以此来提高墙片的抗剪承载能力和砌体墙片的整体工作能力。

4、混凝土板墙加固

混凝土板墙加固类似于钢筋网水泥面层加固,具有较大的灵活性:首先,可根据结构综合抗震能力指数提高程度的不等,增设不同数量的混凝土板墙。板墙可设置为单面或双面,甚至可在楼梯间部位设置封闭的板墙,形成混凝土筒。其次,采用混凝土板墙加固时,可根据业主的意图采用“内加固”或“外加固”方案。当希望保持原有建筑风貌时,可采用“内加固”方案;当需结合抗震加固进行外立面装修时,则可采用以“外加固”为主的方案。

5、增设抗震墙

这种加固方法一般是刚性多层砖房因墙体抗剪强度不足而采用的。新增加的抗震墙可以是砖抗震墙,也可以是钢筋混凝土抗震墙。

6、X形钢支撑加固

意大利佛罗伦萨大学土木工程系的LCalan。和V.Cusella通过试验研究,提出一种比较有效的提高墙体抗震能力的加固方法,即在墙体的侧面架设x形钢支撑。钢支撑的下端与基础底板相连,上端与砌体连接,连接部位施工时必须保证其可靠性,因为连接质量的好坏直接影响到这种受力体系的综合性能。

7、粘贴碳纤维材料加固

碳纤维复合材料(CFRP)加固修复砌体结构技术是20世纪80年代末90年代初在美、日等发达国家兴起的一项新型结构加固技术。粘钢加固法由于在粘结胶和钢板的交接面处容易发生锈蚀,从而削弱粘结强度,影响了加固的效果。与粘钢法相比,粘碳纤维加固法没有界面粘结强度的削弱问题。

六、结束语

砌体结构房屋抗震设计作为房屋设计中重要的环节,应当十分重视。在明确抗震设计要求的前提下,采取切实有效的抗震措施。同时,实际工作中除了要按国家有关规定按章办事之外更应该根据实际情况适当严格要求。

参考文献

[1]郑山锁,薛建阳. 底部框架砌体房屋抗震分析与设计[M].北京:中国建材工业出版社,2002.

[2]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.12.

[3]GB 50011.2001建筑抗震设计规范(2008年版)[S].

砌体结构范文5

关键词:质量监督基本知识砌体设计

中图分类号:S611 文献标识码:A 文章编号:

质量监督员作为公职人员,肩负着对分管受监工程和巡查工作实施监督管理的责任,因此必须熟练的掌握国家有关的法律、法规和工程建设强制性标准,但是工程建设的全过程分工细化,涉及专业庞杂,如果要求质量监督员完全掌握勘察设计、施工、监理等所有专业领域,显然是不现实的,这就需要把其中最重点、常识性、必须掌握的部分梳理出来进行重点学习,这里我们来谈一谈最常见的多层砌体结构的特点。

(一)砌体结构的优缺点和应用范围

1、主要优点

(1)主要承重结构(承重墙)是用砖或其他块体砌筑而成的,这种材料任何地区都有,便于就地取材。常用的墙体材料有:①烧结普通砖:黏土砖(目前已经禁止使用)、煤矸石砖、页岩砖、煤矸石页岩砖;②烧结多孔砖:黏土多孔P型 、M型(目前已经限制使用)、煤矸多孔砖页岩多孔砖;③蒸压灰砂砖、蒸压粉煤灰砖;④混凝土小型空心砌块。

(2)墙体既是围护和分隔的需要,又可作为承重结构,一举两得。

(3)多层房屋的纵横墙体布置一般很容易达到刚性方案的构造要求,故砌体结构的刚度较大。

(4)施工比较简单,进度快,技术要求低,施工设备简单。

2、主要缺点

(1)砌体强度比混凝土强度低得多,故建造房屋的层数有限,一般不超过7层。

(2)砌体是脆性材料,抗压能力尚可,抗拉、抗剪强度都很低,因此抗震性能较差。

(3)多层砌体房屋一般宜采用刚性方案,故其横墙间距受到限制,因此不可能获得较大的空间,故一般只能用于住宅、普通办公楼、学校、小型医院等民用建筑以及中小型工业建筑。

(二)砖砌体房屋的墙体布置方案

1、横墙承重方案

楼层的荷载通过板梁传至横墙,横墙作为主要承重竖向构件,纵墙仅起围护、分隔、自承重及形成整体作用。

优点:横墙较密,房屋横向刚度较大,整体刚度好。外纵墙不是承重墙立面处理比较方便,可以开设较大的门窗洞口。抗震性能较好。

缺点:横墙间距较密,房间布置的灵活性差,故多用于宿舍、住宅等居住建筑。

2、纵墙承重方案

其受力特点是:板荷载传给梁,再由梁传给纵墙。这时纵墙是主要承重墙。横墙只承受小部分荷载,横墙的设置主要为了满足房屋刚度和整体性的需要,其间距比较大。

优点:房屋的空间可以较大,平面布置比较灵活。

缺点:房屋的刚度较差,纵墙受力集中,纵墙较厚或要加壁柱。

适用于:教学楼、实验室、办公楼、医院等。

3、纵横墙承重方案

根据房间的开间和进深要求,有时需采取纵横墙同时承重的方案。

横墙的间距比纵墙承重方案小。所以房屋的横向刚度比纵墙承重方案有所提高。

4、内框架承重方案

在外墙承重的同时,有一部分内墙采用钢筋混凝土柱代替,以取得较大的空间。

其特点:①横墙较少,房屋的空间刚度较差;②墙的带形基础与柱的单独柱基沉降不容易一致;③钢筋混凝土柱与砖墙的压缩性能不一样,容易造成不均匀变形而产生次应力,当层数较多时,在设计上应给予考虑;④以柱代替内承重墙,在使用上可以取得较大的空间。

常用于教学楼、医院、商店、旅馆等建筑物。

砌体结构范文6

关键词:砌体结构 整体性/稳定性 抗裂/防裂措施

在《砌体结构设计规范》GB50003(以下简称新规范或GB50003)第四章4.1.2条规定:砌体结构应按承载力极限状态设计,并应满足正常使用极限状态下的要求。根据砌体结构的特点,砌体结构正常使用要求,一般情况下可由相应的构造措施保证。这些构造措施包括砌体结构或结构构件的稳定和整体性构造措施、耐久性措施及裂缝或变形控制措施等等。由于砌体结构组成材料的多样性,其相应的构造措施也要比其他材料结构的相应措施看起来显得“繁杂或琐碎”些。多层砌体结构是我国应用最广泛和应用数量最大的结构形式。近年来随着国家墙改推广应用新型墙体材料,由于研究乏力和相应措施的滞后,设计、施工、施工管理的针对性不强,又因系多层结构,对其重视程度不够等因素,致使砌体结构房屋出现了一些带普遍性所谓质量问题,而新型砌体材料较传统砌体材料表现的尤其突出,这在一定程度上影响了新型墙材的顺利推广应用。另外随着国家住宅产业化和商品化的深入,对房屋的建筑结构功能,提出了更高的要求,包括业主的使用要求、设计、施工的责任以及主管部门的监管责任的强化。这其中体现标准强化、管理的措施就是国家已颁布实行的“工程建设标准强制性条文”。这对全面提高工程质量具有重大作用和深远意义。新规范就是根据这样的背景,总结我国近年来试验研究成果、工程经验以及借鉴国外可行的技术的基础上完成本规范的全面修订的。本章的构造要求,和原规范相比虽仍为三节,但其内容已有较大的扩充和变化,有关构造要求的标准也有所提高。限于篇幅,本文着重介绍新增和修改变动较大的那些条文以及被列为强制性的条文,并按“深入浅出”的原则,在简介背景的基础上,力求在执行和应用方面提出注意事项或例证,供参考。

6.1 墙、柱的高厚比

墙、柱的高厚比验算是保证砌体结构稳定性的重要构造措施之一,本次修订因提高了砂浆的强度,本节表6.1.1墙、柱允许高厚比[]值取消了M2.5以下的数值。墙、柱的允许高厚比与承载力计算无关,主要根据墙、柱在正常使用和施工情况下的稳定性和刚度要求,由经验确定,近年来在理论上进行了报导或论证[1]。

墙、柱的高厚比验算以带壁柱更具代表性,而且包括带壁柱墙的整体高厚比验算和壁柱间墙高厚比验算。设置壁柱的墙又是砌体结构最常用的提高结构稳定性和承载力重要措施。70年代已来构造柱、圈梁系统已成我国多层砌体房屋的最重要的抗震构造措施之一[2]。近年来为提高砌体的结构的承载能力或稳定性而又不增大截面尺寸,墙中的构造柱间距已不仅仅设置在房屋墙体转角、边缘部位,而按需要设置在墙体的中间部位。这样的墙体的稳定性和承载力就成为本规范解决的课题之一[3]。其中带构造柱墙的稳定性是按类似带壁柱墙的原则处理的。即把墙中的构造柱当作壁柱,并根据墙中构造柱的设置情况进行了理论分析并提出使用要求。

1、带构造柱墙稳定性推导要点

1)构造柱的纵向配筋率较小,当间距0.9~4.8m,墙厚为240mm时,配筋率均小于0.2%(当构造柱配筋为4φ12,柱距0.9、4.8m时的配筋率分别为0.13%和0.03%)。因此这种墙体的纵向弯曲的影响可按无筋砌体考虑;

2)根据压杆稳定理论,无构造柱和有构造柱纵向变形曲线为(图1~2):

对两式分别求一阶、二阶导数并根据能量法分析压杆稳定的理论,可推得

令分别为不设构造柱墙和设构造柱墙的高厚比,可求出设构造柱墙在相同临界荷载下允许高厚比提高系数为

式中:mc——允许高厚比的提高系数。

从式(4)可看出,构造柱对墙体允许高厚比的影响大小,随块材强度等级、砌筑砂浆强度等级,以及构造柱的宽度bc、构造柱的间距而变化的。根据工程中常用的各类砌体块材、砂浆强度等级及构造柱的砼强度等级(C15~C20),可求出相应条件下计算高厚比提高系数mc。从式(4)和计算结果看出,随着块材和砂浆等级的提高,mc值降低,这是自然的。因有较高的砌体强度,其弹性模量与砼的弹性模量比()减少,当砌体的弹性模量与砼弹性模量接近或相等时,mc =1,即不提高;另外构造柱间距和截面宽度的比值bc/s也是影响mc的一个重要因素,计算表明当bc/s

①对烧结砖(含烧结多孔砖)、蒸压灰砂砖、粉煤灰砖和轻骨料砼小型空心砌块砌体:

②对砼小型空心砌块、粗骨料、半细料石、毛料石及毛石砌体:

③按式(6)、(7)计算的计算允许高厚比提高系数mc列于下表:

由表可见,当bc/s =1/20时构造柱的作用不大,而当bc/s =1/4,尽管构造柱的影响很大,但考虑到构造柱间距太密,不仅施工较繁,经济效果也因之下降,因此规范规定其范围定为1/20~1/4,其平均的mc值对式(6)对应的材料为1.19,对式(7)对应的材料为1.11。即通过在墙体设置构造柱可使允许高厚比[]提高10%~20%,已接近组合砖砌体构件提高幅度。这是容易理解的,当增大墙中构造柱后不仅增大了其稳定性,而且显著提高了墙体的平面外抗弯能力。

3)若把公式(5)看作构造柱截面面积的放大系数,那么带构造柱墙可看作相应的带壁柱墙。

2、带构造柱墙高厚比验算注意事项

1)按下式验算带构造柱墙的高厚比

式中h为墙厚。

2)构造柱沿墙方向的宽度(bc)不小于180mm,沿墙厚方向的边长不小于墙厚,主筋不小于4ф12,砼强度等级不应低于C15;

3)当构造柱的截面高度(沿墙厚方向的边长)≥1/30柱高和墙厚,且顶部与横向支承结构(楼、屋盖、大梁等)有可靠连接时,可作为带壁柱墙验算柱间墙的高厚比。这和6.1.2条3款中,当圈梁的截面高度与柱间距之比(b/s)≥1/30时,圈梁可视作壁柱间墙或构造柱间墙的不动铰支点的道理是相同的。前者通过设构造柱减小了墙的长度,后者则减少了柱间墙的高度,这种方法对解决较高和较长的墙体,尤其是砌体隔墙的稳定验算提供了理论依据。砌体规范管理组反馈到不少关于这方面应用的例子;

4)设置构造柱对墙体允许高厚比的提高仅适于正常使用阶段;

5)当利用构造柱提高砌体的承载力,设构造柱墙体的构造应按本规范8.2.8的规定;

6)构造柱应为先砌墙后浇砼柱的施工顺序,并与墙体有可靠的连接。

6.2 一般构造措施

本节共有16条主要根据砌体结构的特点,对砌体结构房屋或构件的耐久性和整体稳定性作出的规定。以下择重点或新条文简介:

一、耐久性措施

为保证砌体结构各部分具有较均衡的耐久性等级,因此对处于受力较大或不利环境条件下的砌体材料,规定了比一般条件下较高的材料等级低限,对使用年限大于50年的砌体结构,其材料耐久性等级应更高。国外发达国家的砌体材料强度等级比我国高得多,自然相应的耐久性等级也高。这两条和原规范的相应条文的要求相比虽然高了一些,但限于国情,提高幅度也不大,这和新规范适当提高砌体结构可靠度的耐久性和可靠度、促进砌体材料向高强发展都是有利的。另外,当多孔块体用于有冻胀的环境时,应采取相应的措施(表6.2.2注1):当蒸压粉煤灰砖用于地面以下或基础时,其强度等级不应低于MU15,并应选用一等砖;蒸压灰砂砖、蒸压粉煤灰砖不宜用于有侵蚀介质的地基。

二、整体性措施

砌体结构房屋的整体性取决于砌体、砌体构件的整体稳定性及其与非砌体构件连接的可靠程度。砌体和砌体构件的整体稳定性与非砌体构件主要由其间的传力、连接构造,如设置梁垫或垫梁,以及锚固连接等措施保证。

1、填充墙、隔墙与周边构造的连接(6.2.8条、6.2.11条)

通常作为自承重墙的骨架房屋的填充墙及围护墙,除满足稳定和自承重之外,从使用角度,还应具有承受侧向推力、侧向冲击荷载、吊挂荷载以及主体结构的连接约束作用的能力。因此骨架填充墙及围护墙的材料强度等级不宜过低;与骨架或承重结构的连接,应视具体情况,采用柔性连接、半柔性或半刚性连接和刚性连接。对可能有振动或需抗震设防的骨架或结构的填充墙及围护墙宜优先选用柔性或半柔性连接。

砌块墙与后砌隔墙的连接(6.2.11)是保证后砌隔墙稳定性的主要措施,砌块后砌隔墙的厚度多数为90mm非承重砌块砌筑的,因其墙厚较承重砌块墙(通常为190mm厚)薄得多,相应高厚比很大,自然墙体自身的稳定性成为主要矛盾。由于后砌隔墙是按自承重墙设计的,容易忽略它可能要承受来自侧向的推力、撞击或冲击荷载、吊挂荷载以及地震作用,这可能成为后砌隔墙失稳或倒塌的主要原因,而一旦出现隔墙倒塌也会对生命财产造成一定的损失。因此在《建筑抗震设计规范》GB50011的第13.3节规定了建筑非结构构件的基本抗震措施。尽管未专门列出砌块后砌隔墙的连接构造要求,但其原则是完全适用的,说明后砌隔墙与主体结构连接的重要性。本条的连接方式属柔性连接,除便于承重砌块墙体的排块设计外,对调节较长砌块隔墙的变形(砌体干缩或地震作用)有一定的作用。但对较长的隔墙(如超过4m)除本条的连接外,尚应考虑其它增加稳定和防裂的措施。另外,填充墙连接处的抗裂措施也是当今工程中被看作“质量标准”的一个非常重要的内容,应引起足够重视。下面提供两个示例:

①多层和高层房屋悬挑外廊的填充墙,宜与其上部的梁底脱开或设置柔性垫层(图3)。

该例始于一个高层外悬挑梁刚度偏小,填充墙与梁底塞紧,引起底部填充墙因超载(即上部数十层的墙体卸载),产生压曲破坏。

②框架柱与墙的柔性连接(图4)。既解决施工后砌难,又能避免荷载集中引起自承重墙体承载力不足,设计时应控制悬挑板的刚度。

2、砌块砌体的组砌搭接要求(6.2.10)

砼砌块与整浇的砼结构不同,砌体是由块体和砂浆组砌而成的,砌体的强度是通过块体和砂浆的共同工作实现的,而砌体中块体必要的搭接长度是保证砌体强度的关键,反之砌体中的材料就形不成整体,受荷后就会过早地出现解体破坏,其受力机理是砌体中块体的错缝搭接(长度)是维持砌体在竖向荷载(或变形)作用下引起的横向变形应力不致产生过早破坏的基本要素或基本构造措施。按砌体基本力学试验方法标准规定,砌体的基本抗压强度试件,其搭接长度为1/2标准块长(对砌块为190mm),它反映了砌体施工中最普遍的组砌方式,而出现搭长为1/4标准块长(对砌块为90mm)的情况在砌体中占的数量很少,考虑到基本试件比实际墙体的边界条件更不利,因此从总体上讲能保证砌体强度的发挥。如不能满足上述的最小搭接长度,采用本条规定的灰缝钢筋网片也能起到类似的作用,包括抗裂约束作用。当承受较大的竖向荷载时,该部位的拉结网片的竖向间距不应大于200mm。

砌块砌体结构房屋的组砌搭接要求,是通过砌块设计时的墙体排列图来保证的,也是砌块结构标通图包括的重要内容,另外砌块砌体分皮错缝搭砌还能保证砌块孔洞上下贯通,是砌块砌体设置竖向钢筋的最重要的结构功能要求。

3、砌体中设置凹槽和管槽的要求

为防止在墙体中任意开凿沟槽埋设管线引起墙体承载力的降低或承载力不足,本规范6.2.14条规定,当无法避免时应采取必要的措施或按削弱后的截面验算墙体的承载力。这些必要的措施包括允许按规定设置小的凹槽和管槽,而不需计算。而国际标准《无筋砌体结构设计规范》ISO9652-1均有具体规定。

4、夹心墙的构造要求(6.2.15~16)

夹心墙是集承重,保温和装饰于一体的一种墙体,特别适用于寒冷和严寒地区的建筑外墙。国外应用广泛并具有完整的设计和构造规定。我国试验表明[4]按照本规范规定的构造设计的夹心墙具有可靠的建筑结构功能。而保证这些功能的基本要素为墙体的材料、构造方式,包括拉结件的布置及拉结件(筋)的防腐,以及外叶墙的横向支承的间距等。

由内外叶墙和连接这些叶墙的拉结件组成的夹心墙在荷截作用下存在着一定程度的共同工作,国外规范也有相应的计算方法。砌体规范从简化夹心墙的设计仅规定了6.2.15~16条的构造要求。为加深对夹心墙的构造原理的理解,下面简介美国建筑统一规范(UBC)[5]砌体部分中夹心墙设计及构造要求。

1)夹心墙承受的荷载

①每叶墙单独承受作用其上的竖向荷载,即不考虑荷载的相互分配;

②由夹心墙支承的水平构件(如梁、板)产生的重力荷载,应由距该构件中心最近的叶墙承受;绕夹心墙平面外方向的弯距,应按每个叶墙的相对刚度进行分配;

③平行于夹心墙平面的荷载,仅应由受荷载的叶墙承受,不考虑叶墙间的应力传递;

④横向作用于夹心墙平面的荷载,应按所有叶墙的抗弯刚度进行分配。

2)夹心墙的有效厚度

①当夹心墙的两叶墙均受轴向荷载时,每叶墙的有效厚度即为其单叶墙的厚度;

②当仅一个叶墙受轴向荷载时夹心墙的有效厚度,取各叶墙厚度的平方和的开方。

3)夹心墙的拉结件(筋)

①夹心墙单位面积(m2)的钢筋拉结件,对Ф3.8不少于4个,对Ф4.8不少于2.4个;

②拉结件(筋)应沿竖向交错布置,其最大间距,水平为900mm,竖向为600mm,沿洞口周边300mm范围内应附加间距不大于900 mm的拉结件,允许灰缝钢筋网片的横向钢筋作拉结件,但其间距不大于400mm;允许用矩形或Z形拉结件拉结任何块体;

③拉结件应具有足够的长度,以连接(咬合)所有墙片,拉结件在叶墙上的部分应全部埋入砂浆或混凝土中。拉结件的端部应弯折90度,其弯折端的长度不小于50 mm。在叶墙间未埋入砂深或混凝土中的拉结件,应为每端咬合于每个叶墙的单独构件;

④拉结件应能将横向荷载从一叶墙传到另一叶墙;

⑤拉结件或网片应作防腐处理。国外采用重镀锌或不锈钢拉结件;

⑥拉结件和灰缝钢筋的保护层,其最小保护层厚度不小于16mm,墙体和灰缝钢筋间的砂浆或混凝土厚度不小于3mm。

4)夹心墙的横向支承

①夹心墙的横向支承可由交叉墙、墙、壁柱提供;当竖向跨越时,可由楼盖、梁或屋盖提供。梁的横向支承间的净距不应大于其受压截面最小宽度的32倍;

②美国规范未明确夹心墙外叶墙的横向支承高度。而国际标准《无筋砌体结构设计规范》ISO9652-1,明确规定夹心墙外叶墙的横向支承间距不大于12m或100倍 的外叶墙的厚度;

5)夹层宽度大于100mm的夹心墙

规范中规定的夹心墙的夹层厚度不应大于100mm及金属拉结件的规格、数量及间距,是基于过去的经验确定的。当夹层大于100mm时,必须在墙的拉结件设计时,考虑压屈、抗拉、拔出和荷载分布等因素。美混凝土协会和加拿大标准协会已提出了宽夹心墙的建议。

6)夹心墙裂缝控制