故障处理论文范例6篇

故障处理论文

故障处理论文范文1

近年来随着电力电子技术、功率半导体器件及变频控制理论的发展,变频器作为一种智能控制电源已被广泛应用于各行业,90年代初期主要以进口品牌为主如富士、三菱、西门子、ABB等,90年代中期国产变频器日渐出现在市场上,主要以通用型变频器为主。目前国产变频器技术已逐渐成熟,国产变频器市场占有率也逐渐提高,作为国内变频器专业生产厂家之一的深圳康沃电气技术有限公司,经过短短几年时间的发展,康沃变频器凭借其优越的性能,日渐被客户所接受。康沃公司目前生产的变频器主要有通用型G1/G2系列、风机水泵专用型P1/P2系列、注塑机专用型ZS/ZC系列及高性能单相变频器S1系列,其它各类专用变频器、更高性能的矢量型变频器也将陆续推向市场。本文主要讲述康沃变频器通用型在应用中出现的常见故障及处理方法,以便用户参考。

2通用型变频器主电路

目前市场上国产变频器主要以低压通用型变频器为主,为下文叙述方便,现简要介绍通用型变频器的主电路结构,从变频器结构上分有交-交变频器与交-直-交变频器,从变频性质分主要电压源型变频器与电流源型变频器,目前国内生产的变频器主要以电压源型交-直-交变频器为主。

其主电路主要由整流电路、滤波电路、逆变电路及制动单元等几部分构成,其中IGBT(绝缘栅双极晶体管)构成了变频器主要硬件,各部分电路功能简述如下:

1整流电路

由VD1~VD6组成三相桥式全波整流电路将三相交流电整流成直流电。

2滤波电路

整流电路输出的直流电压为脉动的直流电压,因而需滤波电路滤去电压波纹,同时它还在整流电路与逆变电路起到储能作用。

3逆变电路

由开关管V1~V6构成逆变电路将直流电压逆变成三相频率、电压可调的交流电以驱动三相电动机,是变频器实现变频的关键环节。

4限流电路

由限流电阻R及开关K构成,由于上电瞬间滤波电容端电压为零,上电瞬间电容充电电流较大,过大的电流可能损坏整流电路,为保护整流电路在变频器上电瞬间限流电阻串联到直流回路中,当电容充电到一定时间后通过开关K将电阻短路。

5制动电路

由制动电阻RB及开关管VB构成,主要作用是用于消耗电动机反馈回来的能量,避免过高的泵升电压损坏变频器。

康沃通用型G/P系列变频器根据功率等级的不同,所选用的IGBT主要有欧派克、三菱、东芝等不同品牌,变频器功率在18.5kW以下的机型主电路主要采用集整流、逆变、制动电路和温度检测为一体的七单元模块构成,22kW及以上的机型采用整流模块和三路两单元逆变模块构成。

3康沃变频器常见故障及处理方法

随着应用的不断推广,康沃品牌越来越受用户欢迎,为让用户进一步了解康沃变频器、方便用户使用,现将康沃变频器在使用中常出现的故障现象及处理方法例举如下:

(1)故障P.OFF

康沃变频器上电显示P.OFF延时1~2s后显示0,表示变频器处于待机状态。在应用中若出现变频器上电后一直显示P.OFF而不跳0现象,主要原因有输入电压过低、输入电源缺相及变频器电压检测电路故障,处理时应先测量电源三相输入电压,R、S、T端子正常电压为三相380V,如果输入电压低于320V或输入电源缺相,则应排除外部电源故障。如果输入电源正常可判断为变频器内部电压检测电路或缺相保护故障,对于康沃G1/P1系列90kW及以上机型变频器,故障原因主要为内部缺相检测电路异常,缺相检测电路由两个单相380V/18.5V变压器及整流电路构成,故障原因大多为检测变压器故障,处理时可测量变压器的输出电压是否正常。

(2)故障ER08

康沃变频器出现ER08故障代码表示变频器处于欠压故障状态。主要原因有输入电源过低或缺相、变频器内部电压检测电路异常、变频器主电路异常。通用变频器电压输入范围在320V~460V,在实际应用中变频器满载运行时,当输入电压低于340V时可能会出现欠压保护,这时应提高电网输入电压或变频器降额使用;若输入电压正常,变频器在运行中出现ER08故障,则可判断为变频器内部故障,如图1示可能为主回路中KS接触器跳开,使限流电阻在变频器运行时串联到主回路中,这时若变频器带负载运行便会出现ER08故障,这时可排除是否为接触器损坏或接触器控制电路异常;若变频器主回路正常,出现ER08报警的原因大多为电压检测电路故障,一般变频器的电压检测电路为开关电源的一组输出,经过取样、比较电路后给CPU处理器,当超过设定值时,CPU根据比较信号输出故障封锁信号,封锁IGBT,同时显示故障代码。(3)故障ER02/ER05

故障代码ER02/ER05表示变频器在减速中出现过流或过压故障,主要原因为减速时间过短、负载回馈能量过大未能及时被释放。若电机驱动惯性较大的负载时,当变频器频率(即电机的同步转速)下降时电机的实际转速可能大于同步转速,这时电机处于发电状态,此部分能量将通过变频器的逆变电路返回到直流回路,从而使变频器出现过压或过流保护。现场处理时在不影响生产工艺的情况下可延长变频器的减速时间,若负载惯性较大,又要求在一定时间内停机时,则要加装外部制动电阻和制动单元,康沃G2/P2系列变频器22kW以下的机型均内置制动单元,只需加外部制动电阻即可,电阻选配可根据产品说明中标准选用,对于功率22kW以上的机型则要求外加制动单元和制动电阻。

ER02/ER05故障一般只在变频器减速停机过程中才会出现,如果变频器在其它运行状态下出现该故障,则可能是变频器内部的开关电源部分,如电压检测电路或电流检测电路异常而引起的。

(4)故障ER17

代码ER17表示电流检测故障,通用变频器电流检测一般采用电流传感器,通过检测变频器两相输出电流来实现变频器运行电流的检测、显示及保护功能,输出电流经电流传感器(如图2示中H1、H2为电流传感器)输出线性电压信号,经放大比较电路输送给CPU处理器,CPU处理器根据不同信号判断变频器是否处于过电流状态,如果输出电流超过保护值,则故障封锁保护电路动作,封锁IGBT脉冲信号,实现保护功能。

康沃变频器出现ER17故障主要原因为电流传感器故障或电流检测放大比较电路异常,前者可通过更换传感器解决,后者大多为相关电流检测IC电路或IC芯片工作电源异常,可通过更换相关IC或维修相关电源解决

(5)故障ER15

代码ER15表示逆变模块IPM、IGBT故障,主要原因为输出对地短路、变频器至电机的电缆线过长(超过50m)、逆变模块或其保护电路故障。现场处理时先拆去电机线,测量变频器逆变模块,观察输出是否存在短路,同时检查电机是否对地短路及电机线是否超过允许范围,如上述均正常,则可能为变频器内部IGBT模块驱动或保护电路异常。一般IGBT过流保护是通过检测IGBT导通时的管压降动作的。

当IGBT正常导通时其饱和压降很低,当IGBT过流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管DB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU处理器,CPU封锁IGBT输出,以达到保护作用。如果检测二极管DB损坏,则康沃变频器会出现ER15故障,现场处理时可更换检测二极管以排除故障。

(6)故障ER11

ER11故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11报警,则故障原因为温度检测电路故障。康沃22kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路故障也会出现ER11报警,另一方面当温度检测运算电路异常时也会出现同样故障现象。

故障处理论文范文2

关键词:电动机;故障;维护;检修

引言

运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。

一、电动机电气常见故障的分析和处理

1.1电动机接通电源起动,电动机不转但有嗡嗡声音可能原因:①由于电源的接通问题,造成单相运转;②电动机的运载量超载;③被拖动机械卡住;④绕线式电动机转子回路开路成断线;⑤定子内部首端位置接错,或有断线、短路。处理方法:第一种情况需检查电源线,主要检查电动机的接线与熔断器,是否有线路损坏现象;第二种情况将电机卸载后空载或半载起动;第三种情况估计是由于被拖动器械的故障,卸载被拖动器械,从被拖动器械上找故障;第四种情况检查电刷,滑环和起动电阻各个接触器的接合情况;第五种情况需重新判定三相的首尾端,并检查三相绕组是否有断线和短路。

1.2电动机启动后发热超过温升标准或冒烟可能原因:①电源电压达不到标准,电动机在额定负载下升温过快;②电动机运转环境的影响,如湿度高等原因;③电动机过载或单相运行;④电动机启动故障,正反转过多。处理方法:第一种情况调整电动机电网电压;第二种情况检查风扇运行情况,加强对环境的检查,保证环境的适宜;第三种情况检查电动机启动电流,发现问题及时处理;第四种情况减少电动机正反转的次数,及时更换适应正反转的电动机。

1.3绝缘电阻低可能原因:①电动机内部进水,受潮;②绕组上有杂物,粉尘影响;③电动机内部绕组老化。处理方法:第一种情况电动机内部烘干处理;第二种情况处理电动机内部杂物;第三种情况需检查并恢复引出线绝缘或更换接线盒绝缘线板;第四种情况及时检查绕组老化情况,及时更换绕组。

1.4电动机外壳带电可能原因:①电动机引出线的绝缘或接线盒绝缘线板;②绕组端盖接触电动机机壳;③电动机接地问题。处理方法:第一种情况恢复电动机引出线的绝缘或更换接线盒绝缘板;第二种情况如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;第四种情况按规定重新接地。

1.5电动机运行时声音不正常可能原因:①电动机内部连接错误,造成接地或短路,电流不稳引起噪音;②电动机内部抽成年久失修,或内部有杂物。处理方法:第一种情况需打开进行全面检查;第二种情况可以处理抽成杂物或更换为轴承室的1/2-1/3。

1.6电动机振动可能原因:①电动机安装的地面不平;②电动机内部转子不稳定;③皮带轮或联轴器不平衡;④内部转头的弯曲;⑤电动机风扇问题。处理方法:第一种需将电动机安装平稳底座,保证平衡性;第二种情况需校对转子平衡;第三种情况需进行皮带轮或联轴器校平衡;第四种情况需校直转轴,将皮带轮找正后镶套重车;第五种情况对风扇校静。

二、电动机机械常见故障的分析和处理

2.1定、转子铁芯故障检修定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的故障原因主要有以下几点。①轴承使用时间久,过度的磨损,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。②拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。③因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。④因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。⑤铁芯与机座之间的固定松动,可重新固定。如果定位螺钉不能再用,就重新进行定位,旋紧定位螺钉。

2.2电机轴承故障检修转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。

2.2.1故障检查运行中检查:滚动轴承少油时,可根据经验判断声音是否正常,如果声音不正常可能是轴承断裂的原因。如果轴承中存在了沙子等杂物,就会出现杂音的现象。拆卸后检查:检查轴承是否有磨损的痕迹,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外钢圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,在轴承停转后没有倒退的现象,表明轴承已经报废了,需要及时的更换。左手卡住外圈,右手捏住内钢圈,然后推动轴承,如果很轻松就能转动,就是磨损严重。

2.2.2故障修理轴承表面的锈斑用砂布进行处理,然后可以用汽油涂抹;或轴承出现裂痕或者出现过度的磨损的时候,要及时更换新的轴承。更换新轴承时,要确保新的轴承型号符合要求。

2.3转轴故障检修

2.3.1轴弯曲如果弯曲的程度不大,可以采用打磨的办法进行修整;若弯曲超过0.2mm,可以借用压力机进行修整,修正后将表面磨光,恢复原样即可;如果弯曲度过大,无法修整时,要及时更换。

2.3.2轴颈磨损轴颈磨损不大时,可在轴颈上镀一层铬,然后打磨到需要尺寸;磨损较严重时,可以先采用堆焊,然后再用车窗修整到标准尺寸;当轴颈磨损达到无法修整的地步,则要考虑更换。

2.3.3轴裂纹或断裂轴的横向裂纹深度不超过轴直径的10%~15%,纵向裂纹不超过轴长的10%时,可以先进行堆焊,再进行修整,达到标准。如果断裂和裂纹过于严重,就考虑更换。

2.4机壳和端盖的检修机壳和端盖间的缝隙过大可通过堆焊然后修整的方法,如轴承端盖配合过松,可以使用冲子进行修整,然后将轴承打入端盖,针对大功率的电动机,可以使用电镀等方式进行修整。日常维护对减少和避免电机在运行中发生故障是相当重要的,其中最重要的环节是加强巡回检查和及时排除任何不正常现象的引发根源。出现事故后认真进行事故分析,采取对策,则是减少事故次数降低检修工作量,提高电机运行效率必不可少的技术工作。

近年来,电动机在工矿企业中被广泛的应用,各企业领导和技术人员也开始认识到电动机的维护和保养的重要性,只有加强电动机的日常维修和保养才能够经济,安全地为企业创造更多的财富。

参考文献:

故障处理论文范文3

关键词:继电保护,维护,故障处理

 

0 引言

随着我国电力工业和电力系统的快速发展,对发电厂、变电站的安全、经济运行要求越来越高。另外,因电子、计算机和通信系统的快速发展,也使得发电厂、变电站监控系统的自动化水平不断提高。微机继电保护和安全自动装置也成为了电网安全稳定运行和可靠供电的重要保障。

1 继电保护发展现状

上世纪60年代到80年代是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500kV线路上,结束了500kV线路保护完全依靠从国外进口的时代。在20世纪70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产和应用仍处于主导地位,这是集成电路保护时代。免费论文,维护。我国从20世纪70年代末即已开始了计算机继电保护的研究,1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。从90年代开始我国继电保护技术已进入了微机保护的时代。不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全且工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。

2继电保护的维护管理

2.1 微机保护装置要采取电磁干扰防护措施

变电站改造中,电磁型保护更换成微机型保护时,必须采取防电磁干扰的技术措施,即严格执行微机保护装置的安装条件,安装带有屏蔽层的电缆,而且两端的屏蔽层必须接地。防止由于线路较长,一端接地时,另一端会由于电磁干扰产生电压、电流,造成微机保护的拒动或误动。为减少保护装置故障和错误出现的几率,微机保护装置必须优化设计、合理制造工艺以及元、器件的高质量。同时还要采用屏蔽和隔离等技术来保证装置的可靠性,从而提高抗干扰的能力。

2.2 微机保护装置的接地要严格按规定执行

微机保护装置内部是电子电路,容易受到强电场、强磁场的十扰,外壳的接地屏蔽有利于改善微机保护装置的运行环境;微机保护提高可靠性,应以抑制干扰源、阻塞耦合通道、提高敏感回路抗干扰能力入手,并运用自动检测技术及容错设计来保证微机保护装置的可靠性;容错即容忍错误,即使出现局部错误也不会导致保护装置的误动或拒动。免费论文,维护。容错设计则是利用冗余的设备在线运行,以保证保护装置的不间断运行。采用容错技术设计是为了换取常规设计所不能得到的高可靠性,确保微机保护装置的可靠运行。

2.3 防误措施

微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。

2.4 继电保护装置的日常维护

(1)当班运行人员定时对继电保护装里进行巡视和检查,对运行情况要做好运行记录。

(2)建立岗位责任制,做到人人有岗,每岗有人。

(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注惫与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。

(4)对微机保护的电流、电压采样值每周记录一次。

(5)每月对微机保护的打印机进行检查并打印。免费论文,维护。

3 继电保护故障处理要点

继电保护工作是一项技术性很强的工作。如果只想学会对设备的调试并不难,只要经过一段时间的培训,按照调试大纲依次进行就可实现。而一旦出现异常现象,想处理它并非易事。它要求工作人员有扎实的理论基础,更要有解决处理故障的有效方法。一个合适的方法,在工作中能帮你少走弯路,提高效率。可以说继电保护技术性很大程度上体现在故障处理的能力上。因此,如何用最快最有效的方法去处理故障,体现技术水平,成为广大继电保护工作者所共同要探讨的课题。下面是常用的几种故障处理方法。

3.1 直观法

处理一些无法用仪器逐点测试,或某一插件故障一时无备品更换,而又想将故障排除的情况。比如10KV开关柜分或拒合故障处理。在操作命令下发后,观察到合闸接触器或跳闸线圈能动作,说明电气回路正常,故障存在机构内部。到现场如直接观察到继电器内部明显发黄,或哪个元器件发出浓烈的焦味等便可快速确认故障所在,更换损坏的元件即可。

3.2 掉换法

用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。免费论文,维护。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。

如一条110 kV旁路L FP-941A微机保护运行指示灯忽闪忽灭,并不打印任何故障报告,很难判断为何故障。正好附近有备用间隔,取各插件相应对换,查出故障在CPU插件上。用此项方法,要特别注意插件内的跳线、程序及定值芯片是否一样,确认无误方可掉换,并根据情况模拟传动。

3.3 逐项拆除法

将并联在一起的二次回路顺序脱开,然后再依次放回,一旦故障出现,就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路,直至找到故障点。此法主要用于查直流接地,交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法,根据负荷的重要性,分别短时拉开直流屏所供直流负荷各回路,切断时间不得超过3秒,当切除某一回路故障消失,则说明故障就在该回路之内,再进一步运用拉路法,确定故障所在支路。再将接地支路的电源端端子分别拆开,直至查到故障点。如电压互感器二次熔丝熔断,回路存在短路故障,或二次交流电压互串等,可从电压互感器二次短路相的总引出处将端子分离,此时故障消除。免费论文,维护。然后逐个恢复,直至故障出现,再分支路依次排查。如整套装置的保护熔丝熔断或电源空气开关合不上,则可通过各块插件的拔插排查,并结合观察熔丝熔断情况变化来缩小故障范围。免费论文,维护。

4 结语

继电保护是电力系统安全正常运行的重要保障,目前已经得到了广泛的应用,随着科学技术的不断进步,继电保护技术日益呈现出向微机化,网络化,智能化,保护、控制、测量和数据通信一体化发展的趋势。

参考文献:

[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.

[2]应斌.浅谈继电保护工作中故障处理的若干方法[J].广西电力,2006,(4):80-83.

故障处理论文范文4

关键词电力;电气设备;故障诊断;研究

中图分类号:TM77 文献标识码:A 文章编号:1671-7597(2014)12-0145-01

随着我国社会经济的不断发展和进步,我国的电力、电气设备故障诊断工作也越来越被人们所重视。电力、电气设备故障诊断工作主要包括元件故障诊断和系统故障两个方向,其中的系统故障诊断主要是指通过分析电网中的各级报警装置所提供的信息以及断路器的状态变位信息以及电流电压等电气量的测量的特征,然后根据断路器、保护器的动作逻辑和运行人员的工作经验来推断可能出现的故障类型和故障元件的过程。

1国内外关于电力、电气设备故障诊断现状

1.1 以专家系统为依据的诊断方法

专家系统是利用一种由专家推理方法支撑的一种计算机模型来解决电力、电气设备故障的诊断方法,目前这种方法已经在国内外广泛的使用。目前专家系统诊断电力、电气设备故障这种方式的效率较高。有故障诊断所用推理方法以及诊断知识的表示方法不同,专家系统主要分为以下两类。

1)结合正、反推理的系统。结合正、反推理的系统是结合了正反两向的一种混合推理方法,可以根据继电保护和路由器与被保护设备之间的逻辑关系来建立电力、电气设备故障的推理规则,同时这种推理系统也结合了反向的推理方法,可以有效的缩短故障出现的范围,通过故障假设与动作继电保护的符合程度来计算推理所得结果的可信程度。

2)以启发式规则为基础的推理系统。以启发式规则为基础的推力系统主要是把断路器和保护的动作逻辑和运行人员对于故障诊断所有的经验使用规则来表示出来,最终形成一个有诊断专家系统的知识库,在电力、电气设备中存在故障时,就采用正向推理的方式将故障出现后所观察到的情况与知识库中所设置的规则相结合,进而推断出电力、电气设备故障的一个结论。目前使用的专家系统主要是采用启发式规则为基础的推理系统[1]。

以专家系统为基础的诊断方法的主要特点就是可以系统的、细致的将保护以及断路器的动作逻辑和运行人员多年的工作经验采用规则的方法表示出来,同时建立一个知识库,知识库在使用的过程中可以根据需要进行适当的添加和删减,这样可以保证知识库在使用的过程中可以满足电力、电气设备故障诊断工作的需求。但是目前以专家为基础的这种诊断方法还存在一些缺点和不足:①建立知识库的过程较为困难,无法验证知识库的完备性;②无法分析知识库中信息的正确性;③对于大型的专家系统知识库的维护工作困难;④复杂的故障诊断过程中专家系统推理速度慢。正是专家系统中存在的这些问题,使得专家系统无法满足大规模电力、电气设备的故障诊断工作,目前专家系统主要使用在离线的故障分析上。

1.2 以人工神经网络为基础的诊断方法

这种诊断方法与专家系统相比较,其诊断方法具有学习能力强、容错能力的特点。目前使用在电力、电气设备故障诊断工作中的人工神经网络有:基于BP算法的基于径向基函数的神经网络以及前向神经网络等。但是因为人工神经网络训练完备的样本集获取也是较为困难,所以目前人工神经网络为基础的诊断方法还主要是应用在中小型的电力、电气设备的故障诊断工作中。而人工神经网络为基础的诊断方法目前存在的问题是:①性能与受到样本完备性很大的影响,且大型的电力、电气设备样本获取极度困难;②不擅长处理启发性的知识;③和符号数据库的数据交互能力差;④缺乏解释自己行为以及最终输出结果的能力。上述的这些人工神经网络为基础的这种诊断方法的缺点使得其无法被应用与大型的电力、电气设备故障诊断工作中去。

1.3 以粗糙集理论为基础的诊断方法

1982年波兰的Z.Pawlak教授提出了一种处理不确定性以及不完整性问题的新型的数学工具―粗糙集理论。粗糙集理论的主要思想在于保证分类能力不变的前提下,通过简化知识,导出分类规则或者是问题的决策[2]。这种诊断方法不需要提供处理数据之外的任何有关的信息,同时还能够有效的处理和分析出不一致、不精确以及不完整的各种不够完备的数据,以及从中挖掘出隐含的知识,揭露出其中存在的一些潜在的规则。鉴于粗糙集理论相比其余两种诊断方法的优越性,目前已经有越来越多的研究人员开始使用粗糙集理论进行电力、电气设备的故障诊断。

2电力、电气设备故障诊断发展趋势

随着科学技术的不断发展和进步,从对电力、电气设备故障诊断的方法研究与理论以及应用的广度、深度中可以看出,电力、电气设备故障诊断工作还停留在探索阶段,目前还没有成功的成型实用系统。由于过去的设施以及技术上的问题,导致信息的资源有限。从相关文献中来看电力、电气设备的故障诊断大都依靠变电站内或者是调度端,分别利用调度SCADA系统的站内综合百动化系统以及实时信息收集来的信息来实现。而对着计算机、系统以及网络建设技术的发展和故障录波专用网络的建设使用,后来又出现了以故障录波为基础的故障诊断系统。例如:录波器信息、保护装置信息、监控装置信息以及雷电定位信息等,进行了数据的采集、数据的传输、存储,最后进行了数据的处理,这些都为电网故障的处理工作提供了大量的信息支持。同时这些信息的提供也为电力、电气设备故障诊断方法的使用提供了基础,也拓宽了电力、电气设备故障诊断方法的研究方向。因此在进行电力、电气设备故障诊断工作时,要重视信息的采集与整理的工作,同时也包括数据仓库的构建以及故障综合信息的提取等。

电力、电气设备的故障诊断是保证电力、电气设备正常运行的基础工作,虽然国内外对电力、电气设备故障诊断做了大量的研究,同时也提出了很多的诊断手段,但是实际系统中存在的问题还是没有得到很好的解决。本文论述了电力、电气设备故障的智能诊断的研究方法,也提出了这些诊断方法需要改进的地方,指明了电力、电气设备故障诊断的发展趋势。希望可以为电力、电气设备故障诊断工作的研究提供一定的依据。

参考文献

[1]杜一,张沛超,郁惟墉.基于事例和规则棍合推理的变电站故障诊断系统[J].电网技术,2004,28(l).

故障处理论文范文5

关键词: 液压系统故障;快速诊断;排除技术

中图分类号:TP206+.3 文献标识码:A 文章编号:1006-4311(2013)16-0038-02

0 引言

近年来,液压技术得到了迅速的发展,在电力技术和机械技术之中,液压技术都有其独特的优势,随着社会的发展,液压技术已经广泛的用在冶金机械、工程机械、轻工机械、交通运输机械、农业机械、武器设备、航空航天等工业的设备中,也成为工业设备中的主要部分之一。液压系统在工业的自动化生产中起着极为重要的作用,但是液压系统的复杂化、高速化、集成化以及自动化的程度越高、功率越大,其发生故障的可能性也会更大。在发生故障后,如果没有及时的进行处理,就会对工业产生带来较大的负面影响。因此,如何在第一时间发现液压系统工作过程中存在的故障,并及时的诊断进行维修对于工业生产具有十分重要的意义。因此,为了保证工业设备的正常工作,降低维护的费用,提高生产率,必须对液压系统进行实施的动态观察。对于液压系统的故障诊断,其故障信息的描述和分析是一个关键性问题,由于现场信号具有复杂性的特征,使用常规的分析手段往往难以对故障信心进行提取和分析。分形理论是近年来机械故障诊断领域中常用的诊断方式,将分形理论应用在液压系统的诊断中也成为未来阶段下的发展趋势,本文主要分析液压系统的故障诊断。

1 液压系统故障的诊断简介

据有关数据表明,在工业生产中,液压设备故障总共占到工业设备故障的30%左右,液压设备故障的诊断就是对整个液压系统运行的状态进行检查和判断的方式,在液压系统发生故障后,可以及时的确定出故障发生的部位以及故障出现的原因。一般情况下,为了缩短诊断的时间,可以根据液压系统的类型,分析出去故障发生的机理和失效形式,建立起故障诊断档案,将相应的故障检测信号进行分类和识别,以便更好的对液压系统的故障进行诊断、分析和处理。

2 液压系统故障诊断方式

2.1 传统液压系统故障诊断方式 对于机械系统故障诊断的本质就是使用逆问题进行求解,即对系统输入以及整个系统详情了解情况较少时,根据系统输出诊断系统的变化以及异常输入将与故障有关的信息进行提取。这种故障的提取方式很多,就现阶段而言,FFT频谱分析是最为常用的数据参数提取方式,通过分析故障状态的FFT频谱,将频谱特征提取出来,再与原有的故障图进行对比,就可以快速的判断出故障的发生类型。

这种分析方式是一种线性分析方式,在线性系统的运行中十分广泛,但是,机械系统在运行的过程中容易出现非线性的因素,信号频谱也会发生较大的变化,尤其是系统输出信号为混沌信号时,频谱为宽带连续谱,这就难以根据信号来判断故障的发生情况。因此,这种传统的故障诊断方式在遇到复杂的非线性系统时并不能产生应有的作用。实际上,液压系统不同故障的发生都有不同的因素,故障信号也是有特定动力系统所引发,为了更好的对整个系统进行诊断和识别,需要从信号中提出出与动力系统相关的信息,直接来分析频谱很难得出相关信息,因此,必须使用新的方式进行分析。分形理论的发展就为液压系统故障诊断提供了新的研究方式,与其他的诊断方式相比而言,分形理论对于信号特征参数的提取更加的简单实用,一些国内外的相关研究也表明,分形维度可以反映出机械零部件、机械设备的实际运行状态及其信号的不平稳性和规则性,使用分形维数非常利于对液压系统的故障进行识别和分类,值得进行推广使用。

2.2 分形维数的提取方式 使用分形理论来分析液压系统的故障时,着眼点的不同不会出现不同的计算方式和不同分形维数的定义,对于不同的信号,需要使用不同的分形维度计算方式进行表达,以便寻求出最佳的分形维数表达方式。在对液压系统的故障进行诊断时,一般是使用单一时间序列,对于这种单一的时间序列而言,可以使用关联维数的计算方式来对液压系统的特征参数进行描述。

在进行计算时,需要对相空间进行重建,对于相空间的计算,本文使用P.Grassberger以及I.Procaccia在1983年提出的GP计算方式,具体的计算方式为:

2.3 观测尺度ε的选择 从理论上来说,如果曲线是一种完全分形曲线,那么观测尺度ε可以为所有尺度范围,但是在实际情况下,大多数曲线都是统计分形的形式,会存在最大值和最小值,因此在观测尺度最大值和最小值的取值范围内,才会有无标度区的存在。此外,还要注意到,在实际的测量过程中,定会存在一些其他信号的干扰,观测的信号是一种复合信号的表现模式,在其中也会有很多的无用信息,为了筛选出有效的信息,就需要使用相关的方式来对所收集的原始信号进行分析和处理,对于原始信号的处理,可以采取小波分析的理论进行,小波分析理论是一种新型理论,具有很好的时域局部化特征,可以为机械故障诊断过程中的弱信号处理、非平稳信号处理、信号过滤等提供一条科学的途径。

3 结语

对于所采集到的时间序列而言,不同零件在不同工作状态下,会受到间隙、载荷、刚度、摩擦力等因素的影响,使用分形方式可以提供准确的系统特征参数,从而科学的判断出故障的模式,诊断出故障发生的故障和实际情况,因此,这种方式值得进行推广和应用。

参考文献:

[1]苏欣平,王太勇,万淑敏.液压系统故障的快速诊断与排除[J].机床与液压,2009,04(30).

[2]王庆华.基于分形理论的液压系统故障诊断技术研究[J].大连海事大学学报,2010,02(01).

故障处理论文范文6

【关键词】信息融合;BP神经网络;D-S证据理论

1.引言

在发电机故障诊断中,故障多种多样,而每种故障信息之间又存在着冗余性和相关性,针对某一个故障信息进行分析已满足不了对故障分析的可靠性。目前还没有哪种单一传感器对被测对象的状态进行完全可靠的描述,所以采用多传感器进行综合的诊断,已成为当前的趋势。

采用多传感器进行测量师,由于测得信息量很大,各测点提取的故障征兆必然存在着随机性和矛盾性。若将大量的高维信息输入同一个神经网络处理的话,必然会导致诊断时间过长,效果变差等失真结果。为避免这种情况出现,提出了BP神经网络和D-S证据理论结合的综合诊断方法。首先对个测点的信号进行神经网络的局部诊断,这就将所测得高维信息分解成了低维的信息,而后将各神经网络局部诊断结果利用D-S理论进行决策级融合,最终得到综合的诊断结果。

2.数据融合的发电机故障诊断模型

本文利用BP神经网络和D-S理论对发电机进行综合的故障诊断,首先将个测点的信号进行BP神经网络局部诊断,对所有的局部诊断数据进行归一化,并对其进行决策级的D-S理论融合,得到准确的故障信息。

具体方法如下:

假设在故障征兆域S中,对应第一通道神经网络的结果,对应第二通道神经网络的结果,以此类推,每个信任函数的焦点元素都对应不同神经网络目标诊断结果,所有诊断结果构成辨别框架,对每个通道的神经网络输出值进行归一化处理,作为各焦点元素的基本概率分配,其中n作为通道数,p为故障模式分类数,即焦元数,最后利用D-S理论的证据联合规则得到最终结果。如图1所示。

3.BP神经网络局部诊断

本文采用BP神经网络对发电机先进行局部的诊断,根据从各测量的数据信息利用BP神经网络逐个对其进行诊断,并进行归一化处理,从而判断故障情况。在进行局部诊断时,为了使相同数据间具有可比性,对采集的数据信息进归一化处理,归一化公式如下:

其中:表示归一化数据,表示第个数据,表示中的最大最小值。

神经网络的结构确定一个含有33个神经元的三层网络,每个层的个数为10,18和5。创建符合要求的BP神经网络:

令P表示网络输入样本向量,T表示网络的目标向量

创建该BP神经网络的程序为:

td=[0 1;0 l;0 l;0 1;0 1;0 1;0 1;0 1;0 1;0 l;0 l;0 l;0 1];

net=newff(td,[18,5],{'tang','logsig','trainlm'{'tansig','logsig'},'trainlm')

训练网络的程序为:

net.trainParam.epochs=1000;%训练次数为1000

net.trainParam.goal=0.01;%训练目标为0.01

L.plr=0.1; %学习速率为0.1

Net=train(net,P,T)

该网络训练结果为:

TRAINLM,Epoch 0/1000,MSE 0.427518/0.01,Gradient 3.54487/le一010

TRAINLM,Epoch 4/1000,MSE 0.00105968/0.01,Gradient 0.115357/le一010

TRAINLM,Performance goal met.

4.D-S证据理论决策融合诊断

本文中将BP神经网络的局部诊断结果转化为证据理论模型,

设信任函数对应第测点的判断结果,5个信任函数的焦点元素都是,这些不同的故障模式构成了分辨框,即有共同的分辨框。

将神经网络的训练误差作为不确定因素,将网络节点的输出作归一化处理,作为各焦点元素的基本概率值,计算公式为:

表示故障模式,;表示BP网络的结果,,

为网络的样本误差,,tjn,yjn分别对应第个神经元的期望值和实际值。

由于中状态相互独立,所以有:

,第一次的局部诊断数据排成横排,第二次的数据成竖排,再用D-S合并规则计算表中的各栏,可以得到其融合的结果;用融合的结果再与第三次局部诊断数据融合,即可得最终的结果,如表1,2所示。

从表2可以看出,经过数据融合的结果与理想目标输出比较接近,误差满足实际需求,从而证明了BP神经网络和D-S理论综合诊断方法的实效性。

5.结论

针对多传感器数据融合发电机故障特点,提出了将神经网络和D-S证据理论相结合的综合诊断思路,设计了诊断模型,利用BP神经网络进行局部诊断,然后采用D-S证据理论对局部诊断进行决策级融合,得到的结果基本满足实际需求,证明BP神经网络和D-S证据理论相结合的发电机故障综合诊断方法的实效性。

参考文献

[1]郝红勋.人工神经网络在航空发电机故障诊断中的应用[J].2006,03,18.

[2]王江萍.神经网络信息融合技术在故障诊断中的应用[J].石油机械,29,8:27-30.

[3]刘怀国,吴陈,张冰.D-S证据理论在多传感器数据融合中的应用[J].华东船舶工业学院学报,200l,15,3:20-25.