模型设计论文范例6篇

模型设计论文

模型设计论文范文1

1.1风景园林模型制作的目的

风景园林模型制作原本属于工艺制作的范畴,但由于从设计意图到实物模型的转换过程中,涉及到园林形态、比例、色彩、材料、空间、结构等造型因素的变化。通过模型制作,突破二维平面表现手法的局限性,在三维空间造型上对设计进行推敲、修正,体会设计的形体、光影、结构布局、构成等,进行细部推敲、分析与设计构思的完善,从而达到培养学生的设计创新能力、动手能力、树立空间想象力的作用。

1.2风景园林模型分类

根据用途和制作工艺,模型有两种分类方法。一种是按其表现形式和最终用途,一般可分为方案模型和展示模型。方案模型又称“工作模型”或者“构思模型”,主要用于设计过程中的分析现状及周边环境、推敲设计构思、探讨多方案的可能性、论证方案可行性等环节。展示模型也称“实体模型”,用于模拟设计外观及展示成果使用;另一种是按制作模型的材料进行分类,风景园林模型常用的主要有纸板模型、聚苯模型、木模型、石膏模型、铁丝模型,以及由多种材料组合而成的模型。

1.3模型制作在风景园林设计教学中的意义

(1)培养学生从二维走向三维的空间思维能力

模型设计制作是依据学生的设计思路和设计图纸来实践练习的。设计图是风景园林设计师表达思路的语言,主要体现在如平面图、立面图、剖面图、透视图等图纸上。设计图由各种具有不同代表意义的图形符号所构成,并体现在二维图形中。通过由设计图纸到模型实物制作这一过程,既强化了学生的看图识图能力,又培养了学生思维能力,使之从二维图形走向三维空间。

(2)培养学生理性思考与视觉思考相融合的思维能力

模型作为实体的存在,可以使学生方便地从宏观到微观,从整体到细部对设计方案进行深入的思考与推敲,在此过程中,学生的理性思考与美学思考得到有效的交融,有利于提高其综合思考的能力。此外,模型制作要求美学与功能设计有机统一,这种灵活的设计方式为教师的教学也提供了方便,以便于教师深入了解学生的设计思路和思维水平。

(3)培养学生的实操能力与实践能力

从工作模型的推敲到展示模型的制作,作为一个较完整的设计过程可以模拟从风景园林方案构思到施工前的过程,学生可以深入体验方案分析—方案建立—方案推敲—方案深化—方案实施的全过程及设计阶段的关联性,从而提高他们的实际操作能力。同时,模型制作需要一套完整的制作方法和完善的制作流程,以便于提高模型的完成度,在此过程中,可以使学生建立合作意识,从而提高了他们的实践能力。

2模型制作在风景园林设计教学中现存问题

2.1风景园林设计教学现存问题综述

关于风景园林设计教学中存在的问题,不少学者和教师都有所论述。现归纳普遍问题如下:从课程体系设置层面看,①教育观念和课程体系设置缺乏及时更新,表现为某些课程的设置上理论与实践的脱节、各课程教学环节中的脱节。②综合性课程设计和现场教学等实践教学环节亟待加强。③“课外素质教育体系不够健全,课外学习在一些方面缺乏课堂的知识补充和完善、缺少教学内容的延伸、自学能力锻炼。基于上述原因,设置风景园林专业的各校都在积极准备和提出新的风景园林教育的培养目标和培养方式,形成新的教育理念和教学内容。从人才培养层面看,①人才培养目标不够明确,重方案设计技能而轻工程知识,导致本科毕业生不论是在专业知识方面还是在社会工作能力上都需要有一个再培养和训练的过程,才能真正独立工作。②设计教育重“形式”而轻实践,忽视必要的逻辑思维和理性思维,导致学生热衷于讨论缺乏建造技术支撑的“概念”、“构思”,而对风景园林设计师职业产生误解。

2.2模型制作在风景园林设计教学中存在的问题

(1)模型制作的内涵较为狭窄实践技能的培养是当前我国风景园林教学体系中最为薄弱的环节,风景园林设计教学一般仅停留在方案完成阶段,缺少园林工程与技能的讲授并阐述其与设计的联系。在国外的风景园林教学中,学校把从方案到施工实现的知识作为培养学生的基本内容,如美国的罗德岛设计学院(RhodeIslandSchoolofDesign)通过技术与材料(Technology&MaterialsI,T&MII,T&MIII)3部分课程,使学生购买材料进行建造,从而实现自己的方案。(2)模型制作的表现单一模型制作在风景园林设计教学中通常仅作为设计阶段的辅助和补充。在风景园林设计教学中,通常方案构思是教学的主要内容,这个阶段模型制作主要侧重表现设计内容,目的是对培养学生空间概念,而不强调制作材料和制作技巧。因此对于模型表现的其他方面必然有所忽略。(3)模型制作的操作简单模型制作在风景园林设计教学中以手工操作为主,辅以简单机械操作,较为复杂的模型会使学生畏而不前甚至在设计中摒弃较为复杂的设计内容,手工操作同时还带来了意义较少的重复劳动,进而影响了学生的制作热情和教学效率。

3风景园林设计教学中模型制作的强化与拓展

3.1统筹安排,渐成体系

应从风景园林设计教学体系的全局出发,制定明确的教学目标,强调模型制作的意义,并合理安排其内容与深度,来满足各年级风景园林设计教学的需要,使学生在学习中循序渐进。以笔者所在的北方工业大学为例,风景园林专业设计课程体系如表1所示。其中一年级的设计初步课程在贾东教授负责的《同源同理同步的建筑学类本科实践教学体系研究》的指导下,强化模型教学,从纸板、石膏、木、聚苯、铁丝等五种基本材料的认知出发,使学生了解材料及指代材料特性,对空间进行认知、体验和构成设计,达到空间认知的教学目的。该课程改革后确立了模型制作在整个设计教学中的核心地位,并取得了一定的成果①。二年级、三年级乃至四年级,也根据课程体系对模型制作做了一定的规定。

3.2因地制宜,区分对待

在形成模型教学体系的基础上,应从风景园林设计教学的具体内容出发,根据设计课程内容来制定模型制作内容和要求。目前,风景园林专业主要设置在建筑类、农林类、艺术类和综合类高校,由于设置风景园林专业的高校的学术背景不同,具体课程设置和风景园林设计教学内容的安排必然会有所偏重、有所差异。但风景园林设计教学的基本程序总体上都是由项目分析、资料搜集、案例研究、设计立意、方案构思、多方案比较、方案调整、方案表达等几个阶段组成,来达到专业技能训练和人才培养的目的。甚至可将上述程序总结为三个阶段。如在案例研究中,仅对相关案例进行资料梳理和现场调研,甚至图纸抄绘,学生难以建立起完整的逻辑思路和全面的印象,如果在本阶段引入案例模型制作环节,则可以加深对案例的认知。如笔者所带设计课程中曾使学生对经典案例北海濠濮间进行资料收集、测绘,并制作模型,模型制作使他们对所讲授内容、测绘成果进行了巩固和再认识,而仅做资料收集则无法到达这种效果。

3.3内外结合,贯穿延续

重视课外教学的作用,在课外教学延续和拓展风景园林设计教学内容,通过各种设计竞赛、名师讲座、社团活动、社会实践以及实习实训环节,培养学生的实操能力,强化专业知识和技能,提高综合素质和竞争力。模型制作可以将课堂内外有机结合在一起。利用课外活动,以模型制作为切入点,延伸课堂教学到这些活动中去。如两位笔者所带二年级文化景观与遗产保护课程介绍了古建筑的基本知识,同时利用大学生科技活动,使学有余力的学生制作实体模型,使之理论与实践水平都得到了提高。

3.4善借于物,提高效率

充分利用现代技术手段,缩短模型制作中意义较少的重复性工作,节省时间,提高效率。如激光测绘、3D扫描技术、数控设备如数控雕刻机、单片机、3D打印技术等发展迅速,大大提高了模型的制作精度和美观程度,同时声、光、电等技术的引入,也扩大了模型制作的内容。这在风景园林模型制作中尤为重要,以地形建模为例,风景园林设计中的等高线相对而言比较复杂,手工制作很难达到满意的精度和外观,如果使用数控机床对等高线进行切割,就大幅度缩小了模型制作的时间。又如假山模型的制作,使用3D扫描技术结合3D打印技术可以使学生有更多时间去推敲假山设计而不是过度专注模型制作本身。

4.风景园林模型教学的几点思考

4.1开设模型课程

宜建立与风景园林设计教学体系相适应的模型制作体系,统筹安排各设计课程模型制作的内容和所占课程比例,从而提高教学效率。宜在低年级开设模型制作课程,系统地有针对性地普及模型制作方法,有利于发挥学生的创造性思维。

4.2构建课外模型教学体系构建

构建课外的模型教学体系,宜将课外与课内贯穿联系,形成“两翼并重,两渠相融”的模式,加强课堂与课外之间的联系,使课外与课内模型教学内容互不重复、互不冲突、互为补充,从而提高教学效率,并提高学生的综合素质和实践创新能力。

4.3模型实验室的完善

模型设计论文范文2

关键词:园林专业;毕业论文(设计);典型模式

1.产学研互动式教学模式

该模式的特征在于园林专业本科毕业论文(设计)的选题即是导师的科研项目,有具体的实际工程应用背景,形成教学、科研、生产相互促进,教学质量有保证,又能促进科技进步、服务生产第一线,创造实际效益的教学模式。其主要特点为:该模式园林专业本科毕业论文(设计)选题具有前沿性,有利于提高学生的主动性和创造型,有利于保证园林专业本科毕业论文(设计)成果的先进性。在教学经费上相对充足,有利于安排学生到工程实际现场进行调研实习,以进行充分的文献检索,实际科研能力和工程综合能力训练比较充分。实施该模式的导师大多有立项的科研项目,一般教学科研能力较强,层次较高,能够全面培养学生的综合素质和能力。在布置毕业论文(设计)任务和内容时,使学生了解科研项目全貌的同时,将项目进行合理的分解,形成独立的研究小组,使每个学生承担各自毕业设计的任务和内容,分工协作。对于理论基础好、综合能力强的学生来说,这是一个比较好的模式,可以充分发掘学生的潜力。

2.面向市场的短、平、快课题教学模式

此种园林专业本科毕业论文(设计)教学模式的特点是,题目内容的真实性和实用性强,一般面向市场和社会需求选择一些小的、较短时间内能够完成的设计项目,寻求与中小型企业合作,开发横向课题,将其作为学生的毕业论文(设计)选题,通过此类训练,学生全过程参与项目的完成,并取得有效成果。

该模式可以从企业处获得一定的经费支持,同时需要指导教师做大量的准备工作,组织好学生与公司企业间的技术交流沟通。由于要求产生实用性成果,指导教师对学生的研究设计更要严格把关,甚至亲自参与研究设计,做到心中有数。而学生实习调研充分,项目全过程参与和具体研究成果的取得,会促使学生的素质和能力得到培养和提升。该模式通常工作量饱满,有利于调动学生的积极性和创造性,毕业论文(设计)质量较高。

3.“双导师制”教学模式

由于科技的飞速发展,完成一个课题需要多学科专业知识的参与,采取“双导师制”教学模式,改变学生只有一名教师单独指导的情况,可以弥补单个指导教师知识和能力结构的不足,尤其是老教师与年轻教师、校内教师与校外导师优势互补,对学生的指导更为有利,可以使学生得到更多的收获。

这种模式不局限于同一学科、同一专业有助于形成一个很好的互动局面,客观上每位学生更容易随时随地得到不同教师的指导,对学生综合素质和能力的培养更为有利。此外,该模式还有利于学校指导教师水平的提高,也确保了每名学生的毕业论文(设计)质量。

4.学生自选课题教学模式

随着时代的发展,园林专业高等教育愈加重视学生创新能力的培养,愈加重视学生的个性发展,因此,这些年来学生自选毕业论文(设计)课题的想法比以往更加强烈,人数逐年增多,目前已成为主流趋势。该模式的特点是:

学生自选课题,更容易发挥学生的主动性和创造性,特别是与实习工作相结合,兴趣高,投入精力大,容易出成果。但是学生自选的课题需要进行严格的把关和筛选。教师与学生间需要进行充分的交流和沟通。

学生自选课题模式更应注重指导教师与学生间的双向选择;指导教师对学生的创新精神应该给予充分肯定和支持。但也正是由于学生自选课题,指导教师缺乏一定的准备,因此,指导教师除指导学生拓宽工作思路和提供方法引导外,也应该亲自参与课题的研究,充分掌握学生研究设计进展和存在的问题。

参考文献:

模型设计论文范文3

为了克服学生对这个知识点的畏难情绪,我是这样处理的。我课前准备一个保温杯的包装盒,这个盒子有外壳,中间有一些用于抗震的泡沫塑料,上课时,我出示了本节课的标题,和教学目标后,向学生展示这个盒子,让学生观察这个盒子由几部分组成,引导学生中间部分是放杯子的地方,可以说是内容区,填充的泡沫塑料是填充区域,盒子的外包装用的纸壳可以说是边框。两个盒子之间的距离是边界。

二、生活中的盒子要和网页中的盒子结合起来

CSS+DIV网页设计中,页面中的所有元素都看成一个个盒子,例如,网页中显示的一幅图片,其背后实际对应着一个盒子模型结构,它包括如下属性:内容大小:内容区域的宽度和高度。填充:是内容与边框的距离,对应包装盒的填充部分。边框:对应包装盒的纸壳,一般具有一定的厚度。边界:位于边框外部,是边框外面周围的间隙。

三、盒子模型和具体的案例相结合

网页中的一幅图片可以看成一个盒子模型,那么使用这个盒子模型处理图片能达到怎样的效果呢?演示主题相册的案例,引导学生观察案例中图片的处理方式,图片外面有1px的边框,图片和边框之间有2px的间隙,图和图之间有10px的间距。引导学生将案例和盒子模型的属性结合起来,案例中的图片就盒子模型中的内容属性,图片和边框之间的间隙就是盒子模型中填充属性,案例中的边框就是盒子模型中的边框属性,案例中的图和图之间的间距就是盒子模型中的边界属性。

四、盒子模型的属性代码给学生详细介绍盒子模型的属性代码

一个盒子模型是由内容、边框(border)、填充(padding)和边界(margin)四个部分组成的。填充、边框和边界都分为“上右下左”4个方向、既可以分别定义,也可以统一定义,如:div{margin-top:1px;margin-right:2px;margin-bottom:3px;margin-left:4px;padding-top:1px;padding-right:2px;padding-bottom:3px;padding-left:4px;border-top:1pxsolid#000;border-right:1pxsolid#000;border-bottom:1pxsolid#000;border-left:1pxsolid#000;}也可以写成:div{margin:1px2px3px4px;按照顺时针方向缩写padding:1px2px3px4px;按照顺时针方向缩写border:1pxsolid#000;}

五、使用盒子模型属性实现具体案例——主题相册

1.所有的内容都在一个大盒子里,这个大盒子可由div实现#content{width:750px;padding:5px;}宽度为750px,填充为5px。

2.主题相册标题部分。用h1实现,h1同样也可以看作是一个盒子,设置h1的CSS属性h1{font-size:20px;color:#c03;font-weight:normal;字体大小为20px,颜色为#c03,粗细为正常。border-bottom:2pxsolid#c03;padding-bottom:4px;}下边框为2px实线,颜色为#c03,下填充为4px。

3.婚纱系部分。婚纱系和写真系、童真系结构相似,可以使用div层,应用类样式来实现。Div层同样可看作是一个盒子,设置类的名称为.theme.theme{width:100%;border-bottom:1pxdashed#e6e6e6;padding-top:5px;padding-bottom:20px;}宽度为100%,和父层content层的宽度一样,下边框为1px虚线,颜色为#e6e6e6,上填充为5px,下填充为20px。

4.婚纱系中的标题部分。用h2实现,h2同样也可以看作是一个盒子,设置h2的CSS属性,h2{font-size:14px;color:#333;padding-left:8px;}字体大小为14px,颜色为#333,左填充为8px。

5.婚纱系中的图片部分。用img实现,img同样也可以看作是一个盒子,设置img的CSS属性,img{border:1pxsolid#ccc;padding:2px;margin:08px;}边框为1px实线,颜色为#ccc,填充为2px,上下边界为0,左右边界为8。

6.写真系部分。复制婚纱系所在层所有内容,更改相应的图片,文字内容即可。通过以上步骤,使用盒子模型完成了一个具体案例。

六、关于盒模型还有以下几点需要注意

1.边框默认的样式可设置为不显示(none)。

2.填充值不可为负。

3.若盒中没有内容,尽管定义了宽度和高度都为100%,实际上也只占据%,因不会被显示,此处在DIV+CSS布局的时候需要特别注意。

模型设计论文范文4

汽车制造企业不仅要有上游的供应商,更需要大量的下游供应商,通过分销商将整车销售给顾客,对销售的车辆进行售后服务,并对顾客提出的问题和建议进行反馈,对便于企业的进一步发展。随着我国生活水平的提高,人们对于汽车的需求量越来越大,同时对于汽车制造企业也提出了更高的要求,企业之间的竞争越来越激烈,汽车从零件的采购、组装和销售到顾客的手中,其周期越来越短。当前,我国汽车制造企业虽然取得了长足的进步,但是和国际上先进的企业相比还有一定的差距。其中在售后服务这一方面,与国外的差距更大,需要发挥分销商的优势,进一步的完善。

汽车行业的进入,需要投入大量的资金,并且要有相关的技术资源,这就造成了该行业的进入和退出的成本都相对高,加强汽业制造企业与相关企业的协作关系,可以降低风险,提高效率。

当前,各个汽车制造企业都将汽车的发展与信息技术的发展紧密结合,如条形码技术、EDI技术都得到了广泛的应用推广,从而保证了企业对所售车辆的售后服务质量,提高了工作效率。对于汽车行业的信任模型,国内外的很多专家学者也提出了不同的理论。对于当前研究来看,一般都采用信任的前因及后果两方面的研究来进行评价。在企业信任模型中,信息的有效共享是非常重要的,图2为企业信任的简易模型。

上个世纪,对于企业信任的要素,主要还是以企业领导人的品格进行研究,无法通过科学的数据进行测定。进入21世纪以来,研究人员对于企业信任的研究越来越细致,对于其影响因素的划分也更加具体,其可测性更强了。

(1)与供应商的协作信任。当前,一个企业的能力不仅指的是企业自身的科研、生产等方面的能力,更主要的是指企业与各个供应商的关系。同时企业的声誉在企业的发展中,也占据着十分重要的角色,是一个无形的资产,当企业之间的产品质量相差不大的情况下,声誉在社会上好评的企业将会决定着销售的成败。在汽车供应链中,汽车制造是最重要的,在对零件的采购活动中,当前基本上都是采用竞标的形式进行采购。当生产企业与供应商的关系越密切,表明其彼此之间的信任关系越高。

(2)关系要素。在整个供应链中,汽车制造企业与各个供应商之间的信息进行共享,其内容主要包括:销售量、库存、订单、返修及回收等内容。尽可能缩短汽车在流通环节的时间,提高服务质量,可以使企业之间的关系更加紧密。当两个企业进行合作,通过交易可以使双方不断地加深了解,逐步形成共同的目标和价值观,在相互学习中提高自身的能力,提高双方的满意度,其信任度也越高。在企业交流的过程中,企业的边际人员,如技术人员、业务人员或中层管理人员的相互交流,也可以让企业的信任度得到进一步的提高。

(3)环境因素。对于企业来说,要想在某个国家或地区得到发展,就要考虑其当地的风俗和文化,减少不必要的误解和分歧。当一个企业融入到某个文化中,可以让彼此之间建立起更强的信任关系。

(4)合作绩效。当企业双方进行合作,当彼此之间获得越多的经济利润越多,对于企业间的信任关系也有着积极的作用。

模型设计论文范文5

关键词:快速设计方法;参数化模型;优化设计;软件集成技术;塔式起重机

中图分类号:TH122 文献标识码:A

文章编号:1674-2974(2016)02-0048-08

21世纪市场需求多样化、个性化和快速变化的特点使得产品投放市场的时间及质量日益成为赢得客户的关键因素,有力地促进了以缩短开发周期、提高设计质量为特色的产品快速设计技术发展[1].因此,适应市场需求,采用有效的快速设计方法,构建集成化的产品快速设计平台,对于提升企业市场竞争力具有重要意义.

近年来,产品快速设计方法和软件技术的研究取得了明显进展.如陈永亮等[2]提出了模块化的机械产品快速设计体系结构,侧重于设计过程分析,对设计数据的完备性及数据共享问题则较少讨论;Liu等[3]研究用建立信息本体模型(Ontology Model)的方法解决机械产品设计过程中复杂的数据表述和存储问题,理论意义明显,实用技术需要进一步完善;Penoyer等[4]提出了一种基于知识工程(KBE)的产品快速设计理论,在对产品研发提供良好设计规则支持的同时,构建知识库的要求也就更高;刘子建等[5-6]提出用多层多体方式构建产品统一信息模型,并用包含语义、数据、时序和行为四元素的全设计流程理论驱动设计流程.然而,上述研究较少涉及与产品快速设计密切相关的流程驱动方法、以产品模型为载体的数据快速处理技术的具体实现方法,致使用于产品研发实际的CAx多软件平台快速集成方法仍然没有形成完善的方案,企业中信息化单元技术和设计人才相对丰富,却无法形成高效实用的快速设计能力的现象依旧十分普遍,制约了企业核心竞争力的提升.

本文基于文献[5-6]提出的产品全设计流程理论,针对全设计流程的语义、数据、时序、行为四大要素,以及一致性产品信息建模的原理,结合机械产品设计的基本流程(规范计算结构设计优化分析三维建模工程图设计) [7],讨论了CAx多平台环境下一致性产品参数化快速建模方法、模型规划和数据传递技术、软件架构和平台集成技术,并以塔式起重机快速优化设计平台为实例,验证了基于统一信息建模和全设计流程原理构建产品多平台快速设计方法的可行性.

1基于多平台的产品快速设计方法

基于多平台的产品快速设计方法是借助于现代设计方法、CAx和数据库等先进信息技术,以产品一致性结构参数化模型为信息载体,以全设计流程为驱动机制,以缩短产品开发周期为目的的新型多平台集成设计方法.

1.1参数化建模与结构设计

基于商用CAD/CAM软件系统的参数化设计技术主要有3种实现途径,其一是通过编程语言建立设计对象的数学模型;其二是利用系统提供的特征设计表达式驱动结构建模;其三是使用骨架模型(Pro/E)等技术实现产品的Top-Down参数化设计建模.骨架模型可较好地支持设计流程和传递设计数据,便于维持结构信息模型的一致性.

基于骨架模型的Top-Down参数化建模的关键在于设计对象的模块化分解及设计参数的层次化定义,即由产品到部件到零件再到特征逐层分解设计对象,分级建立骨架模型,再从顶部骨架模型传递数据给底部零件模型,从而保证设计数据的一致性.用Pro/E等软件系统实现上述过程的主要步骤包括:定义产品各层级的骨架参数―建立描述产品整体性能和部件性能的约束条件―构建部件、零件的各类基准―确定零部件结构定形和定位尺寸的关系―选择Sweep或CSG等方法生成三维模型.上述每一步骤均可根据需要设置参数,并通过骨架关系和几何等功能在各层级模型间传递和共享数据.

遵循Top-Down思想的参数化建模最终生成的是具备柔性特征的一族模型,用户可以通过变更参数来修改设计意图.参数化模型使得产品在设计初期(此时,零部件的形状尺寸均具有一定模糊性)即可规划零部件之间的位置关系及形状特征,根据设计流程的推进,通过控制参数快速有效地完成尺寸、基准等设计要素的修改,以几乎是全自动的形式完成三维模型的生成,与此同时还能够保持设计数据的一致性.显然,Top-Down参数化设计建模方法具有传统设计方法无法比拟的灵活性、高效率,以及设计数据和模型修改的一致性.

1.2多平台软件无缝集成

Top-Down参数化设计建模的意义在于提供了结构设计快速表达方法,形成了设计信息的载体.复杂机械产品要求的性能设计优化、复杂数据计算和管理等,则需要利用模型载体,集成多个软件平台共同完成,因而产品快速设计实现的关键在于多平台软件的高效集成.下面针对图1所示的流程驱动需求,讨论围绕产品研发目标,使用Matlab, Ansys, Pro/E及Access等常用软件系统完成产品规范计算、分析优化、结构建模、数据存储和管理等功能的多平台集成原理,以及接口实现等关键技术,从而将快速设计不可或缺的快速流程驱动、自动计算、参数化优化分析、Top-Down快速建模、设计数据规范管理融为一体,构建高效实用的多平台快速设计方法和软件系统.

1.2.1规范计算

规范计算的主要任务是获取初步正确的产品设计参数,满足工程理论和规范意义上的基本设计要求.不同产品的规范计算必须严格按照对应的技术标准和计算规范进行,如GB/T 3811―2008(《塔式起重机设计规范》)就是工程机械中塔机规范计算的依据之一.

规范计算通常使用的Matlab以工具箱形式提供功能丰富的计算函数库,使得产品开发人员无需研究具体的算法结构以及求解机理,通过简单的程序语句就可以调用函数,完成指定的工程计算[8],或借助于API(应用程序接口)与其他应用程序建立客户/服务器(C/S)关系.

VC++与Matlab混合编程主要有如下几种方式:1)通过Matlab Engine方式;2)调用Matlab的C/C++函数库;3)用Matlab自带的Compiler编译器;4)使用Matlab的Combuilder工具;5)使用Matcom工具等[9].下面以Compiler工具为例讨论C/S结构的实现方法,如图2所示.

如图2所示,以Matlab或MCRInstaller作为服务端, 由VC++开发的应用程序作为客户端,通过Matlab提供的Compiler工具将规范计算函数编译为.dll,.lib,.h等文件(使用mcc命令),供客户端程序调用.通常是先依据产品技术要求将规范计算分为若干模块,定义模块的接口参数作为规范计算函数的调用参数,形成满足产品规范计算要求的专业计算函数库,供客户端程序根据快速设计要求随时调用.

1.2.2分析优化

在规范计算基础之上进一步进行产品关键参数的分析优化,是提高产品设计质量、降低成本的关键途径,已经成为现代机械产品研发必不可少的步骤.基于数值计算发展起来的分析优化方法和软件技术是机械产品快速优化设计的基础.

ANSYS提供的二次开发途径有参数化设计语言APDL(Ansys Parametric Design Language)、用户图形界面设计语言UIDL(User Interface Design Language)、用户可编程特征UPFS(User Programmable Features)等[10].其中,APDL是一种通用性强、功能强大的参数化有限元建模和分析语言,APDL模型可以读取规范计算的结果生成参数化有限元模型,并完成有限元分析和参数优化,还可以向骨架模型传递数据,驱动结构模型自动生成,是特别适用于产品快速设计的产品一致性建模、分析和流程驱动的工具.

依据产品规范计算所得结构参数快速建立参数化有限元模型的第一步是实现两者之间的数据传递.鉴于ANSYS没有提供C++程序接口和API函数,图3给出了基于VC++开发的Win32应用程序与ANSYS集成通信的解决方案.具体做法, 其一是建立以规范计算结果为输入,以关键结构参数为分析对象的APDL参数化有限元优化模型;其二是在VC++中创建进程,后台运行ANSYS系统,实现内存共享;其三是以APDL模型文件及.opt优化结果文件等为操作对象,将进程创建、文件读写等操作以类成员函数的形式进行封装,实现优化参数的传递和设计数据的交换.

1.2.3参数化模型驱动

利用分析优化所得结果快速生成设计对象三维模型的关键在于结构优化参数对CAD/CAM参数化模型的直接驱动,如果后者是一致性Top-Down参数化模型,将获得最佳的建模效率和质量.

Pro/E异步模式下的二次开发技术无需前台运行系统即可以参数驱动骨架模型的重建,从而大大提高设计效率[11-12].下面以Pro/Toolkit开发技术为例讲述参数化结构模型驱动过程.基于.NET和VS2010平台的Pro/E异步开发模式的基本流程如图4所示.

1.2.4设计数据存储

设计数据存储面向全设计流程的设计语义及设计数据,是数据流在设计过程中产生中间数据文件或结果数据文件的过程.数据流代表系统中流动的数据,数据存储则反映系统中相对静止的数据.数据存储机制的选择与数据的读写效率、数据与工程语义的一致性、数据可重用性等密切相关,是产品快速设计必须解决的关键问题之一.

大型机械产品结构复杂,设计参数众多且相互关联,采用数据库尤其是关系型数据库存储数据是较好的选择.以Access数据库为例讨论相关技术.

常用的数据库接口技术有ODBC(Open Database Connectivity,开放数据库互联)、DAO(Data Access Object,数据访问对象)、RDO(Remote Data Objects,远程数据对象)、OLE DB(Object Linking and Embedding, Database,对象连接嵌入数据库)、ADO(ActiveX Data Object,活动数据对象)等.其中ADO是基于OLE DB数据访问模式的高层接口,是ODBC, DAO, RDO三种方式的扩展,因其简单易用、运行效率高、可扩展性好等优势而备受青睐.

ADO是Microsoft提供的面向对象的数据访问接口,主要由3个对象成员Connection,Command,Recordset,以及Properties,Errors,Fields,Parameters等集合对象组成.图5描述了VC++利用ADO模型对象的智能指针访问Access数据库的基本方法,具体包含如下步骤:

1)初始化COM环境,导入ADO库;

2)创建ADO对象并连接数据库;

3)利用ADO对象执行SQL命令;

4)关闭连接并释放对象.

在实际应用中,可根据产品具体的数据类型、数据表、数据视图等对ADO对象的底层操作进行封装,屏蔽实现细节,精简代码,以方便快速调用.

1.3数据模型规划

所谓数据模型规划是通过对现实世界的事与物主要特征的分析、抽象,为信息系统的实施提供数据存取的数据结构以及相应的操作[13].数据模型规划的合理与否,关系到数据冗余度大小、一致性高低及传递效率等,是快速设计技术的重要环节.

数据模型的规划方法如下:

1) 将对象抽象为实体,确定实体属性及关系,建立概念模型;

2) 依据范式理论等标准化数据,将概念模型转化为逻辑模型;

3)将逻辑模型转化为物理模型.

设计过程中产生的数据大致可分为3类,即标准数据、过程数据、结果数据.型材数据属于标准数据,如规划方钢的型材数据模型可以首先将方钢抽象为一个材料实体,根据机械设计手册,方钢包含边长、壁厚、理论重量、截面面积、惯性矩、惯性半径等属性,其概念模型可采用图6所示的E-R图描述.

由于材料与设计过程相对独立,材料实体与其他实体间不存在“关系”,所以方钢的实体属性即为逻辑模型属性:

方钢(边长,壁厚,惯性矩,惯性半径,理论重量,截面面积),下划线表示方钢逻辑模型的主键.

最后确定数据库存储的记录结构,将逻辑模型转化为物理模型:

1.4快速设计平台软件架构

以规范计算、分析优化、参数化模型驱动、数据存储四大模块为服务端,以VC++应用程序模块为客户端构成的产品快速设计平台Client/Server软件架构如图7所示.

设计数据、设计语义存储于服务端,设计行为由人机用户界面、各类接口配合数据存储方法控制.

产品快速设计的基础在于构建规范计算、分析优化、参数化结构设计等模型,核心在于规划一致性产品数据模型和数据处理方法,关键在于多平台集成技术.通过合理的数据模型规划、面向对象的接口设计以及高效可靠的软件平台集成,使各个部分统一协调运行,有效驱动快速设计流程,高质量、高效率地完成产品研发.

2塔式起重机快速优化设计

塔式起重机(简称塔机)是一种应用广泛的大型建筑施工机械.塔机工作空域广,运行环境和工况复杂,对安全性、稳定性和可靠性要求都很高,是一种结构复杂的大型机电一体化产品.设计过程复杂、开发周期长、难以获得技术性和经济性均佳的产品设计方案是塔机研发面临的主要问题,因此,特别需要一种专业化的塔机快速设计方法和软件平台.本文遵照塔机设计规范要求,以降低成本为目标,以安全性、稳定性和可靠性为约束条件,以塔机关键结构参数为设计变量,以一致性产品信息模型和全设计流程原理和前述快速设计方法为基础,开发了如图8所示集规范计算、分析优化、一致性骨架模型驱动三维建模及二维图纸生成于一体的塔机快速设计平台,并成功应用于企业产品设计实际.

2.1塔机规范计算

塔机快速设计的初始参数是用户的QR曲线、起重臂和平衡臂长度、臂尖吊重、最大吊重、吨米级等基本参数,通过如图9所示界面输入.图中按钮1~5对应于起重臂、平衡臂、塔帽(包括回转塔身、回转总成)、爬升套架、塔身的规范计算.

如起重臂重量规范计算步骤如下:

1)根据GB/T 3811―2008编写起重臂重量计算的Matlab函数BoomWeight.m,输入参数为各臂节长度及型材规格,如图10所示;

2)编译,运行mcc-W cpplib: libBoomWeight-T link:libBoomWeight.m命令,生成对应的libBoomWeight.h, libBoomWeight.lib和libBoomWeight.dll等文件,保存在产品工程目录下;

3)对BoomWeight原函数进行封装.需注意,调用DLL中的封装函数之前需先调用libBoomWeight Initialize进行初始化,封装完成后要调用libBoom WeightTerminate终止进程.

塔机规范计算模块的输出包含初始设计参数及计算结果.如由图9和图10等界面输入的设计参数,以及如表1所示的各类设计数据,均以规定的格式写入塔机规范计算说明书,并传递给接口类中定义的数据模型变量,作为下一步分析优化的输入.

2.2塔机分析优化

以规范计算模块的输出数据作为塔机APDL参数化有限元模型的输入参数,进一步进行塔机的优化设计.如塔机的轻量化设计步骤如下:

其一是确定最危险的3种工况:臂尖承受额定吊重、跨中承受额定吊重、最大额定吊重的最大幅度处的最大吊重,以及自重、起升载荷、回转起动惯性载荷以及风载荷等.其二是用APDL命令流建立塔机参数化有限元分析模型:钢结构采用BEAM188梁单元模拟;拉杆采用LINK8杆单元模拟;平衡臂、回转机构、起升机构、变幅机构等集中质量,通过在相应位置处施加MASS21质量单元进行模拟,并与梁单元进行耦合;塔身基础节与混凝土基础连接的4个约束点处采用固定约束[14].整机APDL模型总共生成节点577个,单元1 273个,建立的塔机参数化有限元模型如图11所示.

然后针对3种危险工况下的载荷、约束及边界条件分别构建APDL分析优化程序(如以等强度设计为目标,调用ANSYS提供的XXXX优化算法,求取型材的最佳横截面等),并对设计变量进行合理分组以保证计算结果收敛 [15].最后根据参数分组及规范计算的输出自动修改分析文件,并以ANSYS安装目录下的Ansys121.exe(ANSYS 12.1版本)为参数调用函数CreateProcess,创建Ansys进程,运行对应的APDL文件,最终将结果数据传递给接口类中对应的数据模型变量.

2.3塔机参数化骨架建模及二维图纸生成

塔机快速设计平台采用一致性参数化建模技术建立了塔机各部分的骨架模型,并测试了这些模型的准确性、设计数据可传递性和模型可再生性等性能,确保可以实现塔机的Top-Down参数化建模.进一步以ANSYS优化所得结构参数作为输入,调用Pro/E命令驱动塔机骨架模型自动生成三维模型及二维图纸.实现步骤如下(以起重臂拉杆为例):

1)OpenSkeletonModelFile(“E:\\\\Model \\\\QZB_LG.prt”);//将此模型(含路径)载入内存.

2)ModifyParameter( d, "QZB_LG_ D");//修改模型对应参数(d为尺寸值,QZB_LG_D为对应参数化模型变量).

3)RefreshParameter(“E:\\\\Model\\\\ QZB_LG.prt”);//驱动模型再生.

4)SaveSkeletonModelFile();//保存再生后模型.

此处,为方便用户调用,已将Pro/E底层函数进行封装,使得用户在不了解函数细节的情况下也可完成模型更改和再生.

二维工程图生成模块采用批量转换技术,解决塔机零部件数量多、转换工作量大的问题.调用ProDrawingFromTmpltCreate等函数,将参数化骨架模型生成对应的二维图模板,得到优化数据驱动的与三维模型一一对应的二维工程图,设置模板还可以完成对工程图的标注.

2.4快速设计结果分析

以市场公认成功设计的某款60吨米级在用塔机产品作为测试验证对象,运用上述快速设计平成同款塔机的设计,采用测试和理论分析相结合的方法对技术指标逐项进行对比分析.结果表明,采用快速设计方法大幅缩短了设计时间,塔机结构尺寸和材料分布得到了全面优化,总重量降低了7%左右,在保证安全性、稳定性、可靠性的前提下,实现了产品的轻量化设计,见表2.

上述测试分析结果表明,快速设计方法大幅缩短了塔机的设计周期,提高了设计质量,与传统设计方法相比具有明显的优越性,受到塔机生产企业的好评.

3结论

本文针对机械产品设计的主要环节,提出了以一致性产品信息模型和全设计流程原理为基础,以参数化结构设计模型和有限元分析模型为数据载体,以集成化软件平台和接口技术为途径的产品多平台快速设计的新方法.该方法包括产品规范计算、APDL参数化有限元分析优化、Top-Down参数化快速建模等步骤,以及数据模型规划与存储、设计数据传递和共享、软件架构和接口技术等,构成了完整的多平台快速设计软件集成技术.最后,将本文研究的方法应用于塔式起重机的研发中,研制了塔机快速优化设计平台,并通过设计实例验证了本文提出的多平台产品快速设计方法的优越性.

参考文献

[1].适应市场条件的机械产品快速设计技术探讨[J].中国市场, 2007(1): 81-82.

WANG Yang. Study on rapid design technology of mechanical products to adapt to market conditions[J]. China Market, 2007(1): 81-82.(In Chinese)

[2]陈永亮,徐燕申,齐尔麦.机械产品快速设计平台的研究与开发[J].天津大学学报:自然科学版,2002,35(6):680-684.

CHEN Yong-liang, XU Yan-shen, QI Er-mai. Research and development of rapid design platform for mechanical products[J]. Journal of Tianjin University: Science and Technology, 2002, 35(6):680-684. (In Chinese)

[3]LIU Wei-wei, SHAO Wen-da. Research on the knowledge acquirement of rapid design for mechanical products[J]. IERI Procedia, 2014, 7:96-101.

[4]PENOYER J A, BURNETT G, FAWCETT D J, et al. Knowledge based product life cycle systems: principles of integration of KBE and C3P[J]. Computer Aided Design, 2000, 32(S5/6):311-320.

[5]刘子建,王平,艾彦迪.面向过程的产品信息虚拟装配建模技术研究[J].中国机械工程,2011,22(1):60-64.

LIU Zi-jian, WANG Ping, AI Yan-di. Research on process-oriented virtual assembly modeling technology for product information[J]. China Mechanical Engineering, 2011, 22(1):60-64. (In Chinese)

[6]刘子建,董思科,王平,等.设计行为意义上的数字化设计系统特性评价[J].湖南大学学报:自然科学版, 2011, 38(11): 47-53.

LIU Zi-jian, DONG Si-ke, WANG Ping, et al. Characteristic evaluation of the sense of design behavior for digital design system[J]. Journal of Hunan University: Natural Sciences, 2011, 38(11):47-53. (In Chinese)

[7]陈祝权,梁晓合,林粤科,等.六自由度串联机器人结构设计及有限元分析优化[J].机床与液压,2013(23):97-101.

CHEN Zhu-quan, LIANG Xiao-he, LIN Yue-ke, et al. Structural design and optimization of 6 axes serial robot[J]. Machine Tool & Hydraulics, 2013(23):97-101. (In Chinese)

[8]牟清,王汝霖,李国新.MATLAB与VC接口技术的研究[J].微计算机信息,2006,22(21):275-277.

MU Yu-qing, WANG Ru-lin, LI Guo-xin. The research of the interface technology between MATLAB and VC[J]. Control & Automation, 2006, 22(21):275-277. (In Chinese)

[9]杨文臣,张轮,何兆成,等.Matlab与VC++混合编程及其在交通信号两级模糊控制中的应用[J].公路交通科技,2012,29(9):123-128.

YANG Wen-chen, ZHANG Lun, HE Zhao-cheng, et al. Matlab & VC++ hybrid programming and its application in two-stage fuzzy control for urban traffic signals[J]. Journal of Highway and Transportation Research and Development, 2012, 29(9):123-128. (In Chinese)

[10]林能辉,彭凌云,刘杰. ANSYS二次开发技术及其在土木工程中的应用[J].计算机应用与软件,2012,29(8):34-37.

LIN Neng-hui, PENG Ling-yun, LIU Jie. The secondary-development of ANSYS and its application in civil engineering[J]. Computer Applications and Software, 2012, 29(8):34-37. (In Chinese)

[11]沈斌,陈骁,姚秀卿.产品参数化在Pro/E二次开发中的应用[J].机电一体化,2012,18(6):73-76.

SHEN Bin, CHEN Xiao, YAO Xiu-qing. The application of product parameterization in Pro/E secondary development[J]. Mechatronics, 2012, 18(6):73-76. (In Chinese)

[12]缪燕平, 何柏林. Pro/TOOLKIT对Pro/E二次开发参数化设计系统研究[J]. 机械设计与制造, 2008(9): 185-187.

MIAO Yan-ping, HE Bo-lin. Study on parametric design system based on secondary development of Pro/Toolkit[J]. Machinery Design & Manufacture, 2008(9):185-187. (In Chinese)

[13]苗德成,奚建清,苏锦钿.一种数据模型的范畴论建模方法[J].计算机应用研究,2013,30(9):2744-2747.

MIAO De-cheng, XI Jian-qing, SU Jin-dian. Categorical approach for making model of data model[J]. Application Research of Computers, 2013, 30(9):2744-2747. (In Chinese)

[14]苗明,高原.起重机伸缩臂的ANSYS二次开发[J].起重运输机械, 2011(3):53-55.

模型设计论文范文6

关键词:环境艺术设计 信息技术 模块化模型

中图分类号:G632 文献标识码:A 文章编号:1674-2117(2014)04-0026-02

1 引言

利用先进的信息技术优化环境艺术设计专业的课堂教学,运用模块化理论将整个模型逐级模块化、深化、细化,重视整体环境观的教育,树立整体的建筑观、景观设计观和室内设计观,运用生态审美意识去培养“开拓型、会通型、应用型”的环境艺术设计创新人才是适合于21世纪可持续发展的现代设计教育模式。实行分段式教学机制具有科学依据:针对环境艺术设计专业的特点,接轨学院、资源共享实现共同教育;强化学生的基础能力、专业技能,有助于使学生获得较为全面的训练,提高学生的整体控制能力;强调跨学科、多技能的素质教育,借助信息技术的优势进一步让学生培养扎实的专业基础、活跃的思维、开阔的学术视野,从而培养处具有较高艺术修养、较强设计能力的复合型人才。

2 现代信息环境下环境艺术设计专业摸块化教学模型结构

本科教学对教学模型的探索是一个永恒的话题。根据自己多年环境艺术专业的求学经验、设计实践经验、工程实践经验、在大学环境艺术设计专业的教学经验,以及从科研项目开题以来对国内这个领域的专业人员多年的采访和收集资料过程中获取的资料、直接和间接经验,试图以系统工程学、模块化理论、整体论、还原论为方法论和信息技术化手段一一建立一个现代信息环境下的环境艺术设计专业模块化教学新模型。作为尝试解决这个问题的办法,其基本思路是:先将整个教学系统按照模块化理论分离出7个大模块,再按照这7个大模块的学习内容和要求来设计更多的相关子模块来构成整个教学的信息系统,这些子模块可根据当前信息时代对学生专业能力的需要增加或减少、更新内容、升级换代。再按照子模块中更小的模块的逻辑性归纳成新的层次,根据学校的信息技术设备的实际情况最终形成每学年的课程表。

关于教学模块的分离、更新、增加、减少、归纳以及为模块创造一个“外壳”:为了便于宏观上的教学管理,把整个教学系统分离成几个大的教学模块,即教学模块的分离,例如,本文将整个教学系统分为“室内、建筑、景观、规划、史论、设计基础、实习”7个大模块,通过将模块不断地分离、更新、增加、减少、归纳,以及为模块创造一个“外壳”,使模块本身的内涵以及模块内部子模块之间以及模块与模块之间的相互关系发生变化,最后导致教学模型不断发生变化。同时,教学控制体系内容也要随着设备和技术的调整做出相应调整。所以我们说,伴随着教学模块的分离、更新、增加、减少、归纳,以及为模块创造一个新的“外壳”,专业教学模型呈现为动态的、开放的教学模型体系。专业教学模型与教学控制体系都是动态的、开放的模型和控制体系。稳定是暂时的、相对的,变化是永恒的、绝对的。

3 环境艺术设计专业教学新模型的四个核心内容

3.1 五年制教学模型

环境艺术设计专业以五年制的教学模型为宜。环境设计专业范围较广,实践性强,涉及学科门类较多,运用到的信息和科技技术也相对多,如:设计基础、建筑基础、建筑设计、专业基础、室内设计、景观设计、设计历史及理论、电脑软件学习及使用、毕业设计及论文等。尤其是专业实践一项耗费时间较多,环境艺术设计专业是一个实践性很强的专业,现在几乎所有学校的学生参与实践的时间都不够、以至于所学专业知识与实践连接不上。

3.2 四段式教学模型

设置四段式教学模型,是参考了国内外的专业教学模型以及目前国内的专业教学与实践的实际情况而定的。

3.2.1 有针对性设计的、计算机辅助教学的基础教学模块(1学年)

现在许多学校的设计基础部教学,是将所有设计专业的学生放在一起学,不分专业,强调共性,忽略个性,但是在有些院校比如清华大学美术学院基础部的教学,在经历了20多年的历史后,逐渐变成了现在的状态。即:利用信息技术辅助教学,在提高效率的同时保持共性并展开个性教学,强调设计基础教学的专业适应性、方向性,并非每个专业的基础教学都一样,而是有相同部分有不同部分,而不同部分的课程及内容正是针对各自不同的专业特点而设。

3.2.2 网络资源拓展条件下的建筑设计课程模块(2学年,含建筑设计实践)

建筑设计是环境艺术设计的重要基础之一,据本人访谈专业人士统计的结果发现,无论是装饰设计公司的业务领导还是环境艺术设计专业毕业的从业人员,在谈到建筑和室内设计、景观设计的关系时,无不强调环境艺术设计专业的毕业生在建筑知识方面的匮乏导致在工作中的被动。在这里需要强调的是,环艺系开设的工科内容和开在建筑系的工科内容是不完全一样的,在这里的内容重点更多的是强调该科内容和室内设计的关系,这是一个室内设计师所必备的知识技能,这一课程模块的教学设计需要借助大量的网络信息资源。

3.2.3 计算机设计软件使用下的模糊景观设计与室内设计专业教学模块(1学年,含工程实践)

这一阶段主要学习室内设计及景观设计的基本理论、基本知识和相关的设计技能,使学生通过学习室内设计及景观设计理论锻炼设计思维能力,通过专业造型基础、设计原理与方法、计算机软件技术和其他相关的信息技术、工作室及工程实践能力的基本训练,具备了解室内设计及景观设计的历史及现状,了解专业最新成就的发展趋势。

3.2.4 信息技术下景观设计或室内设计教学模块,并以所选方向作为毕业设计(1学年,含实习)

最后一年的分专业教学,是让学生在前面一年设计基础、两年建筑设计基础和一年“景观、室内模糊教学”的基础上,根据自己的喜爱,学有所专,学有所长,同时也在毕业之际做出一个有深度的设计项目。环境艺术设计只能以建筑设计为基础开出两个专业方向,景观设计和室内设计,而建筑设计由专门的建筑系来完成正规的专业教学。无论是美院建筑系还是工科建筑系,一般还要5年,环艺系在有限的时间里既不要去重复别人的路子,更不要忘记了自己的任务。

四段式5年制教学模式,一年级培养学生从“自然人”到掌握一定专业知识的“专业人”;二三年级开始打好专业基础——建筑设计基础课程;从四年级到五年级,则重点培养学生从专业人到具有一定职业能力的设计者,以开拓型、会通型、应用型的创新人才为育人建设重点;从五年级到毕业则选择一门作为突破,再提高,并对本科阶段的学习作一总结。

3.3 增加有关工学课程

这一块内容具体落实在四段式教学的第二段里面,“两年制的建筑设计课程模块”。主要包括建筑物理、建筑结构、建筑材料等课程,增加有关工学课程的出发点是基于工程设计及施工实践的需要。工学课程的缺失是目前国内艺术院校环境艺术设计专业的软肋。基于文科类艺术院校的学生的理工基础,可以将有关工学课程的内容在难度上区别于工科类建筑学院,但是一定要有。环境艺术设计专业是一门艺术和技术结合的专业,这在业内和实践中已成共识,在这里所说的技术,除了当前信息化环境下的信息技术,还有就是相关的工学内容。

3.4 文理兼收模式

文理科兼收的优势就在于使该专业学生进入社会后,在该专业的高端和中段都有相当数量的学生保持优势。现在的专业设置状态是:几乎所有美术学院的环境艺术设计专业均为文科类生源;国内的一些工学院及林学院的一些相关专业是理工科生源。这样的状态使学生在个人优势上不断扩展,但是在专业“短板”方面却没有得到长足的长进和补充。文理兼收的模式不仅可以使文、工科学生在专业技能、教师信息化教学手段上互通有无、取长补短、共同进步,甚至在思维方式、学习方式和工作态度等诸方面都有互补优势。

4 结语

环境艺术设计教学的模块化模型,还有很多不足之处,我们从中可以看出这一专业存在的问题和解决方法,尤其是随着现代信息化技术的发展,信息技术逐渐运用到环境艺术设计和教学中,教学设计应该从信息技术这一个辅助手段多加考虑。希望我的探索能够为环境艺术设计专业的教学提供帮助,不足之处还请指正。

(济宁职业技术学院,山东 济宁 272100)

参考文献:

[1]徐晓星.高职院校教师设计工作室建设的探索[J].科技信息,2012,(12).

[2]张正.“包豪斯”与当今环境艺术设计教育[J].沈阳教育学院学报,2010,(02).