认知无线电技术在潜艇通信对抗中的应用

认知无线电技术在潜艇通信对抗中的应用

摘 要:介绍了认知无线电的基本概念,提出了认知无线电应用到潜艇通信对抗的设想,阐述了此设想给潜艇通信对抗带来的变化,分析了需要解决和注意的问题。

关键词:认知无线电(CR) 潜艇通信对抗 频谱检测 频谱分配

引言

潜艇通信对抗,是潜艇电子对抗的重要分支,实质就是敌对双方在无线电通信领域内为争夺无线电频谱控制权而展开的斗争。认知无线电技术是目前无线电界的热点,多项研究表明其在军事通信对抗领域有巨大的应用前景。而由于潜艇通信的在技术和装备方面的种种特性,认知无线电在潜艇通信对抗方面的应用面临着新的问题,是项前沿性课题。

1 认知无线电(CR)技术概述

Mitola、FCC、ITU WP8A、John Notor等个人或组织对认知无线电技术给出较有代表性定义[1]。比较受无线电方面的专家和学者们认可的是美国联邦通信委员会(FCC)对认知无线电技术的定义:认知无线电技术是无线终端利用与无线环境进行交互所获取的无线背景知识,调整传输参数,实现无线传输的能力[2]。

认知无线电技术的核心思想是在其对频谱感知和系统的智能学习能力支持下,将频谱资源从时间、空间和频率等多维度的重复利用和共享,实现动态频谱分配和频谱共享。

1.2 认知无线电的关键技术

1.2.1 频谱检测

现有的采用导频信号和周期平稳过程特征检测等技术随多径衰落的影响而检测性能降低。认知无线电技术能够找出适合通信的“频谱空洞”。这是认知无线电对抗功能的技术基础和前提。在认知无线电中,频谱检测技术不仅在频谱空洞的检测中起关键作用,而且还需要负责频谱状态的实时监测。认知无线电终端监测频谱能够准确地判定射频信号碰撞事件,使潜艇通信信号避免干扰信号的压制。

1.2.2 动态频谱资源分配

动态频谱分配的关键技术主要有:载波分配技术、子载波功率控制技术、复合自适应传输技术。该调制方式可以通过频率的组合或裁剪实现频谱资源的充分利用,可以灵活控制和分配频谱、时间、功率、空间等资源[3]。动态频谱分配技术的应用将使潜艇通信更具灵活性,将潜艇通信所需要的频谱和干扰信号所需占据的频谱区分开,避免两者之间的冲突,达到对抗的目的。

2 认知无线电技术在潜艇通信对抗中的应用展望

在潜艇通信侦察方面,通信测向与定位是通信侦察的重要内容。目前常用的通信测向技术大致有比幅、比相、比幅和比相相结合、多普勒、时差、谱估计等体制。可是,基于传统技术建成的无线电监测测向系统已不能满足当前各种新型、密集的无线电信号的监测和测向的要求。认知无线电中的高度数字化、集成化和数字处理技术应用应用可组成单信道、双信道及多信道的相关干涉仪或其他体制的监测测向系统,并具备宽带扫描、本振共享、同步采样、信号识别、信号分析功能,系统测向功能极其强大,且测向速度快、灵敏度高、可靠性强、动态范围大,计算机自动控制,界面友好、直观,操作使用极为方便,极大地提高了无线电技术人员测定无线电辐射源能力。

在潜艇通信干扰方面,对于长波发信而言,当通信距离较远,且潜艇距干扰发射台较近时,通信将被干扰。对于短波发信而言,由于其功率小,所以无论通信距离远近,压制性干扰都会起到一定的效果。由于军用认知无线电使电台对周围复杂电磁环境所感知,因此能够提取出干扰信号的特征,进而可以根据电磁环境感知信息、干扰信号特征以及通信业务的需求选取合适的抗干扰通信策略[4]。而潜艇通信系统时需要实时得到通信特征参数,要有实时地随通信特征参数变化而变化的能力。总的来说,认知无线电技术应用于潜艇通信反对抗后将极大地提升潜艇通信对抗水平。

3 认知无线电技术在潜艇通信对抗中的应用需解决和注意的问题

近几年来,军用认知无线电技术得到了快速发展。然而,认知无线电技术于潜艇通信方面还是需要解决和注意许多问题。

3.1 潜用智能天线的研制与使用是关键

在复杂电磁环境的海战下,若想取得信息优势,必须使未来应用与潜艇通信的认知无线电终端的功能更加智能化。认知无线电的天线具有接入多个频段的功能,理想的认知无线电系统的天线部分则应该能够覆盖全部无线通信频段,这对天线技术提出了较高的要求。目前,智能天线技术的问世即将解决这个问题。此种天线系统可以动态配置。未来潜艇智能收发天线将既有自动感知干扰源并抑制其影响的能力,又有增强期望信号的很强的抗干扰能力[5]。进一步来说,如何将潜用智能天线的使用融合到潜艇的战术行动之中,以达成此装备服务于战术的目的,是认知无线电技术应用于潜艇通信对抗的另一关键问题。

3.3 软件开发和仿真训练的进度应加大

在潜艇通信对抗行动中,反潜兵力为取得最佳对抗效益,将会针对不同的通信信号采用不同的侦察或干扰样式。需要针对各种可能的对抗技术研究出相应的对抗扰处理算法,然后装订到以软件无线电为平台的认知无线电潜用终端上。同时,应针对认知无线电通信系统对抗技术的特点,对开发系统的自适应能力和功通过计算机仿真软件,构建复杂电磁环境、系统仿真模型,通过严格完备的仿真试验,分析并验证认知无线电通信对抗装备的技术性能和环境适应能力、作战能力。

3.4 通信链路的可靠性和持续性需增强

潜艇在未来信息化战场上,无线电通信技术的网络设备如果没有良好的配置和网络部署.一旦受到安全威胁,其后果不堪设想。无线电通信技术通信方法的拓新我们与必要提高网络设备性能、优化设备配置、冗余备份等等手段来保证网络的可靠性。而且,认知无线电的潜艇终端必须适应于发信快的原则,避免由于智能对抗的过程过长而使潜艇暴露。在岸台方面,自潜艇从所在海域发出信息后,岸台认知无线电终端必须在尽可能短的时间内腾出接收频率,务必保证信息不露报。这就要求增强认知无线电技术支持下的接收终端通信链路的持续性和可靠性。

4 结语

认知无线电应用于潜艇通信不仅是一个技术问题和装备问题,而且是一个战术问题。技术上,认知无线电技术还很不成熟;装备上,潜用认知无线电通信终端还未曾涉及;战术上,潜艇认知无线电通信的作战使用还未曾进行深入的研究论证,这些问题都需要深入探讨[6] 。所以认知无线电技术应用于潜艇通信对抗需要解决的理论和实际问题远非限于上述几种情况。相信随着对认知无线电技术研究的不断深入和应用,潜艇对战场无线电磁环境的感知的能力将会有更大的提升的余地。 #p#分页标题#e#

参考文献:

[1] 周贤伟,孟潭,王丽娜等.认知无线电研究综述.电讯技术[J].第6期,2006.

[2] 毕志明,匡镜明,王华.认知无线电技术的研究及发展.电信科学[J].第7期,2006.

[3] 张建军,姜艳,马玲玲.认知无线电对通信对抗装备建设的启示.无线电通信技术[J].第4期,2009.

[4] 王忠思,黄辉,于爽.认知无线电技术及其在军事上的应用.四川兵工学报[J].第30卷第7期,2009.7.

[5] 朱婷婷,赵林,李忱.智能天线在军用软件无线电中的应用研究.仪器仪表用户[J].第4期,2006.

[6] 刘先锋,刘勤,刘博.浅析军用认知无线电.中国无线电[J].第8期,2008.