智能化电气节能技术的系统优化策略

智能化电气节能技术的系统优化策略

摘要:中国正处于经济发展关键时期,对电能资源的需求大,加之人们节能环保意识的增强,对于智能化电气节能技术系统提出了更高要求。基于此,结合当前智能化电气节能技术系统发展情况,重点探究其优化方式与注意事项,希望为中国能源的可持续发展贡献一些帮助。

关键词:智能化;电气节能技术;优化策略;安全监控

引言

随着中国城市化、工业化进程的深入推进,对电能资源的需求越来越大,极大程度上提升了资源使用压力,同时,受到多种内外部因素的影响,当前智能化电气节能技术在应用过程中仍存在较多问题,需要相关工作人员加以重视。基于此,必须加大对节能环保意识的重视程度,综合考虑电气设备电能资源使用情况情况,科学引进现代化和智能化的电气节能技术,将其科学运用在系统中,以节省系统能耗,确保系统的安全、正常运行。

1智能化电气节能技术系统发展情况

电气系统是消耗电能资源的重要部分,随着节能环保意识的不断提升,当前智能化电气节能技术逐渐增多,为优化该技术系统,应先了解其发展现状与主要的问题,从而科学地采取针对性的解决措施。当前各个领域对电能资源的需求大、消耗量大,为智能化电气节能技术系统的诞生、发展创造了更好条件,在节能环保理念的影响下,智能化电气节能技术中多使用新型能源,如风能、太阳能等。当前,以太阳能、风能为新型资源的发电技术应用范围进一步变广,已经覆盖在多个工业领域中,特别是智能电气节能技术设计系统中,具有良好的经济、环保效益。第一,智能化电气节能系统缺乏高效、合理的统筹安排,降低了系统运行过程的节能性;第二,缺乏智能化、自动化电气节能基础配套设施,如变压器等,未能真正达到节能运行目的;第三,智能化电气节能控制系统仍有待更新,控制方式不符合系统要求,易消耗较多电能。

2优化智能化电气节能技术系统的基本原则

优化智能化电气节能系统时损害其使用需求或者不可牺牲系统本身性能为代价,也不可过度投入资金,大量引进节能技术,为了节能环保而消耗其他资源,具体而言,其应遵循以下原则:第一,满足系统性能需求,满足系统中不同模块电能需求,包括不同区域照明亮度、空调系统等;第二,遵循经济性优化原则,为实现节能环保目的,应结合自身经济实力以及投资规模,不过度追求节能环保而盲目增加投资,选择恰当的电气节能方案;第三,从小处着眼,根据系统本身功能,采取针对性节能措施,如针对量大面广的照明容量,可引入现代调光以及控制技术,降低系统的整体能耗。

3智能化电气节能技术系统的优化方式

优化智能化电气节能系统时,应根据系统的性能,将绿色环保理念贯彻在系统优化设计过程中,采取针对性节能措施,引入合理的智能化电气节能技术,具体方式分为以下几方面。优化变压器装置,使其变得更加环保节能的本质在于降低变压器本身的有功功率消耗,提升其整体运行效率,其有功功率损耗的计算公式为其中,ΔPb为代表变压器有功损耗,kW;P0代表变压器空载损耗(铁损),由铁心漏磁损耗、涡流损耗共同组成,数值大小与铁心制造工艺、硅钢片性能有密切关系,与负荷数值无关,数值基本不变,单位为kW;代表变压器负载率。优化智能化电气节能系统时,建议选择SLZ7、SC9、SL7和S9等智能化变压器,此类变压器均选择冷轧晶粒取向硅钢片,具有高导磁性能,由现代化先进工艺打造,节能环保性能突出。因进行“取向”处理,硅钢片磁场方向基本一致,可降低铁心本身涡流损耗,同时,使用45°全斜接缝结构,提升了变压器接缝密合性,有利于减少铁心漏磁损耗。与传统变压器相比,SLZ7、SL7此类无励磁调压变压器,其短路、空载损失显著降低,根据相关数据统计,35kV电路系统中其降低16.23%、38.34%;10kV电路系统中其降低13.95%、41.52%。同时,SC9、S9变压器与SLZ7、SL7相比,其短路、空载损失进一步降低,分别降低了23.34%、5.92%,年节电达10kW•h。在优化过程中,应充分发挥变压器抗冲击、低损耗、节能性能优的性能,选择恰当的变压器。此外,针对分期优化的项目,建议用多台变压器的优化方案,防止出现轻载运行而引发损耗加大的问题,在内部不同变电所间须敷设好联络线,结合其负荷情况,缩减变压器数量,最大程度上降低系统损耗。首先,根据供电距离、负荷分布情况、用电设备特征和负荷容量,科学地确定供电电压,优化供配电系统,以提升节能环保的有效性。供配电系统的优化应坚持简单、安全、可靠的原则,同一电压供电系统中变配电级数应少于两级;其次,根据经济电流密度,选择恰当的导线截面,通常按照年综合运行费用最少的原则计算单位面积内经济电流密度[2];因电气系统的线路总长度可能超过10000m,其线路在运行过程中会出现大量有功损耗,为实现节能目的,应科学减少线路损耗。ΔP(线路损耗)∝R,R=籽L/S,说明线路损耗与L(长度)、籽(电导率)成正比,与S(截面)成反比,因此,优化供配电系统时应特别注意以下几方面:第一,选择导线时,应选择电导率偏小的材质,如铜芯导线,针对负荷大的供电系统,可选用铜导线,但为节省铜材质,在负荷大的供电系统中应使用铝芯导线。第二,科学缩短导线长度,变配电所的位置须与负荷中心靠近,减小线路供电的距离,节省线路损耗。低压线路供电半径通常小于200m,当优化项目的面积超过10000m2时,应设置两个以上变配电所,从而缩短干线长度。同时,应尽可能减少线路中的“弯路”,以减小导线总长度。第三,增加线缆截面积,针对线路较长的优化项目,应综合考虑电压损失、动热稳定、载流量等因素,合理增加一级线缆截面。充分发挥供电线路本身的作用,调节季节性负荷,如将风机盘管、空调风机等计费同等的负荷集中起来,用同一干线供电。优化智能化电能节能系统,应增加智能化电气节能系统中故障检测模块,引入模糊网络、神经问题,科学运用专家系统等智能化检测方式,对电气系统中发动机、变压器进行动态监控,提升系统故障的反馈、预警能力以及检测有效性。如可以在变压器中增加人工神经网络故障诊断方式,利用神经元系统的计算功能,结合系统应用功能来科学调整其采光控制、用电情况,从而提升电气设备本身的节能性。1)优化智能化电气节能供电系统的保护措施,利用现代化网络技术开启系统的智能化保护措施,借助互联网人工智能、自动识别系统,科学监控系统运行质量安全,动态预警系统安全问题,如电气设备在运行中出现短路、短路等问题时,可根据互联网短时间内找准故障位置,并立即进行维修;2)优化与智能化电气节能有关的安全防范系统,包括门禁控制、入侵报警、视频监控、数字和网络视频监控技术等系统,其中最为核心的是信息采集和处理,其主要分为微机接口及其相关控制技术、智能化元器件探测技术、智能系统调试技术等,在实际优化过程中,应特别关注质量安全监控系统的运行情况,保障电气设备的高效、安全运行。智能控制系统是优化智能化电气节能技术系统的重要组成部分,须优化系统智能化控制管理方式、智能控制策略、智能化控制网络、智能化数字控制器等方面。如在设计暖通空调系统时,可引入PID控制方式,利用分层网络控制模式,优化电气节能技术,以实现环保、节能的目的。

4结语

智能化、自动化是电气节能技术设计的主要发展趋势,为科学节省电能资源,保障供电系统的正常安全运行,必须加大对智能化电气节能技术系统优化的重视程度。但当前电气能源消耗量大,应用智能化节能技术的难度较高,相关工作人员应从电气管理、控制系统等方面入手,革新智能化电气系统质量安全监控模块的技术,基于整体角度优化智能化电气节能技术体系,提升电气系统的环保性能、经济性能。

参考文献

[1]刘辉,李斌,翁轶能,等.空调智能化与云计算结合节能技术研究[J].绿色科技,2016,25(22):81-85.

[2]鲁宗相,黄瀚,单葆国,等.高比例可再生能源电力系统结构形态演化及电力预测展望[J].电力系统自动化,2017,41(9):12-18.

作者:沈哲 单位:酒钢集团筑诚工程管理咨询有限责任公司