遥感技术与农业应用范例6篇

前言:中文期刊网精心挑选了遥感技术与农业应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

遥感技术与农业应用

遥感技术与农业应用范文1

关键词:遥感技术农业应用进展

引言

遥感技术是一种获取地表物体几何和物理性质的技术。早期的遥感图像的解译,通常通过目视判读方法,随着计算机的加速发展,解译方法得到了快速发展,一种使用计算机对原始遥感影像进行图像增强、图像变化、辐射校正、几何校正等一系列的预处理,然后通过相应的遥感处理软件进行进一步精处理,对结果进行处理,最终通过专业技术人员的经验进行解译,直接对解译结果进行处理,生成具有处理特征的遥感影像[1]。目前,遥感可分为高光谱遥感和多光谱遥感。高光谱遥感不仅可以探测到被遮盖的地物,而且可以准确地估计植物生态系统的物理和化学参数的变化,包括土壤水分、土壤特性、植物质、土壤生物化学参数、土地利用动态监测变化等。多光谱遥感是利用具有2个及2个以上光谱通道,采用多种传感器对地物进行同步成像的一种遥感技术;将地物反射的电磁波信息划分为若干个光谱波段,用于接收和记录地物信息[2,3]。当前遥感技术的发展使得遥感应用领域逐渐扩大,有林业遥感、资源遥感、遥感地质、气象遥感、灾害遥感、军事遥感、农业遥感等,尤其在农业遥感领域得到了广泛的应用,从早期的农业墒情监测和农作物面积变化监测,再到农业资源利用监测,以及利用无人机对区域水资源和农业干旱的监测与评价等。

1遥感在农业领域的应用

遥感可以获得大量的信息,多平台和多分辨率,快速、覆盖范围广等,是遥感数据的一个重要的优势。农业遥感技术是遥感技术和农业科学技术相结合形成的,是可以及时掌握农业资源、作物生长以及农业灾害信息等的最佳方式,在调查和评估,以及农业生产的监测和管理中具有独特的作用[4,5]。现代农业遥感发展的新兴技术,可以实时监测湖泊和水库水面的高度以及评价区域水资源和农业干旱,包括作物品种质量监控和鉴定[6-9]。

2农业遥感技术在我国的起步与发展

农业遥感的发展是遥感技术的重要应用领域,中国自20世纪70年代末以来,就已经进行了农业遥感的初步应用。原北京农业大学(中国农业大学的前身)根据国家土壤调查的要求,在中国国家计划委员会的支持下,由中国科教委和农业农村部组织聘请外国专家培训了专门的遥感应用人才队伍,在1983年5月成立了中国国家农业遥感培训中心。此后,我国将遥感技术广泛应用于农作物产量估算、农业气象、土地资源调查与监测和生态环境变化等领域。目前,遥感技术的应用进入了大量的实际应用化的阶段。我国大力开展国际合作与研究,积极探索遥感领域的前沿技术,使得中国成为世界上遥感领域技术先进的国家之一[10,11]。进入20世纪90年代中后期,出现了大量比较成熟的农业遥感软件,包括农业资源调查与监测的软件,由中国科学院农业遥感实验室组织开发的遥感处理软件———土地利用调查与数据处理系统软件;中国农业科学院草原研究所开发的北方草原产量动态监测系统软件等,新的遥感处理软件大大提高了人们的工作效率。近年来,各部门逐渐建立了地方的遥感中心,为国民经济建设提供了大量支持。随着遥感技术的逐渐成熟、数据来源的大量增加,以及计算机软硬件性能的快速提高,使得遥感应用逐渐普及[12]。

3遥感在当前农业应用中的进展

当今农业发展的趋势是精准农业,具有高质量、安全、低耗、高效的特点,精准农业的大量信息采集,如农作物长势监测、作物害虫监测、作物产量预测,土壤水分预报等农业精准信息,为精准农业的农业信息管理提供了依据。虽然国内的遥感在农业方面做了一些工作,但仍处于起步阶段[13-16]。农业遥感在未来应加强应用的深度和广度研究。通过3S技术的结合,在农业生产管理、农业资源、农业工程监理和其它现代农业建设领域,为农业部门的科学决策提供了详实的支持数据。高光谱遥感技术和无人机技术已经成为农业遥感新的研究热点[14]。

3.1高光谱遥感在农业遥感中的应用

由于高光谱遥感不会对农作物造成损害,因而被广泛应用于监测农作物的叶片面积。这弥补了传统遥感技术获取农作物叶面积指数时间过长的缺点,从而获得最准确、损害最小的遥感监测数据。通过高光谱的观测和分析,可以得到更为精确的农作物叶面积指数,形成不同的遥感反演模型。如,使用地物光谱仪测量冬小麦在特定波段范围内的反射率和透射率,使用冠层分析仪对冬小麦进行分析,形成光谱曲线;经过观测,形成遥感反演模型,并将模型估计值与实际观测值进行对比,结果显示,明显提高了遥感反演模型的整体精度。现阶段,我国农业现代化发展的主要方向和目标是精细农业,在农业监测中高光谱遥感技术具有快速高效、准确、无损的特点,已经成为了农业遥感监测中被广泛应用的手段。精细农业可以通过科学、系统的管理方法对农业资源利用进行合理规划,在不污染环境的前提下,通过遥感技术提高农产品产量和质量。考虑到精细农业对数据和信息的需求,传统的分析方法已不能满足现代农业发展的需要。因此,3S技术的综合被应用到农业监测中。高光谱遥感在精准农业的发展中得到了广泛的应用。利用高光谱技术获得更完整和更准确的农作物参数,为农作物的种植与管理提供了有利的保障[18-20]。高光谱遥感技术除了上述内容,在全面的农作物质量监测,通过获取农作物在不同生长时期的数据特征进行全面的预测以及最后的生产,目前主要集中在不同农作物的种植面积和产量以及质量监测过程中的数据访问与存储。虽然高光谱技术已经全面、准确应用于农业中,但还需要进一步的研究。如何将高光谱遥感技术应用于作物机理和农业信息的监测以及完善农业光谱信息数据库,为进一步提高农业信息监测模型的适用性和准确性提供支持[22-26]。

3.2无人机遥感在农业中的研究进展

3.2.1农田空间信息农田空间信息包括地理坐标信息、通过视觉和机器识别获得的农作物分类信息。通过无人机可以识别农田边界来预估种植面积。传统方法进行农田的面积测量,具有时效性差和农田边界位置与实际情况差异大的缺点,不利于精准农业的实施监测。无人机可以准确、有效并且实时获取全面的农田空间信息,具有传统的测量无法比拟的优势。无人机航拍图像可以实现农田基本空间信息的识别,农作物区域面积的计算和种类的识别仅通过数码相机就可以实现。空间定位技术的快速发展,大大提高了农田定位信息研究的精度和深度,随着无人机影像空间分辨率的提高,地形、坡度和高程信息的引入,可以实现较为准确的农田空间信息监测。张宏明等利用无人机DEM数据提取农田灌溉渠道系统,对于灌溉渠道提取完整性达到85.61%[19]。

3.2.2作物生长信息农作物的生长状况可以通过多种信息反映,如产量信息、表型参数以及营养指标来表示。包括植被覆盖度和叶面积指数等,多种信息相互关联,共同代表了作物的生长,与最终产量直接相关[21]。在野外信息监测研究中起着主导作用。

3.2.3作物生长胁迫因子农田墒情监测热红外法是农田土壤含水量监测的常用手段。在高植被覆盖度的地区,通过叶片气孔的关闭,可以有效减少蒸腾引起的水分损失,增加地表感热通量,从而减少地球表面的潜热通量,导致作物冠层温度上升。水分胁迫指数能够反映农作物的水分含量与作物冠层温度的关系。通过传感器的热红外波段可以有效地获得作物冠层温度,进而有效反映农田水分状况。在植被覆盖度比较低的地区,土壤水分可以间接表示下垫面的地表温度变化,由于水的加热温度变化是一个缓慢的过程,因此土壤水分的分布可以间接反映白天下垫面温度的空间分布。裸地对遥感的温度监测是一个重要的干扰因子,在冠层温度监测中较为重要。研究者研究了裸地温度与作物表面覆盖度的关系,确定了裸地引起的冠层温度测量值与真值之间的差距。将修正结果应用于农田水分监测,提高了监测结果的准确性。在实际农田生产经营中,农田漏水也是人们关注的焦点。利用红外成像仪对灌溉渠的渗漏进行监测,准确率达93%[27-29]。

3.2.4病虫害监测通过热红外波段的实时监测,可以有效反映作物病虫害分布的动态变化情况。作物在健康的条件下,蒸腾作用是通过气孔的开闭来调节的,以保持农作物温度的恒定。当发生病害后,叶面会发生病理变化。病原菌植物对植物蒸腾作用的影响比较明显,会造成侵染部分温度的升降。一般情况下,植物易感会导致气孔开度失调,使致病区域的蒸腾作用高于健康区的蒸腾作用;旺盛的蒸腾作用会导致致病区域温度的下降,致病区域的叶片温差明显高于正常叶片的温差,直到坏死部位的细胞完全死亡,叶片会变得枯黄,叶片的蒸腾作用完全丧失。通过健康植株温差始终低于叶片表面的温度的原理[30-33],可以实时监测作物病虫害的变化趋势。

4总结

4.1我国遥感技术在农业应用中的发展

在我国主要粮食主产区,建立了产量估算信息系统,冬小麦遥感产量估算操作系统是RS与GIS技术相结合的产物。可以将整个产量估算的操作环节集成到计算机系统的操作中,具有完整的数字化操作能力,可以输出各种产量估算结果。大量冬小麦产量估算试验结果表明,利用冬小麦遥感产量估算操作系统进行大面积作物产量估算的精度可达95%以上,随着运行年限的逐渐积累,操作系统的生产精度将逐步提高,运行成本将逐年降低。同时,我国迫切需要了解农业种植结构的变化,针对于种植面积计算的要求、监控的增长潜力、建立单位面积产量模型和遥感监测,中国科学院农业研究实验室在GIS技术的支持下开发了一种作物产量估算的实用操作系统。并且,东北的三江平原,南方的太湖平原也相继建立了遥感监测系统,取得了良好的应用效果。

4.2遥感在农业发展中的前景

中国国家科教委将“RS、GIS和GPS综合应用研究”列为国家科技攻关重点项目。到目前为止,遥感信息技术已连续7个“五年规划”被列为国家重点项目,体现了国家对遥感的重视。可以预见,遥感可以有效地应用于农业发展中,使其走上产业化发展的道路[35]。

5结语

随着国家空间基础设施建设的持续推进以及“高分辨率对地观测系统”的深入实施,中国将拥有更多的国产资源调查监测卫星。物联网与大数据、人工智能等技术的发展以及现代农业发展的需要,将使得我国农业遥感技术的研究和应用进一步发展。

5.1农业遥感的应用范围和应用领域的拓宽

物联网加大数据与遥感观测、导航与定位,结合其它学科领域,可以促进农业遥感自身的发展,跨学科的应用也将扩大农业遥感的应用领域。需要进一步建立“空、天、地”三位一体的农业综合管理系统,深入发展遥感观测精度的智能农业、农作物育种表型、农业保险的监测和评价、绿色农业发展、农业政策的效果评价等方面。

遥感技术与农业应用范文2

1.提高农作物产量和质量方面

近年来,利用电场、磁场、激光等物理因子刺激农作物种子及幼苗而使其高产、优质的技术已经越来越多地应用于现代农业生产中,并取得喜人的经济效益。通过电磁场的粒子束诱变育种技术的开展,为培育新品种增添了新的活力。不仅损伤轻、突变率高、突变谱广,面且具有高激发性、剂量集中性和可控性,将来还可能发展成定位,成为基因工程的一个有效手段。

2.农业监测、预测及病虫害防治方面

采用红外扫描的方法.可以为农作物诊断“疾病”。如:采用卫星遥感技术,通过红外扫描仪测量其下方农作物散发出来的热量。判断农作物患病情况或受到病虫害侵袭的情况。这样可以及时处理作物的病情和采取预防措施。同时,考虑到现代农业生产中的土壤水分情况,利用微波遥感技术来探测、估算土壤的温度和植物的水分情况。便于了解土壤中的水分信息.采取切实有力的措施保障植物水分的供应。

3.现代农业机械方面

农业要实现现代化,首先就要实现农业的机械化,农业机械化是现代农业的重要标志。一台好的农机具要做到高效使用,必须要做到在完成同样的耕作任务条件下,省时、省力、省钱,减少在农机具上的力的损耗,减少机械无用功的损耗,减少燃料的消耗。

一台好的农机具要保证完成额定任务的同时,必须提高各种燃料的燃烧率,达到最大作功,根据热力学第二定律,虽然效率不可能达到100%,但我们必须提高它们的燃烧效率,力争做到既节省燃料,又完成工作任务。

保证农机具的维修和保养顺利而有效的进行,必须加强对操作员和维修人员的电学方面的培养,保证驾驶员和维修人员在夜间工作和维修过程中注意电的敏感特性。如:焊接金属器具时的电焊机的工作特性。同时考虑到现代农业机械化的基本组成原理更多的是采用集中控制电路,很多情况下都是采用自动控制系统.这就要求维修和操作人员必须熟悉电学的基本知识,这样就能保证农机具的故障率减少,提高农机具的使用“寿命”。

4.遥感技术在现代化大农业的应用

传统的管理方式和灾情调查周期长且很难及时准确地了解整体状况,常常延误最佳管理时期。遥感技术的应用可以解决这些难题。下面从物理学的角度简单阐述遥感技术在现代化大农业的应用。

(1)遥感技术产前的应用

利用遥感技术进行耕地和水资源空间分布的提取,为合理规划农业工程提供准确直观的数据支撑。为科学调整作物种植结构、配方施肥和耕地的分级定价发包提供基础支撑数据。农民结合品种特性进行合理的品种区划规划和科学选种,为优质、高产打好基础。

(2)遥感技术产中的应用

利用多源、多时相的遥感影像数据,进行水稻插秧进度检测。及时掌握总体的插秧进度,督促生产落后区域抢抓农时,为水稻生产安全打好基础。在水稻成长过程中,建三江垦区5-9月可能会发生低温冷害,农户可以利用遥感数据结合气象数据及时进行低温冷害的监测,为及时采取防灾措施提供重要的信息。并且可以利用遥感技术结合叶色诊断技术,对水稻主要生育期及连续多雨、低温、高温等突发性天气异常时期进行长势监测。为及时了解大区域水稻长势的准确情况,针对生育期延迟等长势异常现象进行水肥指导。同时有针对性依据水稻不同的长势进行有目的的施肥调控,可以节约成本,提高肥料利用效率,促进水稻优质高产,并实现节能减排。由于建三江垦区种植面积分布连续成片,长期种植水稻,在适宜的天气气象条件下会使水稻产生一些病虫害,但是大面积的喷药,会浪费很多的资源还会增加农药在农作物上的残留。因此,利用遥感技术进行病虫害的检测,可以解决快速、准确、全区域病虫害灾情的预警和监测,并制定针对性强、科学有效的病害防控措施,在节能减排的同时,又促进了水稻的绿色生长。

(3)遥感技术产后的应用

水稻收获后,利用遥感技术建立秋整地和秸秆还田进度监测体系,和利用遥感技术准确地监测全区域的积雪厚度,为新的一年调整种植计划、用选优培提供重要的参考。可见,遥感技术在现代化大农业的生产中具有十分重要的意义。

遥感技术与农业应用范文3

【关键词】遥感技术;农田水利;资源;研究

0.引言

近年来,在人们的生产生活中,遥感技术被运用得很广泛。比较突出,也是比较有用的就是遥感技术在农田水力资源中的利用。这项措举,是真正意义上的科技兴农的实现。是我国农田水利中的飞跃性的进步。遥感技术在农田水利资源中被广泛的应用,这样就对农田的情况进行了一个科学而精准的分析。这主要包括农田的防洪抗旱、农田的灌溉情况,以及农田的水土流失治理动态进行一个科学的分析。遥感技术可以对农田水利资源做一个系统的分析,以便提出合理的解决方案。

1.相关概念分析

遥感技术主要是在资源勘测和环境勘测中利用的一种技术,这种技术的作用主要是反映资源的情况,以便相关部门作出科学合理的分析。目前来说,遥感技术运用的领域非常的广泛,农业、林业、海洋、水文和气象都有充分的利用这种技术。所谓的遥感技术实际上就是指的是利用光学接受电磁波和地面反射而来的信号。这种技术主要是在高空和外层空间进行。主要指的是遥感器和波探测仪器两种仪器。遥感器将接收而来的的电磁波和反射信号记录好之后再传回地面的地方,然后进行信息的处理、判断和验证等步骤。实际上,具体来说,这种技术就是一个拍摄、扫描以及传输信息和信息处理的工作过程。

2.遥感技术在农田水利资源中的利用

2.1在水土流失治理动态中的应用

我们生活的家园土地资源类型多样,复杂且多变。由于许多人为因素和自然因素,水土流失严重。人为因素主要是过度开垦土地,在草原上过度放牧,以及一些过度开矿和修路导致的土层松动,水土流失情况。自然的原因主要是地貌地形、植被气候、以及土壤和风向发生的自然变化。人为的破坏,导致水土严重流失,是可以避免的,自然的因素是不可抗拒的,但是,也是可以经过人为的努力,达到一定的改善。例如在一些水土流失严重的地方人工种植固土性很强的树木和草,也可以在水土流失的地方修建固土的堤坝和成网格的坝子。实际上,认人为的修建坝子只能够保护水土不流失一段时间,只是一种治标不治本的做法,而人工种树一直都是一种比较好的方法,被广泛的利用到保护水土流失工程中。

我国的地理南北东西跨度都比较的大,地理位置复杂,地形也比较复杂过度明显,气候多变,冬夏温差较大,一些南方地区时常发生洪灾,北方地区时常发生旱灾,且北方的风沙较为严重。因而,我国的水土流失较为严重。我国人口众多,土地资源总量虽然较多,但地形复杂,适合耕种的农田比例较小,且人均占有量较少,但我国水土资源流失较为严重,为了缓解水土流失情况,我国政府投入大量的人力物力进行整治。全国呼吁保护土地,防止水土资源流失。还大力退耕还林,请专人在水土流失严重地区种树。政府能够有这一系列的方案,还得益于遥感技术。遥感技术被广泛的利用与农田水利资源中,在防止水土流失工程中起着至关重要的作用。遥感技术将我国水土流失的情况清晰的传给相关部门,为相关部门提出及时、科学合理的方案提供了科学的资料。一般来说,遥感技术的传回的结果都是比较科学和宏观的,对促进农田水利资源的保护有着至关重要的作用。

2.2在防洪抗旱中的应用

前面笔者也提到,我国地理位置广阔,国土南北东西跨度都比较大,国内地形复杂气候多样。自然灾害频繁发生。特别是洪灾和旱灾严重,古就有南涝北旱的说法。但是我国在应付自然灾害的能力还是比较突出的,这和遥感技术分不开。遥感技术对于防洪抗灾的影响力是巨大的。实际上,遥感技术洪灾旱灾的情况反映和紧急救援,以及灾后的重建工作都有着重要的作用。不止如此,我国还建立了农田洪旱遥感系统,这种系统反应的是我国科技的进步和对民众的关心。一个国家应付自然灾害的能力,往往凸显的是国家的经济实力。

洪旱遥感系统主要包括两种主要的模式。一检测灾区重点。通过雷达卫星和地理信息监测出重灾区,并作出详细的评估,以及对灾后的重建作出决策。二是灾区宏观检测。利用气象卫星每天读灾情进行速报,对灾情地区,持续时间,灾情损失作出评估。

实际上,事实已经有力的证明了遥感技术在防洪抗灾等抗击自然灾害中的作用是极其重要的。在紧急救援,灾情监测、以及灾情评估和灾后重建工程中的作用都是极其重大的,可谓是贯穿整个始终。遥感技术为相关部门提供了客观和全面清晰的信息,这些信息成为有关部门做出正确决策的有力支撑点。

2.3在河道检测中的应用

我国水资源丰富,河流众多,河流成为我国大部分地区饮用灌溉的主要水源。水是生命之源,加之我国又极为容易发生洪灾和旱灾。因此这就需要我国多河流实行检测。遥感技术对河流的水位情况,河道走势,河床变化,水质变化都会有清晰的数据。遥感技术将这些数据传给相关部门,以便相关部门掌握详细情况,当发生灾情的时候,也好及时作出决策。遥感技术对我国的农田水利灌溉和经济有着至关重要的作用。

3.结语

遥感技术传送的信息可靠而详细。遥感技术将详细的信息资料传给相关部门,以此来帮助相关部门及时正确的了解情况,并帮助他们做出正确及时的决策。在我国农田的水利中广泛的被利用,极大的促进了我国农田水利资源的管理。对我国经济的发展有着至关重要的作用。目前,我国的遥感技术水平还是比较高的,但也还需要进一步的提高。

【参考文献】

[1]王红岩.基于NPP和植被降水利用效率土地退化遥感评价与监测技术研究[D].中国林业科学研究院,2013.

[2]蒙继华,吴炳方,杜鑫,张飞飞,张淼,董泰峰.遥感在精准农业中的应用进展及展望[J].国土资源遥感,2011,03:1-7.

[3]高广磊,信忠保,丁国栋,李丛丛,张佳音,梁文俊,安云,贺宇,肖萌,李文叶.基于遥感技术的森林健康研究综述[J].生态学报,2013,06:1675-1689.

遥感技术与农业应用范文4

[关键词]测绘工程 测量技术 全球定位技术 遥感技术 地理信息系统技术

[中图分类号] P2 [文献码] B [文章编号] 1000-405X(2014)-3-201-1

测绘工程测量技术是测绘技术在社会建设与发展过程中的直接应用,传统的测绘工程测量技术的应用范围比较狭窄,局限于水利、建筑和交通这几个领域,所包含的主要内容为测图和放样这两个方面。在测绘工程测量技术的不断发展中,其应用领域也越来越广泛。目前比较成熟并且使用得比较广泛的测绘工程测量技术主要有全球定位技术、遥感技术以及地理信息系统技术,这三种方法的优越性都比较明显,在实际应用过程中会大幅提高测量工作的精度与效率,有效节省测绘工作的成本投入,对于测绘行业的发展有着巨大的推动作用。

1测绘过程中的测量技术

1.1全球定位技术

全球定位技术(GPS)最早出现于上个世纪的七十年代,美国成功打造了具有海、陆、空全方位三维导航与定位能力并且可以利用导航卫星实现时间与距离测量的导航与定位系统。之后的几十年,全球定位系统的水平定位精度不断提高,软、硬件特得到不断完善,应用领域越来越广。GPS技术可以全天候工作,不受天气等外界因素的影响,覆盖率达到98%。其三维定点定速功能的精度非常高,因此可以对需要定位的对象进行精准定位。在测量过程中,GPS技术所受到的限制较小,不需要通视就可以准确得到测量结果。GPS技术主要由空间星座、用户设备以及地面监控等三个部分构成:空间星座由二十四颗卫星共同组成,成蜂窝结构,两侧安装有定向太阳能电池;用户设备指的就是GPS接收机,利用接收到的信号来计算所处位置的三维坐标;地面监控主要由地面天线站、主控站以及监测站构成,其对地面上的各位置实行全面监控。

1.2遥感技术

遥感技术是一种以电磁波理论作为基础的深测技术,在实际测量过程中利用传感仪器来收集和处理远距离目标所反射或者辐射出来的电磁波信息,然后根据所得数据进行成像,进而实现对目标的深测。遥感技术以下优点:第一,探测范围广泛。航拍时飞机的飞行高度可以达到10千米左右,陆地卫星轨道也可以达到910千米左右;第二,信息的获取速度快。陆地卫星每十六天就可以覆盖地球一次,周期非常短,资料的获取速度非常快;第三,所受限制条件较少。遥感技术不会受到冰川、高山以及沙漠等环境的影响,也不会受到温度、压力等因素的影响;第四,信息量大。遥感器所获取的信息与遥感器以及把波段的不同有很大关系,每一波段含有七百六十万个像元。遥感技术主要由遥感器、接收装置、图像处理设备、信息传输设备以及遥感平台等部分构成,目前已经在农业、环境保护、地质、海洋、林业、测绘、地理、水文、气象以及军事侦察等众多领域获得广泛应用。

1.3地理信息系统技术

地理信息系统技术(GIS)是近些年才发展起来的一项空间信息分析技术,其在环境和资源领域中的应用可以对各种资源与环境信息进行有效管理,也能动态监测多时期的生产活动,显著提高了工作效率和经济效益。地理信息系统技术主要应用于农业、林业、土地资源、生态环境、灾害预警以及环境资源等方面,目前已经取得了不错的应用成效。在环境资源方面,GIS技术主要以通过建立信息管理系统的方式得到应用,而在土地资源方面,GIS技术可以应用于土地利用现状调查、土地评价、土地利用规划以及土地覆被的动态监测等方面。

2测绘工程测量技术未来的发展

在工程测量技术需求不断增大的情况下,各项测量技术均会在未来获得更大发展。以下从四个方面分析测绘工程测量技术未来的发展方向。

2.1数据采集和处理过程会更加实时化、自动化和数字化

以GPS技术为例,GPS技术的接收机正在朝着轻便、利于携带的方向改进,而广域和实时差分技术以及CCD技术可以更好地满足定位技术对动态、静态以及高精度的各方面需求,同时接收机也会更加轻便。在土地利用范围不断扩大的情况下,土地测绘技术将会逐渐扩展到较为偏僻的地区,这一发展趋势决定了GPS技术的实时化、自动化和数字化,只有让GPS技术不受地域限制、全天候地控制测量范围内的所有区域,工程测量技术才能拥有更加广泛的应用空间。

2.2测量数据的管理会更加标准化、科学化和信息化

在工程测量控制网与城市之间会逐渐使用监控网优化软件来实现测量数据的智能化管理,同时也可以让控制网数据的观测和处理更加标准化、科学化和信息化。

2.3测绘硬件设施会更加国产化、人性化和智能化

我国目前所使用的测绘技术设备大多为进口,在测绘技术不断进步的形势下,国家对测绘设备的研究力度也会相应加大,实现测绘硬件设施的国产化。此外,社会的整体发展趋势也会对测绘技术的发展方向产生一定影响,比如人性化与智能化,在整个社会都在追求人性化与智能化的影响下,测绘行业的发展自然也会顺应这种趋势,实现测绘硬件设施的人性化与智能化。

2.4“3S”集成技术

全球定位系统技术、遥感技术以及地理信息系统技术是测绘工程中最重要的三种技术,这三种技术各有优势与缺陷,在实际运用中根据实际情况选择最为合适的即可。未来的测绘工程测量技术会实现“3S”集成技术――将三种不同测绘技术的优势集中到一起,在它们相通的理论基础上建立相辅相成的关系,集成技术可以同时覆盖信息的采集、处理以及分析等全部过程,让测绘工程的测量技术更加高效,使用范围更广。

3结束语

综上所述,测绘工程中较常使用的三种测量技术中,全球定位技术可以全天候工作,不受天气等外界因素的影响,覆盖率与精度非常高,不需要通视就可以准确得到测量结果;遥感技术有着探测范围广泛、信息的获取速度快、所受限制条件较少以及信息量大等优点,在农业、环境保护、地质、海洋、林业、测绘、地理、水文、气象以及军事侦察等众多领域获得广泛应用;地理信息系统技术可以显著提高工作效率和经济效益,主要应用于农业、林业、土地资源、生态环境、灾害预警以及环境资源等方面。在社会的不断发展下,测量技术的数据采集和处理过程会更加实时化、自动化和数字化,测量数据的管理会更加标准化、科学化和信息化,测绘硬件设施会更加国产化、人性化和智能化,此外还会集成“3S”技术,推动我国测绘事业的发展。

参考文献

[1]刘艳臣.浅谈我国工程测量技术的现状及未来发展[J].黑龙江科技信息,2010(03) .

[2]覃玮.城市工程测量的技术发展初探[J].中小企业管理与科技(下旬刊),2010(05) .

遥感技术与农业应用范文5

作为地球科学及应用的一种观测手段,遥感总是带给人们一些困惑:它能应用在哪些方面?能为我们做些什么?它又是如何监测的?实际上,遥感在我们生活中无处不在。只是它好像总是披着隐身衣,而我们浑然未觉罢了。本期共享科学就揭开遥感应用的这层隐身衣,接着为读者讲述遥感的应用。

灾害遥感

灾情数据即时通

前不久,强台风“海葵”来袭,造成许多地区出现农田被毁,农业大棚倒塌,农作物在强风暴雨的摧残下出现死亡的状况。这时,通过灾害遥感,可以准确的划分出受台风影响区域,通过气象预警有效信息,人们便可由此对农产品进行防护措施,降低损失。

郭子祺说:“经过二十多年的努力,我国已建立了重大自然灾害遥感监测评估运行系统,形成了对台风、暴雨、洪涝、旱灾等灾害的监测能力,特别是快速图像处理和评估系统的建立,具有对突发性灾害的快速应急反应能力,使该系统能在几小时内获得灾情数据,一天内做出灾情的快速评估,一周内完成详实的评估。”

在1987年大兴安岭发生特大森林火灾时,中国科学院卫星地面站提供的火情现势卫星影像图对现场指挥、调度扑救起到了决定性作用;1998年长江、嫩江流域发生特大洪灾时,航空、航天平台的遥感实时监测,为指挥抗洪救灾、恢复生产发挥了巨大作用。此外,郭子祺还介绍,在“5·12”汶川特大地震发生后,全力启用了航空、航天遥感设备和专业技术人员飞赴前线,第一时间获取灾情信息,哪片房屋倒塌了,哪里河道堵塞了,都一目了然。遥感为抗震救灾监测获取、处理和分析数据,为抗震救灾的行动部署提供了基础依据和重要背景信息。

农业遥感

农业统计换新天

“我们要保证国家的粮食足以满足人民的日常需求,如果出现减产的话我们便需要作出相应的政策调整。”中科院遥感所研究员陈良富说。上世纪70年代,美国开始就利用陆地卫星和气象卫星等数据,预测全球的小麦产量。相比遥感估产宏观、快速、准确的优点,传统的作物估产采用人工区域调查方法,应用起来计算繁杂、速度慢、工作量大并且成本高。

那么,遥感估产究竟是如何操作的呢?“农作物遥感估产包括对农作物生长过程的动态监测、种植面积测算、单位面积产量估测和总产量估测。”记者在采访中得知,根据生物学原理,在收集分析各种农作物不同生育期不同光谱特征的基础上,通过平台上的传感器记录的地表信息,辨别作物类型,监测作物长势,在作物收获前,预测作物的产量的一系列方法。

先有“产”才能有“估”。对于整个农业生产链来说,遥感的作用可以说是贯穿始终。从最开始的农业资源调查到土地利用现状分析,再到农业病虫害监测,这些都要依赖于遥感技术应用。

有一份数据引起了笔者注意“我国每年由于病虫害造成的损失大约在10%-15%之间”如此庞大的一个数字!遥感技术能否帮助我们及早发现病虫害,以最快的速度采取防治措施呢?郭子祺说:“遥感技术检测农业病虫害,主要依据基于植物受到病虫侵扰时生理变化所引起的绿叶中细胞活性、含水量等的变化,表现为农作物在反射光谱特性上的差异。这样,农作物在遭受病虫危害早期就可以通过遥感技术探测到这一光谱差异,从而解决了农作物病虫害早期发现和早期防治的问题,这一技术方法也已经应用在森林病虫害监测和防治方面。”

大气遥感

定量监测气溶胶

近些年,大气臭氧减少、烟雾弥漫难以消散,这样的问题成为社会普遍关注的焦点。但有一个词“气溶胶”常常和这些大气问题相伴提起,或许从它的身上我们可以找到问题的关键。

“秸秆焚烧的烟尘、人为活动的扬尘和植物花粉颗粒物,就是气溶胶的具体实例。汽车尾气和各种锅炉的化石原料燃烧排放气体可以转化为微小细粒子。”陈良富说,“它不仅对人体造成危害,而且气溶胶作为云凝结核,使地气系统的能量平衡失衡,从而影响区域和全球气候,大量的细粒子气溶胶还会形成严重的灰霾天气。”

面对气溶胶我们真就束手无策吗?当然不会!“在众多类型的监测技术中,卫星遥感可以提供广阔背景上的气溶胶区域分布信息,是唯一实现全球气溶胶监测的手段。”陈良富介绍,定量研究气溶胶在全球范围内的时空变化特征与演变规律上有其他站点监测无法比拟的优势,辅以米散射原理的地基激光雷达提供的气溶胶垂直分布信息,可以获得区域分布的近地面PM2.5质量浓度的监测,实现城市群、郊区和广大农村区域的空气质量监测。

说到大气遥感,还有一点不得不提灰霾。比如北京以及华北地区的天空常常披着灰色的面纱,给人们生活出行造成很大的困扰,“这正是灰霾在作祟,”陈良富研究员说,“美国的网站总用卫星图像来说中国的污染太严重,对此科学家们解释说是由于天气稳定利于污染物排放的积累所致。其实这里存在一个误解。”

陈良富解释,用了五种方式的卫星观测数据对灰霾天进行分析,发现人为排放积累不至于引起如此面积大、强度高的污染。那空气污染的原因究竟是什么呢?通过遥感探测发现,每年10月到次年的3月期间,每23天在2公里以上的高空就有一股从西风带吹来的浮尘,当它抵达华北平原上空后,由于地势降低,风速下降以后浮尘便会往下与污染物相混合,遭遇水汽后细粒子个体便迅速增大就造成大范围高强度的污染现象。如果遇上南边气流比较强会形成华北地区持续多天的重污染天气。若仅通过地面观测的话恐怕难以得知这一现象的起因,在这些需要大尺度的观测工作上,遥感无疑起到了不可替代的作用。

水资源遥感

让水质监测与评估更真实

水是万物生长之本,湖泊更是自然的神作,但近些年,随着我国工业和城镇化的快速发展,江河湖泊面临水质污染的严峻问题。

能否利用遥感技术来进行江河湖泊水质环境监测呢?郭子祺说:“水体及其污染物质的光谱特性是利用遥感信息进行水质监测与评估的依据。国内外许多学者利用遥感的方法估算水体污染的参数,以监测水质变化情况。” 此外,郭子祺介绍,利用遥感技术进行水环境监测与水体富营养评价,存在很大的优势:信息获取快速、省时省力等特点,不仅能够较好的反映出研究水质的空间分布特征,而且更有利于大面积水域的快速监测。遥感技术无疑给湖泊环境变化研究带来了福音。

“在整个水资源管理方面,遥感技术与地理信息系统相结合,正发挥着越来越重要的作用。”郭子祺告诉记者,“水质的好坏有一个划分指标,目前利用遥感技术获得的光谱数据进行水质参数反演精度还不高,还达不到环保部门的要求。如何使这一技术有效应用呢?目前的做法是在测量区域布置一些水质传感器,通过无线传感器网络技术可24小时连续测量水质的多种参数,用于提高水质遥感反演精度,使其接近或达到相关行业要求。”

延伸阅读

卫星遥感测出精准数据:京杭大运河全长1710千米

京杭大运河到底有多长?中国科学院遥感应用所刘少创课题组利用卫星遥感技术,重新量测了这条世界上最古老,也是最长的大运河,得出精确答案:京杭大运河总长度为1710公里。

京杭大运河与万里长城并称为中国古代两项伟大工程,但在各种文献资料中,运河的“身长”却长短不一。刘少创表示,河长、源头和流域面积都是国家重要的地理信息数据,我们应该利用现有的技术条件,准确确定这些数据。

刘少创课题组利用卫星遥感技术,再加上大比例尺地形图,进行分析计算,最终确定京杭大运河的精确“身长”。据介绍,1710公里的总长度,是以北京通州温榆河和通惠河的交汇处为起点,以杭州的拱宸桥为终点,沿京杭大运河的中心线进行量测得到的。

据刘少创介绍,课题组主要利用卫星遥感技术确定河流的源头和长度,但由于很难在同一时间集齐整条河流的所有卫星影像数据,所以还需要结合航空影像和大比例尺地形图,进行分析测算。“大比例尺地形图更接近河流真实的长度,弯弯曲曲的河道也更容易表现出来。”

由于卫星遥感影像无法确定边界的位置,此次并未分段量测,因此京杭大运河北京段暂无精确长度。

据刘少创介绍,从目前的卫星影像图来看,河道的分界点不太清楚,例如北京和天津的河道边界点,就无法确定具置,再加上地形图的资料也不全,难以按边界分段测量。

“如果要分段测量,必须精确确定每一个分界点的位置,这要涉及很多部门,我们无法得到这些资料。”刘少创说。

遥感技术与农业应用范文6

关键字:数字农业,GIS,RS,GPS

Abstract: 3 S technique known as the geographic information system (GIS), remote sensing (RS), global positioning system (GPS) has set up a file in the foreign widely used in digital agriculture engineering, in our country is still at the local scope or the experimental stage. This paper ARCGIS software ERDAS and 3 S technology used in every field of digital agriculture, expounds analysis realizing agricultural informatization and the sustainable development of agriculture in important ways, introduces the current domestic in the application of digital agriculture, explore 3 S technique in the practice of the digital agriculture application and prospect.

Key words: the digital agriculture, GIS and RS, GPS

中图分类号:TN711.5文献标识码:A 文章编号:

一、前言

土地是人类赖以生存和发展的自然资源,我国是一个农业大国,大部分土地在农村,作为国民经济的基础,农业不仅提供食品,还提供工业原料,可直接影响我国的工业总产值的形成。长期以来,由于农业管理技术手段落后,尤其是农业资源的数据和信息缺乏现势性,不能为规划和决策提供及时可靠的数据和信息,制约了我国农业的发展。总之,中国的农业是一个既关系经济繁荣,也关系国家安定稳定的大问题。解决中国农业问题、获取农业信息的一条重要途径就是利用3S技术走数字农业的道路。

二、3S技术的含义及其应用特点

“3S”技术是指全球定位系统(GPS)、遥感(RS)和地理信息系统(GIS),是目前对地观测系统中空间信息获取、存贮管理、更新、分析和应用的三大支撑技术。

GIS是地理信息系统,它是为特定应用目标建立的空间信息系统。是在计算机硬件、软件及网络等支持下,对有关空间数据进行预处理、输入、存贮、查询检索、处理、分析、显示、更新和提供应用的技术系统。

RS是遥感技术,遥感就是遥远感知事物的意思,是一种利用物体反射或辐射电磁波的固有特性,通过观测电磁波,识别物体以及物体存在环境条件的技术。也就是不直接接触目标物,在距地物几公里到几百公里、甚至上千公里的飞机、飞船、卫星上,使用光学或电子光学仪器(称为传感器)接受地面物体反射或辐射的电磁波信号,并以图像胶片或数据磁带形式记录下来,形成数字影像。该影像传送到地面,经过各种校正后,进行影像分类、解译,最后获取所需要的信息。遥感技术是上一世纪60年代蓬勃发展起来的,随着空间技术、电子技术和计算机技术、信息科学、环境科学等的发展,遥感技术已成为一种影像遥感和数字遥感相结合的先进、实用的综合性探测手段。

GPS是全球定位系统, GPS具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经我国测绘等部门的使用表明,GPS具有全天候、高精度、自动化、高效益等显著特点,成功地应用于大地测量、工程测量、航空摄影测量、资源勘察等多种生产领域。

三、国外数字农业的应用

全世界共有80多个国家,利用3S技术在ArcGIS和ERDAS软件下进行农业监测和管理。比如:

也门农业部门利用ERDAS软件探测灌溉的迁移和评估水资源情况并根据坡度、坡向图、径流方向-确定作物水源位置。

澳大利亚农业部门利用ERDAS软件进行红外波-土壤养分测定,实现精确农业中的精确施肥等。

四、3S技术在数字农业中的应用

利用GIS,RS,GPS技术可在数字农业工程中发挥重要作用,采用ArcGIS和ERDAS先进的技术,加上GPS技术,可在数字农业中实现如下领域的应用。

(一) 精细农业

“精细农业”技术是用现代高新技术特别是信息技术来改造传统农业,在机械化的基础上,把地理信息系统(GIS)、定位系统(GPS)、决策支持系统、传感技术进行集成,定量获取农田小区作物产量和影响作物生长的环境因素(如土壤肥力、含水量、苗情、病虫草害等)实际存在的空间和时间差异性信息,分析影响小区产量差异的原因,采取技术上可行、经济上有效的调控措施,区别对待,按需实施定位调控的“处方农作”。在“精细农业”技术体系中,DGPS的定位应用以及GIS的应用开发是实施“精细农业”实践的关键技术之一,即利用DGPS定位引导定量获取农田内作物产量和影响作物生长的环境因素的差异性信息,在GIS中利用各种空间分析方法生成差异性信息分布图,通过分析影响小区产量差异的原因,制定经济、合理的生产决策方案,生成作物管理处方图,指导农田定位作业。

(二)山坡地的可持续发展研究关系当地的经济发展、环境保护,有着十分重要的意义。生态环境的好坏,直接影响着整个流域。流域的坡耕地分布状况与土地适宜性类型,区域内既有经济较发达的平原,也有经济欠发达的高原山区。目前在山坡地研究中,大多采用传统的实地丈量,手工圈绘等方法。在研究中针对这种情况,采用先进的地理信息系统(GIS)方法,通过空间分析、模型运算,对该地区的地理环境、土壤类型、土壤质地等进行了详细地分析研究,划分出该地区坡耕地分布范围,并对该地区进行土地适宜性评价,得到了较好的结果。

(三) 农作物监测及估产

农作物的生长状况与产量是全社会都十分关注的问题,对每一种作物在生长过程中会发生什么问题,能取得什么样的收获,是国家管理部门和农民们在作物播种后到收获的一段时间内随时都想了解的。

因此,长期以来对农作物产量的预测是农业系统的一项重要工作。随着科学技术的发展,预测的方法和手段逐步完善和提高,不但能较准确地估测出各种作物的最终产量,也能跟踪监测各类作物在不同生长期的长势,从而根据需要及时采取有效措施,对农作物的生长进行监控,保证当年产量的稳定增长。为了在农作物监测和估产中充分发挥和利用现代科学技术的成果,提高快速、准确、经济地获得监测和估产信息,为国家经济建设和农业生产服务,虽然农作物估产和监测技术与理论十分复杂,若干问题还有待进一步探索,但利用现有的遥感、地理信息技术和资料,从不同于传统的统计部门得到信息的途径,已经能够为决策部门提供辅的、快速的、客观的决策信息。

(四)农业气象服务

农业气象服务系统是在GIS和RS平台上开发的集农业气象、遥感应用于一体的业务运行系统。它集成了农业气象服务为城市“菜篮子、米袋子”服务的科研成果;建立了遥感、地学、气象、农情、社会经济统计等基础数据库;建立适应农业发展新需求的服务产品;将GIS分析功能应用于洪涝灾害监测、灾害损失评估、资源合理布局等领域,获取较好的服务效果。比如建立了下述分析模型。

1.暴雨涝害和叶菜损失综合评估模型

2.蔬菜生产资源综合评价模型

(1)气候适宜性评价模型

(2)土壤适宜性评价模型

(3)暴雨承灾能力评价模型

(4)区位优势评价模型

(5)技术优势评价模型

(6)灌溉水污染评价模型

(五)农田监管

我国人多地少,耕地资源十分贫乏,人均耕地面积相当于世界平均数的四分只一,中低产田占三分之二。由于环境污染、水土流失等原因,耕地总体质量还在不断下降。随着国民经济持续高速增长,各项建设占用耕地的问题越来越突出,造成耕地、特别是优良耕地面积不断减少,人地矛盾不断加剧。因此,利用GIS和RS对基本农田进行特殊保护和监管刻不容缓。

(六)绿色农业

进行绿色农业工程,对所有农田的土壤重金属含量进行GIS分析,对绿色农作物的生产进行决策。

(七)草原防火

利用GIS和遥感技术对草原的火灾进行预防和分析。

(八)捕鱼GPS/GIS定位

利用GPS/GIS定位技术,对鱼群的流向进行监控,指挥渔船实现最佳的捕鱼方案。

(九)牲口疫发生点管理

利用GIS技术,对牲口疫发生点进行直观有效的管理,并对牲口疫防扩散进行决策。

(十)植物病虫害分析

利用GIS和遥感技术,对植物病虫害进行分析,高光谱分析也是常用方法。

(十一)土壤养分测定

利用遥感技术,进行土壤养分测定,为精确施肥服务。

(十二)农业运输GIS调度

利用GIS中路经优化调度功能,实现农业运输GIS调度。

(十三)农田水淹没分析

利用GIS和遥感技术,实现农田水淹没分析,评估农田损失情况。

(十四)园区温控室GIS监控

利用GIS技术,对农业园区的温控室进行GIS监控。

(十五)移动GIS在农业应用

利用ESRI公司的ARCPAD软件技术,在掌上电脑上装入电子地图,农田和作物信息等,并在PDA中插入GPS,供农业工作人员在广阔的田野中进行现场GIS操作,信息查询和分析。

五、结束语

近年来RS、GIS技术在农业资源管理中得到了综合或集成应用,GPS技术也为土地利用的变化的精确定位做出了贡献。这3种空间信息技术的广泛的应用,必将为农业管理和发展的科学决策提供可靠的支撑,必将推动数字农业的建设,推动农业资源管理的信息化、科学化和现代化管理水平。

1.刘刚 张漫 汪懋华,基于DGPS和GIS的农田空间信息管理系统的研制,2000

2.辜寄蓉 苗放 朱章森 王成善蔡靖疆,GIS在岷江流域坡耕地分布与可持续发展研究中的应用,2000