无机非金属材料工程范例6篇

无机非金属材料工程

无机非金属材料工程范文1

关键词:无机非金属材料;实验室开放;教学研究;综合性实验

无机非金属材料专业主要培养具备无机非金属材料特别是建筑材料科学与工程方面的知识,能够从事该领域的科学研究、技术开发、工艺和设备设计、建筑施工、监理、技术及经营管理等方面的高级工程技术人才。学生通过系统学习及专业训练,掌握该领域的基础理论、专业知识和基本技能,研究无机非金属材料及其复合材料的组成、结构与性能之间的关系,探索无机非金属材料的制备、加工工艺技术及性能测试评价。笔者结合无机非金属专业的特点和毕业生的就业方向,探讨和研究无机非金属材料专业的专业课实验教学,从调整课程设置、修改教学内容、改进考核方法、加大实验室的开放力度等几个方面进行了探讨性研究,提出了改革方案,为无机非金属材料工程专业实验教学改革提供了理论依据。

一、专业实验课的设置及实验内容

在20世纪90年代,高等学校的课程设置和教学内容都进行了改进,无机非金属材料专业经过调整后,把原有的胶凝材料、水泥工艺学、混凝土工艺学等专业课程的实验课的内容,统一调整为无机材料测试技术专业课的实验内容,由于无机材料测试技术课程实验学时较少,删除了现在无机行业使用较少的材料实验内容,如,石灰的消解温度、产浆量;石膏的性质、细度的比表面测定方法等实验内容,增加了一些新型材料的实验内容,这样能使学生及时掌握无机材料科学发展的方向,也增强了学生适应社会的能力。但是新型材料的发展,离不开基础材料,基础材料在无机材料的发展中起着重要作用,新材料及复合材料的实验也是在基础材料实验的基础上有所发展的,拼命地追求新材料的实验内容,忽略了基础实验和传统的实验内容,使得无机非金属材料专业学生在完成本科毕业论文阶段明显感觉到实验动手能力不足,在毕业后的工作中,表现出缺乏基础实验技能的训练。所以,基础材料的实验教学在实验课教学中尤为重要,专业实验课的实验内容更应重视基础材料的内容。

二、专业实验实行独立设课,引导学生重视实验课

高等学校的学生存在一个普遍的现象,重视理论课和考试课,忽视考查课和实验课。这种现象是中国应试教育模式的延伸,在这种教育模式下,学生习惯了考试,不适应考核与考查。只有把实验课与专业课分开,独立设置成一门课程,进行单独考核,单独计入学分,才能引起学生足够的重视,从而提高学生的专业技能。

在建筑领域对无机非金属材料的研究越来越广,各种新材料、复合材料大量更新。实验内容和实验工作量越来越大,在原来的基础上增加实验内容远远满足不了实验课的需求,所以无机材料专业的专业实验课应独立设课。课程时间设置成一段时间(一周或两周),课程应分三个阶段,第一阶段:学生必修实验内容(基础实验);第二阶段:教师布置实验内容(综合性、设计性实验内容);第三阶段:学生自主设计实验内容。通过这三个阶段的学习,学生能够把本科阶段的专业课以及专业基础课的内容贯穿起来,形成一个系统的知识链。

三、加大实验室的开放力度,培养学生的动手能力

要满足实验课独立设课的要求,实验室必须进行全面的开放,满足学生的实验需求。

在学生实验集中阶段,首先选一些验证性实验内容,并同时开放所有的实验室,学生可随时选做必修实验内容的任意一个,但是在规定时间内必须完成所有的必修内容。在这一阶段,要求学生熟悉必修试验项目涉及的实验仪器、原理、操作方法及国家的相关技术规程,掌握必修实验材料的技术性质。通过这一阶段的实践,使学生掌握基础材料的实验方法和评定方法,培养学生的动手能力。在第一阶段结束后,提交实验报告,教师布置下一阶段实验任务,这一过程也是必修内容,教师给定几个综合性试验或者设计性试验题目,学生分组选择后进行实验方案的设计,经教师同意后进行试验并写出实验报告。这一过程提高了学生的实验方案设计能力。最后,由学生根据自己的兴趣爱好提出实验题目、设计实验内容,经教师同意认可后,自行进行试验并提交报告。

学生经过这样一个过程后,使理论知识和实践技能有了衔接,同时也是对各门专业课知识的一个系统的总结,不但提高了理论水平,而且提高了学生的动手能力。

四、注重学科交叉渗透,开设综合性实验,提高学生的专业素质

无机非金属材料学涉及多学科领域,所以在专业实验教学过程中,应注重学科知识的交叉渗透。利用综合性试验项目,把许多相关的学科知识进行融合,使学生掌握相关知识,把理论与实践进行衔接。

在国家开展本科教学水平评估以来,学校为了提高本科教学质量,要求本科毕业设计题目是一人一题,不允许出现雷同论文。本科毕业设计时间持续一个学期,由教师命题,学生自主选择,然后根据自己的论文题目,设计实验方案。由于论文命题都是结合教师的科研内容和研究方向定的,所以实验内容除无机材料学外,还包括有机化学、无机化学、声、光、电、力学等多学科的方方面面。这时大多数学生显得很盲目。使学生在专业试验阶段掌握这些相关的实验内容,开设综合性试验、设计性试验就显得尤为重要。综合性、设计性试验能使学生对所学知识和感兴趣的知识进行整合和改进,在实验过程中掌握实践技能,培养学生的专业素质。

专业实验课改革和实践是一项长期的工作,它涉及相关学科的方方面面,是一项系统而艰巨的任务,必须寻求各方面的支持和帮助。无机非金属材料工程专业的毕业生分布在科研、生产、检测等不同领域,要使毕业生都能在自己的岗位上熟练地发挥自己的特长,充分发挥自己的潜能,是我们教学研究要达到的目的。为了达到这一目的,就要不断进行教学研究,探索无机非金属专业的教学改革和建设,培养学生理论联系实际的能力,增强分析问题、解决问题的能力,开发学生的潜在能力,把学生培养成实用型人才。

参考文献:

[1]陈桂华.材料化学专业实验教学研究[J].洛阳师范学院学报,2009:150-151.

[2]张刚.环境科学专业实验课教学改革探讨[J].实验室科学,2009(2):44-46.

[3]肖佳.土木工程材料开放性试验教学研究与实践[J].长沙铁道学院学报:自然科学版,2006(2):83-84.

无机非金属材料工程范文2

【关键词】金属材料;能源状况;相关技术

0 引言

人类的发展历史证明,在人类生存和发展中,主要的物质基础就是材料,现代文明基础的重要支柱就是材料工业和能源。材料工业的发展在人类社会发展中占据着比较重要的位置,人们常常将主要的材料体系分为四个:一是金属材料;二是有机高分子材料;三是无机非金属材料;四是复合材料等。无机非金属材料是由比较传统的硅酸盐材料形成的,对于现代来说,无机非金属材料得到了较大规模的扩展,涉及从最早的硅酸盐领域到现在的碳化物、卤化物以及磷酸盐等等多个方面的领域。

1 无机非金属材料的结构以及特性

无机非金属材料的相关元素结合力主要分为三种,一是离子键;二是共价键;三是离子共价键的结合。这种化学键具有的高键较强的特点,就会给材料带来一些主要的特性,一是熔点高;二是具有较高硬度;三是较强的耐磨损性能;四是很高的强度;五是较好的抗氧化性能,六是良好的导电性能;七是较好的透光性;八是铁电性能;九是铁磁性能;十是具有一定的压电性能。

2 无机非金属材料的发展

无机非金属材料主要分为两大类,一是比较传统的无机非金属材料;二是新型无机非金属材料。传统的无机非金属材料主要有四类:一是水泥和一些相关的制品;二是玻璃和一些相关的制品;三是日常能够遇到的陶瓷;四是电瓷和磨料等等,它们不仅和人们的生活有密切的联系,同时还和生产有着联系,也是工业以及基础建设过程中不能缺少的材料之一。新型无机非金属材料不仅具有一些比较特殊的功能,同时也是具有一定用途的材料,它是现代新技术和产业、生物工程中都不能缺少的物质基础,主要有非晶体材料、人工晶体等等。无机非金属材料都是在高温的情况下才能够制成的,产生高温的主要来源就是能源,由此可以看出,无机非金属材料在一定程度上和能源相关的工业具有一定的联系。

3 相关行业技术状况的分析

随着人类文明以及科学技术不断的发展,无机金属材料工业也在不断的发展起来,我们主要介绍一下无机非金属材料在相关能源行业技术状况。

3.1 陶瓷工业

随着经济不断的发展,先进技术得到了比较广泛的使用,发展了具有现代技术的窑车式隧道窑,不仅产品的质量得到了比较大的提高,还降低了能源损耗,同时也减少了工人的劳动强度,对生活的环境起到了一定的改善作用,并在窑车的基础上进行不断的改造,最后推出了像步进窑以及气垫窑等等。辊道窑的使用,促进了烧成的速度,辊道窑在进行烧成的过程中,要求也是比较严格的,使其实现了全自动控制的相关操作,在一定程度上对人力资源起到了节省的作用。使用高质量的燃料对其进行烧成,并会烧制成高质量的产品,大多数的厂家都会抛弃传统的燃料,转而使用比较洁净低污染的燃料,减少了对环境的污染。

3.2 水泥工业

随着对水泥生产的工艺进行不断的改善和发展,产生了充分利用现代技术的科学管理方法,同时制造出新型的干法回转窑系统,水泥的生产开始朝向高质量、低料消耗和低热消耗以及低电消耗等方面发展。随着水泥窑单机生产的规模不断扩大,产生了一种新的干型法水泥回转窑生产的相关系统,它在水泥生产的整个过程中占有着比较重要的位置,可以进一步对生产的能耗进行降低,促进了生产效率的提高,符合低消耗生产的发展规律。由此可以看出,传统的无机非金属材料已经朝向低污染、高增长的方向发展。

3.3 新型无机非金属材料

针对新型无机非金属材料来说,虽然在用量上不是很大,但它所具有的特殊性能会在一定程度上满足各种比较特殊的需求,随着经济和科技不断的发展,人们对其进行了比较深刻的研究,在一定程度上扩宽了其发展的领域。现在的使用范围主要分为:一是纳米材料上的应用;二是梯度材料上的应用;三是超导陶瓷材料上的应用;四是电压陶瓷材料上的应用;五是生物陶瓷材料上的应用以及仿生材料上应用;六是复合新技术材料生的应用等等。

3.4 无机非金属能源材料

从无机非金属能源材料和与其相关比较密切的能源工业方面来看,无机非金属材料在工业上用的主要就是燃料以及电能,燃料主要是在工业的生产上进行应用,电能主要在新型的无机非金属材料生产的过程中进行有效的应用。相对来说燃料是一次性能源,而无机非金属行业经常用到的燃料主要是煤、天然气、以及城市煤气等等。煤的燃烧会给环境带来一定的污染,而天然气对环境污染的程度相对来说是比较小的。

4 总结

大多数的无机非金属工业在生产的过程中,使用的都是非清洁的燃料,在生产消耗上有较大的浪费,热效率相对来说也是比较低的,由此可以看出,能源是不能够进行持续发展的,在一定程度上也会给环境带来污染。同时生产过程中使用的也是一些不可再生的资源,这样就会导致资源枯竭的可能,所以要找到一种新的能源进行替补,才能保护我们赖以生存的环境,促进国民经济健康发展。

【参考文献】

[1]徐宏,黄伟,程存康,古宏晨.钛乙二醇盐的制备及其在聚酯缩聚催化与原位功能复合中的应用[C]//北京:科技、工程与经济社会协调发展――中国科协第五届青年学术年会论文集,2004,25(12):130-138.

[2]吴冬梅.悬浮液进样电感耦合等离子体原子发射光谱在无机非金属材料分析中的应用[D].华东师范大学,2007,23(02):135-140.

[3]靳正国.天津大学材料学院无机非金属材料系简介[C]//北京:复合材料:生命、环境与高技术――第十二届全国复合材料学术会议论文集,2002,28(13):138-142.

无机非金属材料工程范文3

关键词:材料 发展 金属材料 无机非金属材料 高分子材料

人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代……

100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

现在人们也按化学成分的不同将材料划分为金属材料,无机非金属材料和有机高分子材料三大类以及他们的复合材料。

金属材料科学主要是研究金属材料的成分组织、结构、缺陷与性能之间内在联系的一门学科。金属材料科学与工程的工作者还要研究各种金属冶炼和合金化的反应过程和相的关系,金属材料的制备方法和形成机理,结晶过程以及材料在制造及使用过程中的变化和损毁机理。对其按化学成份进行分类可以分为钢铁、有色金属以及复合金属材料。按用途分类包括结构材料和功能材料。

金属基复合材料(MMC)因其良好的性能而得到了人们广泛的关注。它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体。目前,特别是航空航天部门推进系统使用的材料,其性能已经达到了极限。因此,研制工作温度更高、比刚度和比强度大幅度增加的金属基复合材料,已经成为发展高性能结构材料的一个重要方向。1990年美国在航天推进系统中形成了3250万美元的高级复合材料(主要为MMC)市场,年平均增长率16%,远高于高性能合金的年增长率1.6%。

无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。无机非金属材料已从传统的水泥、玻璃、陶瓷发展到了新型的先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维、半导体材料以及光学材料。由于新型无机非金属材料除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等,因此它们已成为现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。

高分子材料为有机合成材料,亦称聚合物。自20世纪20年代德国著名科学家斯托丁格开创这一学科以来,高分子科学和技术的发展极为迅猛,如今已形成非常庞大的高分子工业。它具有较高的强度,良好的塑性,较强的耐腐蚀性能,很好的绝缘性能,以及重量轻等优良性能,在是工程上的发展最快的一类新型结构材料。高分子材料按其分子链排列有序与否,可分为结晶聚合物和无定型聚合物两类。结晶聚合物的强度较高,结晶度决定于分子链排列的有序程度。工程上通常根据机械性能和使用状态将其分为三大类:塑料、橡胶以及合成纤维。其中,我国的合成纤维、合成树脂和合成橡胶已分别居世界产能的第一、二和三位。

参考文献:

[1]谢盛辉.《材料科学发展史》课程构想及教学纲要. 2006,26,(5).

[2]许顺生.金属材料科学概述.中国科学院上海冶金研究所.

无机非金属材料工程范文4

【关键词】无机非金属材料;分类;前景

当前我国的建筑行业面临着严峻的能源挑战,因此必须寻找可以进行利用的节能材料。经过探寻,发现无机非金属材料在这方面很有优势,是实现节能的理想材料。无机非金属材料的涵盖了除了金属材料和高分子材料之外的几乎所有材料领域,通常无机非金属材料具有抗高温、硬度强以及耐腐蚀等优点,但也会出现强度差、韧性不良等缺点。

1无机非金属材料在经济发展中的作用

1.1为信息技术革命奠基

人类的发展经历了诸多时代,现在正处于一个信息化高度发展的科技时代,每个时期的发展都与材料有着密切的联系。从这个角度讲,材料贯穿了人类的发展进程,是社会发展的标志性因素。在高科技背景下,无机非金属材料成为了社会发展的基础。

1.2支撑现代文明

无机非金属材料具有体轻、硬度和强度较高、抗高温、抵制腐蚀等优良特性,因而具有金属和高分子材料所无法比拟的优势,在航天、微电子以及海洋事业中大放异彩,在高科技的竞争领域中占据重要地位、起到重要的作用。

1.3可以促进经济发展

事实证明,每次无机非金属材料的重大进展都会引发一次重大变革,比如玻璃钢、芳纶纤维等材料的产生,使得火箭的外部材料发生了革新,这种效应也扩散到汽车和飞机等领域。光学纤维的横空出世,让广播电视、邮电通讯以及医学等领域出现了飞跃性的进步,这种推动效应还扩散到了印刷和自动检测等领域当中。

2无机非金属材料的分类

2.1依据分子结构划分

无机非金属材料总体上依据分子结构可以划分晶体和非晶体两大类,晶体可以分为单晶和多晶,两者都可以分为单质和化合物两个类型。单晶的单质具体有单晶硅、金刚石、集成电路材料以及工具材料;单晶的化合物可以分为碲化铋、电子器件以及半导体敏感材料。

多晶的单质可以分为多晶硅、烧结金刚石、光电材料以及工具材料。其在化合物方面可以分为传统陶瓷、新型陶瓷以及自然石料三个方面;传统陶瓷又可以分为日用陶瓷、建筑陶瓷、美术陶瓷以及耐火材料四个方面;新型陶瓷中的结构陶瓷则可以分为耐高温材料、耐腐蚀材料、耐磨损材料、耐冲击材料和硬度材料。其功能陶瓷则可以分为电子功能材料、光学功能材料和生物功能材料;自然石料则可以分为装饰材料、建筑材料以及日用器皿。

非晶体主要指的是玻璃,玻璃可以分为单质玻璃和化合物玻璃。单质玻璃有无定形硅和生物玻璃两种;化合物玻璃则分为日用玻璃和功能玻璃;功能玻璃包括导光透光玻璃、电学功能玻璃、热湿等敏感玻璃以及生物玻璃。

2.2依据化学成分划分

总体可以分为单质和化合物两大类。单质分为单晶硅,如金刚石、集成电路以及工具领域等使用;多晶硅如多晶石墨、光电材料和电极等;单质硒玻璃如敏感材料;无定形碳包括生物膜材料和导电材料等。

化合物则包括氧化物、非氧化物以及多元化合物。氧化物分为二氧化铝和二氧化锆、非氧化物分为氮化硅和氮化铝;多元化合物分为生物玻璃和钛酸钡。

2.3依据功能划分

总体可分为工程材料和功能材料。工程材料可以分为高强高韧材料、耐高温抗热震材料、耐磨耐腐蚀材料各种界面材料以及其他材料;功能材料分为电学材料、光学材料和生物材料三种;电学材料可以分为压电材料、磁性材料、电导材料、热电材料、电子材料以及敏感材料;光学材料可以分为导光材料、透光材料和光信息材料;生物材料则可以分为生物惰性材料、生物体内可控表面活性材料、生物体内可吸收材料。

3无机非金属材料的分类的展望

按照其类型逐一展望。

3.1新型玻璃

新型玻璃应该在传统工艺基础上运用溶胶-凝胶、CVD、超急冷以及失重等工艺,通过各种微观方法实现新型玻璃领域的突破。

3.1.1新型的激光玻璃

未来会生产出输出功率更为强悍、性能品质更加优良的掺饵玻璃以及磷酸盐类型的激光玻璃,还有更新的激光放大纤维等材料。

3.1.2光集成电路玻璃

其制作方法为离子交换法,制成的成品玻璃成分包含Feo、Ce203等,本身能散发出磁光以及热光等效应。

3.1.3超平玻璃

这种玻璃主要的应用范围为光存储器,还可以应用在光磁存储器和大型液晶显等基板上面,对于那些大规模以及特大规模类型的光掩用途模板也起到较大作用。

3.2高性能陶瓷

这种陶瓷材料在性能上体现出极强的优点,比如能够抵抗高温、强度和硬度系数都很高等,因而在航天和电子领域被广泛应用。

3.2.1结构陶瓷

制作材料为碳化硅、氧化铝以及莫来石等,改进措施为增加韧性、改善纤维强度,对材料的内部构成进行调节,使之具有坚硬、耐磨、抗腐蚀等特性,可以对轴承、不锈钢等材料进行更新换代,可直接制作成发动机和电极材料等进行运用,具有使用延长寿命、节能等效果。

3.2.2功能陶瓷

其在功能方面起到的作用为绝缘、坚硬、光敏和热敏等,可以用在压电元件和磁记录存储等领域,使其成为促进信息产品容量扩大、密度增大的有力武器。

3.3人工晶体

这个材料的应用范围很广,而且前进步伐迅速。晶体原有形态和功能以及用途不断被刷新,而且新型的晶体也在不断地取代传统类型晶体,比如金刚石之所以被广泛应用就是因为其在硬度方面体现出超高的性能,其实它还具有高导热的特殊功能,可以利用这个方面将其当做热沉材料进行应用,使其具有半导体功能,让其在信息技术领域得到应用。人造水晶原本是用来发挥压电效能的,但是经过对其功能进行探索,其应用领域也变得开阔,当前还应用在延迟线以及表面波器件之中。另外,可以对辐射产生抵抗功能的水晶还被广泛地应用在航空航天领域,甚至可以在军事领域发挥出很大作用。

4总结

无机非金属材料在高科技领域占有重要地位,是伴随高科技进步而出现的朝阳产业,具有很强的发展潜力和生命力,必定在将来的竞争中脱颖而出,因此已经受到各方面的重视。本文分(下转第129页)(上接第119页)析了无机非金属材料在经济发展中的地位,详细地对其分类进行解读,展望了其应用前景。

【参考文献】

[1]栾志军.材料的分类及优化检索系统的研究与设计[D].青岛大学,2011.

无机非金属材料工程范文5

人们通常把材料、信息和能源 人们通常把材料、信息和能源并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

无机非金属材料工程范文6

摘 要: 所有的零件都是由材料组成的,有的是金属材料,有的是非金属材料,还有一些特殊材料,在飞机制造中也是一样,在整个飞机上需要很多金属材料和非金属材料,飞机材料中非金属材料的分类、特点尤为重要,要通过他们的特点和材料结构进行飞机零部件的设计,保证合理利用它们,同时在飞机制造中还应用了复合材料,通过应用不同的材料,使飞机的性能达到更优越。

关键词: 非金属材料分类、特点、材料结构、复合材料

1.非金属材料分类、特点

在工程材料中,对材料的分类是金属材料、非金属材料、复合材料(如图1.1),而对于非金属材料又可以分为有机聚合物和无机材料,而纤维、橡胶、塑料构成了有机聚合物,无机材料包含水泥、玻璃、陶瓷,以上这些材料都是非金属材料。

而在飞机的制造中,对于非金属材料是不单独使用的,它是通过合成复合材料之后,加工成飞机零件,是复合材料基体或者改性材料之一,对于非金属材料的性能特点就是硬度比较低,但是韧性和弹性较大,同时它的绝缘性能优秀,导热性低,耐热性不好,容易融化。

在飞机机舱内最常见的非金属材料就是塑料,例如行李架、座椅的把手、一些箱柜,它们都是通过塑料制成的,塑料的组成为树脂、填料、固化剂、增塑剂、阻燃剂、稳定剂,如果塑料按照树脂分子结构分类,可以分为热塑性塑料和热固性塑料,热塑性塑料在w机内的有机玻璃就是它的成分。

2材料结构

非金属材料的结构一般是研究高分子材料的结构,高分子材料的结构是大分子链结构,而大分子结构链的形态有线型、支化型、网状型,如图2.1.

一般的结构都是线型的,它可以伸展成直线,所以它的力学性能好,在外力作用下分子可以流动;支链这种结构的非金属材料在熔点升高时候,黏度会随之增加;而第三种机构的材料硬度好,但脆性较大。

3.复合材料

复合材料的性能如表3.1.

随着航空航天事业的发展,复合材料的性能的要求也不断的越来越高,而要是性能高就必须使树脂的性能提高,5250-2与5208树脂的比较如图3.1,这两个树脂型号都是作为战斗机用复合材料的基体,5250-2碳纤维复合材料就有高的压缩强度,同时5250-2树脂的弹性也比较高,在美国YF-22战斗机上使用。

在国内,通过北京航空工艺研究所得研制,T-300/4211体系,它的性能具有耐热性好,交联密度大,已经用机进气道外侧壁版上。

结束语

在飞机的制造中还添加了特殊的材料,对于它们的应用,使飞机在设计上更上一个层次,同时非金属材料对机内部零件是非常重要的,要根据材料本身的分子结构和性能去应用,航空航天复合材料是现今四大材料之一,它也是衡量一个国家制造水平和科技水平的一个指标,同时它不仅应用在航空航天领域,在电子,运动器材等领域应用也非常广泛。

参考文献

1.应荣华主编,材料成型原理与工艺,哈尔滨工业大学出版社,2005。