量子力学定态的概念范例6篇

量子力学定态的概念

量子力学定态的概念范文1

摘 要:凝聚态物理学作为物理学的一大分支,其研究前景十分广泛。凝聚态物理学是研究凝聚态物质的物理性质以及它们的微观结构的学科。其通过分析构成凝聚态物质的电子、离子、原子、分子的运动形态和运动规律,从而对凝聚态物质的物理性质进行认知。凝聚态物质是固体物理学的一个拓展方面,研究的物质的典型特征之一是其具有多种形态。同时,凝聚态物理学也为材料研究引入了新的体系。本文就目前凝聚态物理学发展情况,对其中的基本概念的产生、含义及其发展进行阐述。

关键词:凝聚态物理学;基本概念;特点阐述

凝聚态物理学的基本概念需根据物质世界的层次化进行阐述效果会更加明了。作为一门至今仍然拥有丰富生命力的研究学问,凝聚态物理学时时刻刻影响着我们生活的方方面面。例如,液态金属、溶胶、高分子聚合物等等物质的研究都和凝聚态物理学有着密不可分的联系。凝聚态物理学发展历史和其理论支撑,是对凝聚态物理学的基本概念进行阐述的基础。

一、凝聚态物理学发展历史

1、物质世界层次化

为了对凝聚态物理学基本概念进行阐述,首先就需要提到物质世界层次化的研究方式。纵观二十世纪的物理学发展,在二十世纪初,两大划时代的物理理论突破的出现,拉开了宇观物理学和微观物理学的探究序幕。两大理论即是相对论和量子论,相对论和量子理论是对传统物理学的质疑和挑战。其中,狭义相对论修正了经典物理学当中的电磁学和力学之间存在的矛盾;广义相对论则是为近代物理学当中的天体运行研究做出了巨大的贡献。量子论的建立正式拉开了现代物理学对于微观世界的研究,使得基于原子乃至更小系统的探究成为可能。现代物理学的研究方式正是基于这一种将物质世界进行分层的观点进行的,因为物理学当中的理论使用范围都有区别。例如,在宏观世界当中,牛顿力学成立;在微观世界当中,牛顿力学就难以支撑实验事实了。

2、凝聚B物理学的步步发展

从科学家开始探索微观世界开始,凝聚态物理学就悄然发展开来。科学家从原子物理出发,深入到原子核内外空间的研究,为了探索微观世界粒子的基本特性,建立了多代高能粒子加速器,使得近代微观物理学探索出中子、夸克、轻子类的微观粒子。同时,近代物理学的一条研究途径也是将原子物理作为基本主线。在这条研究主线当中,量子力学和统计物理学向结合,奠定了固定物理学的基础。固定物理学的逐渐发展扩大,演变为了凝聚态物理学。凝聚态物理学的研究发展从简单到复杂,从宏观到微观。其结合到其他学科(材料学、化学、生物学等)共同创新,取得了巨大成果。

二、凝聚态物理学的基本概念阐述

1、基本理论

凝聚态物理学基本概念中最重要的基础则是构建这门学科的理论支撑。其基本理论当中的核心即是量子物理和经典物理。根据凝聚态物理学的发展历史来看,量子物理理论推动了凝聚态物理学的发展,使其对众多实验研究成为可能。经典物理理论在凝聚态物理学中并非一无是处,仍在一些研究方面起着不可忽视的作用。两种理论知识在凝聚态物理学当中的应用都存在着自身的适用范围,下面对其进行比较说明。在中学物理中我们初步了解到,物质粒子具有二象性――粒子与波。在粒子的二象性当中,粒子所具有的波动性使得量子力学有别与经典力学。二者的适用范围的界限通常是一些临界温度、直径、场(电场、磁场)强等方面。

2、凝聚现象

凝聚态物理学的基础概念即是凝聚现象,然而凝聚现象在我们日常生活当中是随处可见的。大家都知道,气体可以凝结成固体或者是液体,液体和固体之间最明显的区别是液体的流动性。根据量子力学等理论分析,在某些临界温度附近,物质之间就发生凝聚现象。发生凝聚现象的物质往往具备一些新的物理性质。例如物质原有的沸点、导电性、光敏性等发生改变。

3、凝聚态物质的有序化

根据中学物理和化学的知识可知,物质反应在平衡状态时,其系统能量内能与熵等因素的影响。系统物质内能的上升使得系统趋于不稳定性,使得熵值增加。当温度下降时,凝聚态物质则趋于熵值下降和系统稳定,研究发现,凝聚态物质往往是某一种有序结构的物相。大量物质粒子所组成的系统表现出来的直观特征即是位置序,这也说明不同的粒子直接是存在着相互联系的。当然,也存在着粒子相互作用较弱的情况,其宏观表现即是粒子无序分布。在经典粒子系统当中,使得系统有序化的物理基础则是粒子和粒子之间的相互作用,这可当作是量子力学当中的一个问题处理。根据中学知识我们知道,在量子力学当中,物质粒子存在着位置不确定性和动量不确定性。根据上述进行总结,凝聚态物质是空间当中的凝聚体,而相对空间往往是分为两个方面。一方面是位置形态空间,另外的一方面是抽象的动量空间。凝聚态物质的有序化在这两个空间当中的存在形态极为丰富。

三、研究概念阐述

凝聚态物理学当中基本的研究概念在于以下几个方面。第一是固体电子论。对固定系统当中电子的行为研究是凝聚态物理学一直在努力的方向,按照电子行为的相互作用的大小,又将其分为三个小的区域。首先是弱关联区,这个区域的研究已经取得了巨大进展,也是构成半导体物理学的理论基础。其次是中等关联区域,主要研究对象包括的是一般的金属和强磁性的物质,其构成了磁铁学的物理基础。强关联区受能带理论发展的影响,目前其研究还有待开拓。第二是宏观量子态。宏观量子态研究当中对某些物质的超导现象的研究是一个重点,一些非常规的超导体研究也是目前科学家所努力的方向。第三是纳米结构与介观物理,凝聚态物理学对于一些简单物质的研究已经较为清楚。按照不同物质材料的结构尺度进行探究是凝聚态物理学研究的新方向之一,纳米结构和介观物理需要量子理论进行支撑,研究目的主要是为了获取材料和器件的复合体,同时创造出一些具有优良性能的物理材料。

四、总结

凝聚态物理学的理论基础是量子力学,目前量子力学的发展已经趋于完备。由于凝聚态物理学设计大量微观粒子的研究,其复杂程度较高,需要研究者从实验、计算、推演等方面开展研究。凝聚态物理学作为一门高新技术,其研究前景十分广阔。只要充分结合其他相关学科知识,加以探究,一定会取得更加丰硕的研究成果。

参考文献

[1]冯端,金国钧.凝聚态物理学中的基本概念[J].物理学进展, 2000, 20(1):1-21.

量子力学定态的概念范文2

1.互补性诠释的逻辑结构

与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。

互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客体的作用。在经典物理中,仪器对客体的作用比客体本身的物理量小得可以忽略,即使不能忽略也能通过对过程的分析将它剔除,但在对原子客体的观察中,仪器对客体的作用与客体的物理量相比拟,其作用过程又是非连续的,所以不可能将仪器的作用剔除,这样,观察结果中就必然包含了观察仪器的作用,而不是代表客体本身的现象,对客体的描述也必然只能是观察下的客体的描述,而不可能是对没有观察的孤立客体本身的描述,所以对客体的任何描述都依赖一定的观察,没有观察,就没有可描述的确定的现象,即使没有对应于客体本身的观察,也必然存在与之相关的其它客体的观察。这不是说,没有观察,现象世界就不存在,而是说,没有观察,确定的客体就不存在,没有观察,世界上可以发生许多事件,但我们却不能确定对它们的描述。

观察对描述的重要性和观察中仪器对原子客体的作用的不可分性是原子现象及其描述的特殊性之所在。正是观察的特殊性带来了概念的定义和描述上的新特点,从而带来描述方式的根本改变和实在的新特点。

在对原子客体的观察中,仪器与客体间的不可剔除的相互作用,使得对客体的时空确定和态的确定间成为互斥的。当我们通过一种仪器如刚性标尺和时钟对客体进行时空的观察和确定时,观察中仪器的作用和对时空的确定条件,排斥对客体的态进行定义,因为这种确定时空的仪器对客体的作用所带来的客体的态的改变是无法确定的,从而客体在另一种确定它的态的仪器下所确定的对态的定义的条件被破坏,而不再可能对时空观察下的客体进行态的定义。当我们利用另一种仪器对客体的能量和动量进行观察和定义时,由于仪器与客体相互作用的时间的不确定性,使得对客体的时空确定成为不可能。客体的时空标示和态的描述间的互斥,不仅在于时空观察带来的态的不可控制的改变,而且也是定义客体两种属性的条件的互斥的表现。态的定义要求消除除态的观察外的任何观察的外来干扰,而时空的观察必包含有对客体的干扰,两种描述所代表的定义的理想化和观察的理想化的互斥,使得它们不能再统一在一种描述图景中对客体进行时空中的因果描述,只能对客体进行这两种互斥的描述。因为它们都是对客体的描述,并且只有两种描述一起才能构成对客体的全面描述,所以二者是互补的。这就是对原子客体的互补性描述方式。

量子公设所蕴涵的仪器与客体的不可避免的相互作用是互补性诠释的一个逻辑起点,作用量子的公式所包含的波粒二象性是互补性诠释的另一逻辑起点。

时空和能量动量描述的互补性意味着经典的粒子图象和波动图象都不完全适于原子客体,它们只是诠释两种原子现象的不同尝试。在这种诠释中,经典概念的局限性以互补的方式表现出来。在粒子图象中,因果要求的满足必伴随对时空描述的放弃;在波动图象中,时空传播规律的描述必伴随因果描述的放弃而只能代之以统计的考虑。如果我们不把时空描述和因果描述看作互补的而坚持经典的时空概念,我们就必会面对光和物质有时表现象波有时又象粒子的矛盾,所以,光和物质粒子的本性不是经典描述的粒子或波,而是时空和因果的互补描述的波粒二象性,即其时空描述遵循波动的叠加规律、其因果描述遵循粒子的守恒定律的两种图象的互补。任何将客体看作经典波或经典粒子的解释都是行不通的。如薛定谔将原子客体看作经典电磁波的电磁波解释,就遇到波包的扩散、波是位形空间而不是真实空间的波以及波函数与测量与所选择的非对易的可观察量有关等问题,这些问题恰恰反映了经典波概念对原子客体描述的局限性。统计系综诠释虽把原子客体看作粒子,但却不是经典的能够对它作时空描述的粒子,而是只能对粒子系综的统计规律进行描述的粒子,因果描述和时空描述的互补性被包含在系综的能量、动量和时间空间的统计散差具有反比性的特殊统计性中。隐变量理论虽然为量子力学描述建立了一个亚量子层的因果描述,但它对可观察的量子层的描述与量子力学的统计描述完全一样,而且在其亚量子层的因果描述中也加入了与经典描述不同的隐变量与测量的相关性。所以,因果描述和时空描述的互补性是不可避免的,用经典的粒子图象或波动图象来解释所有原子现象都会遇到逻辑困难,因而必须将它们加以修正并使它们互补起来。

2.对量子力学描述的统计性的理解

统计性是量子力学描述的一个基本特点,统计或几率概念是量子理论的基本概念,理解它是理解量子力学的关键所在,各种诠释的主要分歧也在于此。按照互补性诠释,统计性是量子性的必然结果,或者说统计性是逻辑地包含在量子概念之中的。因为作用量子的存在本身就意味着原子过程不再是因果连续的,而是非连续的个体性过程,对于这种过程不可能进行因果描述,而只能对个体事件进行统计描述,而且量子公设还意味着观察对原子客体状态的不可控制的改变,从而使我们无法通过观察建立起客体运动变化的因果规律。量子概念中所蕴涵的时空的确定和能量动量的确定间的互斥关系,也使我们不可能给出客体的一个初始状态而对客体进行因果性的描述和预言,所以,量子性必意味着描述的统计性,对非连续的原子过程只能进行几率描述。描述恰当地反映了原子过程的非连续的变化的可能性而不是因果连续变化的必然性,它对原子客体的物理量的描述不再是具有唯一确定值,而是按一定的统计分布具有一系列的值,这些值及其统计分布就是对原子客体的这一物理属性的描述,而量子力学对原子客体的物理量的值谱和统计分布的变化规律的描述就是对原子客体的统计变化规律的描述。这种由量子公设带来的统计描述也必然包含描述的互补性,只有通过时空描述和能量动量描述的互补性才能理解对原子客体的统计描述的这些特点。量子力学描述中波函数按薛定谔方程随时间的演化,往往给人一种感觉,它就是对客体的态或客体的统计性(或趋向性)的因果变化的描述。其实,薛氏方程并不能满足人们对因果描述的追寻,虽然我们可以从波函数中找到关于客体的所有属性的描述,但是波函数的随时间的演化并不代表客体的状态的因果变化,因为波函数与客体的行为并无对应关系,只有波函数的模方才代表客体的几率,波动方程只是以恰当的数学形式包含了对客体满足叠加原理的波动属性的描述,而这种描述的合理性是以客体作为粒子出现的几率对波函数的诠释来达到的,波动方程的解不是描述代表客体的波,而是描述代表客体的粒子的几率,波动方程描述中对量子描述的互补性就表现在这里。所以波动方程并不表示对客体的因果描述,而是以波动描述形式对粒子几率进行描述的波-粒互补性的表现。

3.对测不准关系的理解

测不准关系是量子力学中的一个重要内容,它是量子力学形式体系的一个直接数学结论,所以接受量子力学的人都能接受它,但对于这个数学公式的理解却千差万别。由于测不准关系表现为对物理量的测量的限制关系,所以,不少早期的量子力学教科书把它作为量子力学的一个核心内容和逻辑基础或操作基础,但是,正如karl r.popper所指出的,从薛定谔方程可导出测不准关系而从测不准关系导不出薛氏方程,这说明测不准关系应是某种基础的推论。在互补性诠释看来,测不准关系是量子公设所蕴涵的波粒二象性的结果,它表现的是经典概念的可定义的精确度间的互补关系。玻尔从关于作用量子的基本公式et=iλ=h出发,从其中所蕴涵的经典概念的矛盾推出关于这些经典概念的可定义的最大精确度间的普遍反比关系即测不准关系,从而使这个关系代表了时空和因果描述间的互补性的一种简单的符号化表示,测不准关系中共轭物理量的测量精确度间的反比关系恰当地反映了两物理量的互斥互补关系。

海森堡把他所发现的测不准关系看作是对经典概念的适用性的限制和对经典物理量的可确定程度的限制,并且正是由于这种不确定性导致因果律的失效和量子力学的统计描述,这种解释带有明显的操作论和实证论倾向,是一种只讲其然而不讲其所以然的解释。互补性诠释则给出了其所以然的说明,是对测不准关系的更深层的理解,避免了上述操作解释的弊端。如海森堡把物理量的测量的不确定度解释为测量的操作结果,而不是不同概念的可定义和可观察的互补性的结果,就会导致由于我们测量和认识能力的限制,使我们对本来可能存在精确值和因果性的客体只能作有限精确度和统计描述的实证论的和不可知论的问题。测不准关系所表征的一种物理量的测量中仪器的作用导致另一种物理量的不确定,证明了互补性诠释的仪器对客体的不可控制作用的说法,但是这种仪器的干扰作用是对原子客体进行描述所必需的,也是量子力学描述中所包含的,而不是对客体进行描述所要排除的。

popper的统计系综诠释认为,测不准关系的含义是两个正则共轭变量的标准偏差之积有一下限n/4π,它不象互补性诠释的测不准关系是从对理想实验的分析得到的,而是量子力学形式体系的逻辑数学推论,而且由于现在实际的对测不准关系的实验检验还不能达到个体粒子测量所要求的精确度,而往往是对许多粒子的统计平均的偏差的测量,所以统计系综诠释显得比互补性诠释有更坚实的经验支持。我认为,也许统计系综诠释较互补性诠释在数学上更严密,但互补性诠释对量子性的描述特点的分析显得更深刻。

4.对描述的完备性问题的回答和理解

完备性问题和测量问题是量子力学诠释之争的两个焦点问题,近几十年量子力学的基础研究主要围绕这两个问题展开且使问题不断演化,并挖掘出不少新的内容,互补性诠释无论对这两个问题的提出还是发展都有着直接的影响,而它对这两个问题的解释也成为互补性诠释本身的重要内容。

完备性问题是爱因斯坦与玻尔论战的第三次交锋中在著名的e-p-r论文中提出的。文中通过一个e-p-r实验论证了量子力学的描述不是对实在的完备描述。此文引起的首先是关于何为实在的讨论,后来讨论的焦点转移到关于e-p-r关联究竟意味着非局域性、非因果性还是不可分离性的问题。

e-p-r的论文从没有干扰而能预言的客体的物理属性为物理实在这一实在概念出发,通过大家所熟知的e-p-r实验,论证了量子力学描述不是对实在的完备描述。简述如下:相互作用后的两粒子,按量子力学描述,可以通过对第一个粒子的两非对易物理量的测量而不加干扰地得到对第二个粒子的同样的两非对易物理量的预言,既然是不加干扰且两粒子相距无限远,第二个粒子的两非对易量虽对应于第一个粒子的不同时的两次测量,但却是同时属于第二个粒子的物理实在,否则就得假设两粒子间具有超距作用;e-p-r又认为,完备描述应同时对同时存在的物理实在进行描述,但量子力学的描述却将对非对易的两个物理实在的描述看作互补的,即对一个进行精确描述时对另一个则不能进行同时的精确描述,所以e-p-r得出结论说,量子力学蕴涵着e-p-r悖论,其原因是量子力学描述不完备。

大量实验证实了e-p-r关联的存在,也证明了量子力学描述的成功,但如何解决e-p-r悖论却仍有两条道路可以选择,这便是修正e-p-r的两个前提,或者修正实在概念,或者修正分离原理(包括局域性原理和可分离性原理),前者是玻尔对e-p-r的回答,后者是隐变量实在论者对e-p-r关联的解释,虽然实在概念不同(一个是必包含有观察的实在;一个是不包含观察干扰的实在),但却都包含了仪器与客体的状态、客体与其有相互作用的其它客体的状态的相关。

互补性诠释通过修正实在概念,即认为实在必包含有观察的干扰来解决e-p-r悖论。正如互补性诠释的逻辑前提中所认为的,任何描述必是对观察的描述,任何预言也必是对观察的预言,任何实在也必是观察的实在而不是独立自在的实在,观察的作用必包含在实在之中,观察的作用不仅意味着仪器对客体的直接的物理作用,而且意味着一种仪器所特有的对仪器和所观察客体的整体的反映方式和描述方式,所以客体的描述和实在必与进行观察的仪器的类型相关,无论是直接的观察还是象e-p-r实验中的间接观察。这就是量子力学中的相对性,即客体状态与仪器的相对性。所以e-p-r实验中对第二个粒子的非对易物理量的预言所对应的是不同的测量,因而仍是不同时的实在,对它们的描述也是互补的描述而不能是同时的描述,所以这与量子力学描述并无矛盾。e-p-r关联所反映的是仪器类型和描述预言类型及实在类型的必然联系和仪器作用的不可细分所带来的仪器与客体实在的不可分,对第二个粒子的描述与对第一个粒子测量的关联,恰恰表明了观察和描述类型一致的要求和仪器与所描述客体实在的不可分性,不是仪器或第一个粒子对第二个粒子的超距作用使第二个粒子的实在发生了改变,而是它们的实在本身就是一个不可分的整体,它们的状态必然相关而不是独立的,所以互补性诠释在新的实在概念中包含了对可分离性原理的否定,解决了e-p-r悖论。其实,互补性诠释虽然是在对e-p-r悖论的回答中明确了它的新的实在概念,但它的仪器与客体的实在的不可分性,仪器与客体状态、描述的不可分性早在como演讲中作为互补性诠释、互补描述的逻辑前提就已经提出来了,难怪戈革先生说玻尔提前八年预先回答了e-p-r佯谬。

5.对测量问题的回答和理解

测量问题顾名思义就是关于测量过程的解释和描述问题,由于在微观测量中仪器对客体的作用使客体发生了不可忽略的改变,从而使微观测量不再象经典宏观的测量那样可以忽略仪器对客体的作用,直接将客体对仪器作用产生的仪器上的读数当作客体本身的状态,微观测量的结果是测量后客体的状态,它与测量前客体的状态不同。由测量引起的客体状态的突变叫波包收缩,如何解释和描述波包收缩亦即测量过程中客体状态的变化就是量子力学的测量问题。在量子力学描述中,描述客体状态的ψ(x)的变化有两种方式,一种是按薛定谔方程随时间的因果演变,另一种是测量时突变为所测力学量的一个本征态ψ[,n](x),也就是客体由各种可能值的几率分布变为按一定几率实现的确定值,如果测量前的统计分布

,测量后的统计分布

,其中各本征态的相干项消失了。为什么测量时客体状态要变为本征态?为什么相干项消失?这些问题成为量子力学测量问题的中心问题。各种测量理论大都力图通过分析仪器与客体的相互作用过程,并以薛定谔方程来描述这一过程以求找到问题的解答。互补性诠释认为,波包收缩和干涉项的消失是由一种描述方式向互补的另一种描述转换的结果,这种结果的出现是由互补的两种描述的定义的条件不同和观测中仪器和客体的相互作用关系不同造成的。

首先,ψ(x)所表示的是如果测量客体的位置,其位置分布将是怎样的,而不是说测量前客体的状态是怎样的,|ψ(x)|[2]表示的是在x处找到粒子的几率。算符x在坐标表象中对应于确定值x的本征函数是δ(x-x),将ψ(x)按x的本征函数展开即

,虽然包含有干涉项,但对于x[,i]处的几率|ψ(x[,i])|[2]与

是一样的,因为除x[,n]=x[,i]时δ函数不为零外其余都为零,所以干涉项根本就不存在,|ψ(x)|[2]本身就是指测量位置时测得各种位置数值的几率。

其次,双缝实验中双缝后的波函数ψ(x)是两缝的波函数之和即ψ(x)=ψ[,a](x)+ψ[,b](x)但当测定究竟粒子穿过哪一个缝时就会使干涉项消失,这是因为ψ(x)=ψ[,a](x)+ψ[,b](x)所蕴涵的测量条件和描述方式与|ψ(x)|[2]=|ψ[,a](x)|[2]+|ψ[,b](x)|[2]所蕴涵的不同,前者是在双缝后的屏幕上测得的干涉情况,后者是在各单个缝后测得衍射的相加,由于在测粒子是否穿过一个缝时,测量仪器对客体的作用使客体的互补物理量发生了改变,如测粒子动量时就会使它的位置发生不可控制的改变而引起位置的一个不准量,这种不准量将引起相等的条纹位置的不准量,从而不再出现任何干涉效应。所以这里的干涉项的消失不是客体测量前的自身状态向测量后状态的突变,而是观察干涉效应向寻求粒子轨道的描述的转变,是一种观测条件下的态向另一种观测条件下的态的转变,它所表现的是互补性现象在互斥的实验装置下的不同表现。

对于一般力学量q,ψ(x,t)可按q的本征值所对应的本征函数展开,

其中u[,n](x)为q的本征值q[,1]、q[,2]…q[,n]的本征函数,按量子力学,当测量到本征值q[,1]时,系统就处于本征态u[,1](x),其几率是|a[,1](t)|[2],但在观测到确定数值前,量子力学给出的是ψ(x,t)而不是q[,1]和u[,1](x),但实际上,所给出的预言和实际测得q[,1]的几率|a[,1](t)|[2]是一致的,

,由于u[,n](x)是正交归一函数系,u[*,m](x)u[,n](x)=0,当m≠n时,所以干涉项不出现,

,这就是说,ψ(x,t)给出的就是测量时各本征值出现几率的分布,对客体状态的由ψ(x,t)到u[,n](x)的转变只是对客体测量后所有可能状态的几率分布的集合预定到其中一个状态元素按相同几率实现的描述变化,而并不对应客体本身的在有无测量的不同条件下的状态的变化。

所以按照互补性诠释,由ψ(x,t)到u[,n](x)的波包收缩不是测量引起的测量前后客体状态的变化。测量肯定会引起客体的变化,但这种变化已经包含在ψ(x,t)中,而且不同类型的测量会引起不同的变化,这由所测得的不同类型的本征值和本征函数表现出来,如果

中有干涉项,那么新的测量所引起的变化还会表现在干涉项的消失上。因此,波包收缩中干涉项的消失是由互斥的测量导致的由一种描述向互补的另一种描述的转换造成的,而波包收缩中由对许多可能值的预言到其中一个值的实现的波函数的变化,只是预言条件的变化引起的统计预言的变化,而不对应客体本身的状态变化。

由此可见,在测量的波包收缩过程中,引起客体状态变化的是不同的测量的实验条件和它们对客体的不同类型的作用,关于客体知识的变化引起的是对客体的统计预言条件的变化,而不是客体本身的状态变化,所以,这里没有任何主体的作用,也不需要引入主体意识的最后一瞥。冯.诺意曼之所以需要引入人的最后一瞥,是因为他把仪器在测量中的作用当作一个纯粹的量子客体,而没有看到在仪器身上所必须兼有的使确定的观察结果和经典概念的适当运用成为可能的特性,这样一来,就象冯氏所分析的那样,我们的观察和描述就必然要无限后退,直至求助于意识的最后一瞥。

当然,从量子现象的普遍性上讲,仪器也与微观客体一样具有量子性,但量子性又必须通过我们的宏观观察和经典概念来观察和描写,所以,仪器又是认识的一个逻辑起点,它必须能够直接被观察且能用经典概念进行描述。只有这样我们才能通过仪器来观察和描述微观客体。仪器的这种既是量子客体又是宏观客体的二重性是互补描述的基础。我们的认识必须从直接观察和由这种观察而定义的概念开始,但又必须对超出这种直接观察和日常概念框架的新现象进行逻辑一致的描述,这就必然导致概念框架和描述方式的改变。如果没有仪器的直接可观察性,就不能得到任何微观客体的经验、现象和可描述的东西,而如果没有仪器与客体的一致性,仪器也就不可能对客体的信息进行反映记录,所以,仪器的二重性是认识微观客体的必然要求。这并不会引起宏微分界问题(即把世界分为宏观和微观两个截然分裂的世界的问题),而只意味着一个可直接认识,而另一个则需借助于宏观仪器的观察,因为量子性是客观物体具有的普遍特性,只是由于这种特性超出了日常概念的理解范围而必须借助于对日常概念的修正来达到对它的理解。量子性的认识特殊性并不在于它的微观尺度,而在于它的非连续的、个体的观察条件与我们建立日常概念时的连续的、无限可分的观察条件不同,这种不同就需要我们对各概念的适用条件和相互关系进行修正。实际上,宏观客体的观察也一样需要借助于我们建立概念时的观察,这里不是宏观微观的不同,也没有二者的截然分界,只有所描述现象在多大程度上与我们建立概念的观察条件的符合程度的不同,所以,微观描述一方面是对经典描述的修正,一方面又以经典概念为基础,这不是一个逻辑矛盾,而是意味着微观描述必须以可直接理解的经典概念为起点,通过对这些概念在新的观察条件下适用程度和相互关系的修正来达到对微观现象的合理描述,这不是互补性诠释的矛盾,而是理解量子概念与经典描述的矛盾所必需的。

对于企图用量子理论来描述测量过程以求得到一个统一的描述的做法,互补性诠释认为是不会有结果的。因为我们对微观现象的观察和描述必须借助于我们的日常的观察和概念,而这种观察和概念建立的条件是无法形式化的。  主要参考文献

1] 玻尔:《原子论与自然的描述》,北京:商务印书馆,1964。

2] 玻尔:《原子物理学和人类知识》,北京:商务印书馆,1978。

量子力学定态的概念范文3

关键词:熵增原理 熵的应用 热力学状态函数

高中化学新课标选修4化学反应原理中引入了熵判据,利用熵增原理判断化学反应过程的方向。熵的概念和原理来源于物理化学但已经不仅仅是个单纯的物理化学问题,它可以运用的范围相当广。150年前,科学家在发现热力学第一定律之后不久,又在研究热机效率的理论时发现,在卡诺热机完成一个循环时,它不仅遵守能量守恒定律,而且工作物质吸收的热量Q与当时的绝对温度T (T= t+273.16℃, t为摄氏温标)的比值之和∑(Q/T)为零(Q, T均不为零)。鉴于以上物理量有这一特性,1865年德国科学家克劳修斯就把可逆过程中工作物质吸收的热量Q与绝对温度T之比值称为Entropy (即熵)。从此,一个新概念伴随着热力学第二定律就在欧洲诞生了,Entropy很快在热力学和统计力学领域内占据了重要地位。1923年德国科学家普朗克来我国讲学时,在我国字典里还找不到与之对应的汉字,胡刚复教授翻译时就在商字的上加了个火字(表示与热有关)来代表Entropy,从而在我国的汉字库里出现了“熵”字。[1]

一、波尔兹曼熵

我们把系统的任一宏观状态所对应的微观状态成为热力学概率或系统的微观量子态,并记做Ω,Ω越大说明系统内分子运动的无序性越大,最大的状态既是系统所处的平衡状态。一般来说,热力学概率Ω是非常大的。玻尔兹曼用一个新的状态函数——熵S来表示系统无序性的大小。定义熵与热力学概率之间的关系为S=klnΩ,熵的本质意义与热力学概率Ω一样,熵S是系统内分子热力学运动无序性或混乱度的一种量度。在绝对零度(T=0)条件下,系统的熵S=0,此时系统内分子的无规则运动完全停止,系统的无序性达到零。熵是系统状态的单值函数,系统从状态Ⅰ变化到Ⅱ时,熵的增量只决定于初、末状态,而与其间的变化过程无关。即S=S2-S1= klnΩ2- klnΩ1= kln(Ω2/ Ω1)波尔兹曼还给出了负熵的概念。“-S”称为“负熵”,与熵的意义相反,“负熵”是系统有序度的量度。[3]玻尔兹曼表明了熵是同热力学概率相联系的,揭示了宏观态与微观态之间的联系,指出了热力学第二定律的统计本质:熵增加原理所表示的孤立系统中热力学过程的方向性,正相应于系统从热力学概率小的状态向热力学概率大的状态过渡,平衡态热力学概率最大,对应于熵取极大值的状态,熵自发地减小的过程不是绝对不可能的,不过概率非常小而已。

二、克劳修斯熵

1854 年克劳修斯(Clausius)发表了《力学的热理论的第二定律的另一种形式》的论文,给出了可逆循环过程中热力学第二定律的数学表示形式:

从而引入了一个新的后来定名为熵的状态参量。1865年他发表了《力学的热理论的主要方程之便于应用的形式》的论文,把这一新的状态参量正式定名为熵。并将上述积分推广到更一般的循环过程,得出了热力学第二定律的数学表示形式:

等号对应于可逆过程,不等号对应于不可逆过程。由此熵的定义为:

式中的a、b 表示始末两个状态,Sa、Sb 为始末两个状态的熵,dQ为系统吸收的热量,T为热源的温度,可逆过程中T是系统的温度。当系统经历绝热过程或系统是孤立的时侯,dQ=0。此时有

即有熵增原理:孤立系统或绝热过程熵总是增加的, 由此定义的熵称克劳修斯熵,或热力学熵。熵是一个状态函数, 是热力学宏观量。对绝热过程和孤立系统中所发生的过程, 由熵函数的数值可判定过程进行的方向和限度。

三、由波尔兹曼熵推出克劳修斯熵

波尔兹曼关系计算出的孤立系统单原子理想气体满足关系ε=cp[4]-[5]的经典理想气体熵为:

式(11)正是克劳修斯熵的表达式,即克劳修斯熵可由波尔兹曼熵推出。

参考文献:

[1]胡霞,任佩瑜.基于管理熵的企业增长战略评价体系研究[C].四川大学企业管理硕士学位论文,2004-03-31.

[2]特德·霍华德.熵:一种新的世界观[M].上海译文出版社,1987.

[3]王金艳.浅析熵的物理意义及两个常见热力学过程中熵增的计算[N].哈尔滨师范大学自然科学学报,2005,21(5):38-40.

量子力学定态的概念范文4

一、“遗传”概念教学与数学知识

遗传的概念可以几种表述方式,“每个生物体都有一套指令信息来决定其遗传的性状”。 “遗传信息包含在每一个基因当中,基因位于每一个染色体上”。 “一个可遗传的性状可由一个或多个基因来决定,一个基因是一段DNA 分子,它决定机体蛋白质或氨基酸的序列”。 在遗传概念教学中,我可以用数学的公式、比例关系及等量替换等数学知识,来加深学生对遗传的理解,方法简便、逻辑性强、容易接受。

1.数学的比例关系在基因表达中的应用

生物遗传学中基因的表达是通过DNA控制蛋白质的合成来实现的,根据“中心法则”原理,可以总结出一个数学关糸式:蛋白质中肽链的条数+蛋白质中肽键数(或缩合时脱下的水分子数)=蛋白质中氨基酸的数目=参加转运的tRNA数目=1/3mRNA的碱基数=1/6基因中的碱基数。例如,人的血红蛋白分子由四条肽链组成,在合成蛋白质的过程中,脱下了570分子的水,问控制合成该蛋白质的基因中有多少个碱基?根据上述的数学关糸式可得基因中碱基数为:(4+570)×6=3444(个)。

2.利用数学的等量替换知识计算DNA中碱基比率

在DNA分子的结构和复制教学中,DNA分子中碱基比率的计算是难点,可以把生物学原理――碱基互补配对原则同数学方法――等量替换知识结合起来计算DNA中碱基比率,这样就简单容易了。例如,双链DNA分子的一条链中(A+G)/(C+T)=0.2,则在另一条链中,此比为多少?在双链DNA分子中,设一条链为α,另一条链为β,则根据碱基互补配对原则有Aα=Tβ、Gα=Cβ、Cα=Gβ、Tα=Aβ,再利用数学的等量替换知识,可推知(Aα+Gα)/(Cα+Tα)=(Tβ+Cβ)/(Gβ+Aβ)=0.2,所以,(Aβ+Gβ)/(Cβ+Tβ)=1/0.2=5。

3.数学公式——和的完全平方公式在基因频率计算中的应用

在生物进化的教学中,基因频率的计算比较重要,基因频率计算经常使用一个遗传平衡公式(或称哈代—温伯特定律)。该定律的数学公式表达为:(p+q)2=p2+2pq+q2它相当于数学中的和的完全平方公式,若种群中一对等位基因为A和a,则p为A的基因频率,q为a的基因频率,p2为AA的基因频率,q2为aa的基因型频率,2pq为Aa的基因型频率。

例如,在某一人群中,己调查得知,隐性性状者为16%,问该性状不同类型的基因频率是多少?分析:根据基因型中隐性性状(aa)频率为16%,则q2=0.16、q=0.4,而p=1-0.4=0.6。根据遗传平衡公式(p+q)2=p2+2pq+q2,可计算AA的频率为p2=0.36=36%,Aa的频率为2pq=0.48=48%。

二、“生态系统”概念教学与数学知识

生态学是研究生物之间以及生物与环境之间相互关系的学科,是中小学生物学课程中的重要内容之一,学生在学习相关概念时感觉困难,其中,核心概念是“生态系统”。 在生态系统教学中,利用数学方程、函数等数学知识,突破难点,找出规律。

1.数学方程——一元一次方程在种群密度调查中的应用

对动物种群密度进行调查时,要逐一计数动物种群的个数是困难的,人们常用标志重捕法来估计动物种群的数量。利用标志重捕法来计算种群密度的大小,实际相当于数学中解一元一次方程。如果设动物种群的数量为X,第一次捕获A只,标志后放走,第二次捕获B只,其中具有标志的C只,则X∶A=B∶C,所以,X=A×B/C。例如,在对某种鼠的种群密度调查中,第一次捕获并标志39只鼠(A=39),第二次捕获34只鼠(B=34),其中具有标志的鼠15只(C=15),该种群鼠的数量为X=A×B/C=39×34/15=88(只)。

2.指数对生态系统中能量流动的解释

在生态系统中能量流动是单向流动、逐级递减的,其能量传递效率一般为10%~20%。如果按20%计算,第n个营养级所获得的能量是第一营养级能量的1/5n-1。如果按10%计算,第n个营养级所获得的能量是第一营养级能量的1/10n-1。不过,一条食物链的营养级一般不超过5个(n≤5),因为流经四个营养级后,能量已衰减到不足以维持一个营养级的程度。

3.指数函数与种群数量的增长

在一个生态系统中,如果食物和空间条件充裕、气候适宜、没有敌害等理想条件下,种群往往会连续增长。以某种动物为例,假定种群数量为N0,年增长率为λ,该种群每年的增长速率都保持不变,那么,t年后该种群的数量应为Nt=N0×λt,这是指数函数,种群数量呈指数增长。如果λ>1时,种群数量上升;当λ=1时,种群数量稳定;当0<λ<1时,种群数量下降;当λ=0时,种群没有繁殖,在一代中死亡。当然,种群的指数式增长只是在理论上存在,但在实际的生态系统中是不存在的,它仅仅反映的是种群增长的潜力。

三、数学知识在生物学概念教学中的作用及不足

量子力学定态的概念范文5

关键词:人力资源生态位;态势理论;测度

近年来,生态位理论不断的成熟发展并被应用于各个学科领域中,尤其是经济管理学科领域。生态位理论是生物学中研究生物体之间的竞争性、生物对环境的适应性、生态系统的多样性和稳定性等问题的重要范畴[1],用来描述物种在群落中的全部作用,以及各个种群之间和群落与生态系统之间的所有联系。

纵观生态位的发展轨迹和概念演化过程[2],生态位的发展经历了由现象观察和发现到概念和理论概括,再逐渐成为可定量化和可测度的理论体系,最终经过整合与扩展,形成了完备的现代生态位理论。重点有三类流派影响最大,在生态学研究的历史上也一直颇受推崇。这便是elton(1927)的营养生态位、hutchinson(1957)的超体积生态位以及macarthur(1970)的资源利用函数生态位。elton(1927)的生态位概念与macauthur(1970)的生态概念都集中于生物变量的度量上,而hutchinson(1957)的生态位概念则包括了生物的和非生物的因素;hutchinson(1957)的生态位概念与macarthur(1970)的生态位概念都属于规范概念,它们分别以数学上的集合论和正态分布理论为基础,而elton(1927)的生态位概念则没有规范的基础。除了上述之外,一个正在形成中的、影响力尚未充分展现的流派或许以chase等(2003)和tilman(2004)为代表。chase等(2003)对经典的生态位理论与当代的各种生态位研究方法所作的整合,相信会在一定程度上促进生态位理论的进一步成熟和发展。tilman(2004)在经典的竞争理论的基础上,提出的随机的生态位理论,也将对传统的生态位理论起到补充与完善的作用。

一、人力资源生态位的涵义

(一)人力资源生态位的概念

任何生物体单元的生态位主要取决于两点:一是主体与环境的物质、能量、信息的交流转换状况;二是主体自身的新陈代谢即主体内部各个部件运行及相互协调状况[3]。

客观的讲,虽然人力资源生态位表现出与自然界中的生物相类似的性能,但他们之间仍存在着本质上的不同。这是因为自然界中的生物体的生态位是由生物体机体自身生理状况及生物机体同环境关系而定的;而人力资源,作为具有一定知识和技能的个体群落,其生态位是受他的知识、技能和文化制约的,取决于个体的智慧和努力程度。参照颜爱民提出的人力资源个体生态位概念[4],我们将其定义为:个体在组织中的特定位置。这一特定位置主要表达了个体的市场生存能力,对组织内资源的掌控程度、功能的发挥限度,以及竞争能力等。用数学表达式可表示为:

?n=f(x\-1)

其中:n ——个体在组织中的生态位值;

f ——与自然环境和社会环境相对应的状况;

x\-1——影响生态位值的因素,即生态位因子。?

(二)人力资源生态位态势理论

任何生物都不断地与其他生物相互作用并不可避免地对其所生存的物理化学环境产生影响。该理论认为:自然界中的任何生物都具有“态”和“势”两个方面的属性,态”指生物单元的状态(能量、生物量、个体数量、资源占有量等),是生物过去生长发育及与环境相互作用积累的结果;“势”是生物单元对环境的现实影响力或支配力,如能量和物质变换的速率、占据新环境的能力

等[5]。

社会中个人之间相互关系的本质是人力资源生态位的相互关系,它类似于生存在某一环境中的生物单元之间的关系。社会群体中的个人有自己的“态”,包括自身的一切可用资源,如:技术资源、人际资源、人格魅力资源、家庭资源、财力资源等;而且,社会群体中个人依据自身的各种能力,形成了动态中利用各种环境优势的能力,也就是“势”,包括获取和利用资源的各种能力。这里,我们用图1来进一步阐述人力资源生态位态势理论。

综上所述,我们可以得知,生态位的形成是生物单元相互竞争的结果,是“态”和“势”共同作用的结果,生物单元拥有的“态”可以影响它具备的“势”,两者存在互动关系,而不同生物单元“态”、“势”的不同决定了其生态位的确定、扩展、移动、分离以及协同进化。

图1 人力资源生态位

二、人力资源生态位测算

依据生态位态势理论,我们把人力资源生态位界定为生存力、发展力、竞争力三个层面。生存力描述的是个体的“态”属性,反映的是个体的现实状态,是生命体得以生存的

基础;发展力描述的是个体的“态”和“势”交界面属性,既含有“态”的因素,又具有“势”的成分,反映的是个体在组织内部的沟通协调能力;竞争力描述的是个体的“势”属性,反映的是个体与环境之间的交流转换情况,主要是指个体对环境的主动适应力,也就是不断学习创新的能力。值得一提的是,尽管人力资源生态位是通过生存、发展、竞争这三个维度的能力来体现的,但是个体的生存力、发展力、竞争力三者不是孤立的,而是交互作用、互为因果的。发展、竞争都是为了更好地生存,而持续生存的本身就是意味着要发展和竞争。个体要保持旺盛的生命力,具有较高的生态位,就必须营造一个有利于其生存、发展、竞争的环境[6]。

(一)因子设计说明

生态位因子的设定是否合适,直接影响到后期的评判结论。每个因子应当具有其独特的代表性,同时又不能出现重复。在设定时,通常要使得所选择的指标要尽可能的覆盖全面,尽量选取一些既能真实地反映其生态位状况,又易于获得可靠评价信息的指标,力求可操作性。本文我们主要借鉴许庆瑞、王勇的分类成果[7]以及颜爱民教授的相关研究[8],在查阅了大量文献,采用逐步细分的方法,设计出了全面衡量非现役文职人员资源状况的一系列指标,经过专家遴选,再加以整理归类,最终得出来各个层面的指标因子。人力资源生态位因子结构及指标说明如表1所示。

(二)权重设计

生态位因子的权重系数实质上反映的是各因子对个体生态位的贡献程度,此处我们选用层次分析法,主要运用文献[9]的方法,结合专家意见,通过因素的两两比较,构造了判断矩阵,得到各因素的权重。其人力资源生态位因子权重体系如表2,表3,表4。

表2 生态位因子层面权重

生态位因子?x\-1x\-2x\-3?

权重0.19760.31190.4905

表3 二级指标因子权重汇总

二级指标?x\-?11?x\-?12?x\-?13?x\-?21?x\-?22?x\-?31?x\-?32??

权重0.11010.02420.06330.15600.15590.12260.3679

表4 三级指标因子权重汇总

三级指标?x\-?111?x\-?112?x\-?131?x\-?132?x\-?133?x\-?134?x\-?135??

权重0.02750.08260.00430.02370.00640.01260.0163

三级指标?x\-?211?x\-?212?x\-?221?x\-?222?x\-?223?x\-?224?x\-?225?权重0.11700.03900.01740.00710.01150.02160.0428

三级指标?x\-?226?x\-?311?x\-?312?x\-?321?x\-?322?x\-?323?x\-?324??

权重0.05550.06130.06130.09920.04450.15330.0709

(三)生态位测度方法

在生态位状态测度的众多方面,通常人们会以生态位宽度的测量为主。通过上文的指标分析得知,人力资源生态位影响因子众多,其最为突出的特质是能动性和交互性。而且生态位的形成过程复杂、连续,我们只能对某一阶段生态位进行有效测度。目前,在生态位的度量方法中,能较好反映出这一要求的理想测度方法是用多重积分方法求生态位体积。然而,在多重积分的计算中,密度函数的确定显然在操作上存在一定的困难。

鉴于以上分析,为了加强测度方法的实用性,我们采用线性方程来计算,由此构建出个体生态位评价模型[8]:

其中n是个体生态位值;it是个体生态位中“态”的值,ig是个体生态位中“态”和“势”交界面的值,is是个体生态位中“势”的值;x不同的下标分别代表不同“态”因子的权重系数、不同交界面因子权重系数、不同“势”因子的权重系数以及二级指标、三级指标的权重系数。通过以上公式的计算,我们可以得到个体生态位值。

三、小结

通过将生态位思想引入人力资源管理领域,结合生态学、经济学相关方法,构建了全面的人力资源生态位指标评价体系,虽然一些具体设计方面仍存在欠缺。但总的来讲,本文的研究给予了人力资源管理一个新视角,提供了科学评价人员能力的一个新方法,对于有效解决人员配置和人员激励等人力资源管理问题具有积极的作用。

参考文献:

[1] 安树青.生态学词典.哈尔滨:东北林业大学出版社,1994,244~246.

[2] 李德志,刘科轶,臧润国等.现代生态位理论的发展及其主要代表流派.林业科学,2006,42(8):88~94.

[3] 王刚.关于生态位定义的探讨及生态位重叠计测公式改进的研究.生态学报,1984,4(2):119~127.

[4] 颜爱民,宋夏伟,袁凌.人力资源管理理论与实务.中南大学出版社,2004.

[5] 郭妍,徐向艺.企业生态位研究综述:概念、测度和战略运用.产业经济评论,2009(6):105~119.

[6] 万伦来.企业生态位及其评价方法研究.中国软科学,2004(1):73~78.

[7] 王勇,王瑞飞.个体有机能力及其同组织层次能力整合机理与过程分析.科研管理,2004(3):110~116.

量子力学定态的概念范文6

【关键词】概念 关键词 推理

化学作为一门自然科学,其引人入胜之处就在于当认知这一充满感性的科学世界时,需要认知者丰富而抽象的理性智慧。需要认知者从事物的表象上升到事物的实质,抓住事物的本质内涵,抓住事物间的内在规律和相互联系。而化学概念是根据化学变化的现象、实质和事实高度概括出来的知识,是学好化学的基础,是培养学生能力的一种重要手段。概念的讲解过程常表现在新旧观念相互作用的集中体现,是学生根据已有的经验来对新知的认识和形成,它在中学化学教学中占有相当重要的地位。但是,初中学生学习化学概念往往存在着很大的困难,他们往往对概念难理解、概念的繁杂、概念间的相似和相异等觉得无所适从。

概念是反映物质物理属性和化学变化的一般本质属性,学生形成化学概念,感知是第一要素。概念内容的具体化又是学生形成化学概念第一个起点。教师必须紧紧依托实验教学,引导学生从直观的实验现象中,获得感性认识,培养学生形成化学概念。

化学概念是用简练的语言高度概括出来的,常包括定义、原理、反应规律等。其中每一个字、词、每一句话、每一个注释都是经过认真推敲并由其特定的意义,以保证概念的完整性和科学性。

在初中化学教材中,基本概念几乎每节都有,而化学概念是学习化学必须掌握的基础知识,准确地理解概念对于学好化学是十分重要的。初中学生的阅读和理解能力都比较差,因此,教师在教学过程中讲清概念,把好这一关是非常重要和必要的。

1.通过实验让学生形成概念

初三化学绪言部分的演示实验,既是激发学生学习化学兴趣,又是使学生形成“物理变化”、“化学变化”概念的好例子。如水的沸腾,引导学生观察水由静态转化为水蒸汽在冷凝成液态水,师生总结出变化特点,仅仅是物质状态上变化,无新物质生成。演示“镁带燃烧”实验,引导学生观察发出耀眼白光及生成白色固体。这个变化特点是镁带转变为不同于镁的白色物质――氧化镁。最后师生共同总结“没有生成其它物质的变化叫物理变化”,如水的沸腾硫酸铜晶体的研磨等。“生成了其它物质的变化叫化学变化”,如镁带燃烧、碱式碳酸铜受热分解,这两个概念的教学抓住有没有新物质生成,没有生成新的物质,只是状态改变是物理变化,有新物质生成是化学变化,这样既抓住概念的本质特征,又把两个概念便于区别,简单易懂,学习起来轻松自如。

同样反映物质特性的化学概念,由于提供实验不同,会得到不同效果。例如,氨气易溶于水的特性实验,用一支大试管盛满氨气后倒置水中,水会在试管内上升,反应出氨气易溶于水的强溶解性。可是换成“喷泉”实验,就更加形象、生动,效果明显。由此观之,只有生动、鲜明、真实的化学实验去刺激学生大脑兴奋中心,才能有助于学习形成深刻的化学概念,会牢牢记在心中,永不忘记。

真实的化学实验,就是让学生观察物质的本质属性。化学实验就是通过学生视觉、听觉、嗅觉来形成感性认识的,只有提供直接作用与感官的真实实验,才能有助于学生形成思维,加深对化学概念的理解。

如催化剂教学中,安排三组实验,第一组直接给KClO3加热,有气泡又速度慢,第二组黑色MnO2不产生气泡,第三组KClO3和MnO2混合加热,速度快,通过实验得出催化剂概念在化学变化中,只能使其它物质改变化学反应速度,而本身质量和性质没变,通过实验演示,对于这一概念理解形象生动。

2.讲清概念中关键字、词

为了深刻领会概念的含义,教师不仅要注意对概念论述时用词的严密性和准确性,同时还要及时纠正某些用词不当及概念认识上的错误,这样做有利于培养学生严密的逻辑思维习惯。

例如:在讲“单质”与“化合物”这两个概念时,何谓单质“由一种元素组成纯净物”,化合物“由两种或两种以上元素组成纯净物”。一定要强调概念中的“纯净物”三个字。因为单质或化合物首先第一是一种纯净物,即是由一种物质组成的;第二再根据他们组成元素种类的多少来判断其是单质或者是化合物。一种元素组成的纯净物是单质,两种元素以上组成的纯净物叫化合物。否则学生就容易错将一些物质如金刚石、石墨的混合物看成是单质(因它们就是由同种元素组成的物质,而它们不是纯净物),同时又可误将食盐水等混合物看成是化合物(因它们就是由不同种元素组成的物质,也不是纯净物)。

又如在初中教材中,酸的概念是“电解质电离时所生成的阳离子全部是氢离子的化合物叫做酸。”其中的“全部”二字便是这个概念的关键了。因为有些化合物如NaHSO4,他在水溶液中电离时既有阳离子H+产生,但也有另一种阳离子Na+产生,阳离子并非“全部”都是H+,所以它不能叫做酸。因此在讲酸和碱的定义时,均要突出“全部”二字,以区别酸与酸式盐、碱与碱式盐。

所以说抓住概念关键字、词很重要,教师在概念教学中要突出重点讲解,讲解起来会有侧重点,学生也会一点就通,不会歪曲概念,也好记好学。又如讲“物性、化性”这两个概念时,区分抓住是否在化变中表现出来的性质,物性是通过人体感观或由仪器测量得出的性质,如“颜色、状态、气味、熔点、沸点、硬度、密度等”二化性发生化变表现出来的性质,如可燃性、氧化性、还原性、毒性。

3.通过计算推理,帮助学生理解概念

如在“原子量”概念中,教师首先讲述原子是化学变化中的最小微粒,其质量极小,运用起来很不方便,指出“原子量”使用的重要性。指导学生阅读原子量概念,然后提出问题,依据课本中定义进行推算。如果学生只注意背原子量概念,尽管多次记忆仍一知半解。通过这样计算,学生便能直观地准确地理解“原子量”的概念,而且还较容易地把原子量只是一个比值,它是一个相对质量,没有单位。

4.剖析概念,加深理解

对一些含义比较深刻,内容又比较复杂的概念进行剖析、讲解,以帮助学生加深对概念的理解和掌握。

如:“溶解度”概念一直是初中化学的一大难点,不仅定义的句子比较长,而且涉及的知识也比较多,学生往往难于理解。因此在讲解过程中,若将组成溶解度的四句话剖析开来,效果就大不一样了。其一,强调要在一定温度的条件下;其二,指明溶剂的量为100g;其三,一定要达到饱和状态;其四,指出在满足上述各条件时,溶质所溶解的克数。这四个限制性句式构成了溶解度的定义,缺一不可。

在教学中若将概念这样逐字逐句剖析开来讲解,既能及时纠正学生容易出现的误解,又有抓住特征,使一个概念与另一个概念能严格区分开来,从而使学生既容易理解,又便于掌握。

5.正反两方,讲清概念

为了使学生更好地理解和掌握概念,教学中指导学生在正面认识概念的基础上,引导学生从反面或侧面去剖析,使学生从不同层次去加深对概念的理解。

例如:在讲了“氧化物”的概念“由两种元素组成的化合物中,如果其中一种是氧元素,这种化合物叫做氧化物”之后,可接着提出一个问题:“氧化物一定是含氧的化合物,那么含氧的化合物是否一定就是氧化物呢?为什么?”例如KClO3这样,可以启发学生积极思维,反复推敲,从而引导学生学会抓住概念中关键的词"由两种元素组成,其中一种是氧元素"来分析,由此加深对氧化物概念的理解,避免概念的模糊不清,也对今后的学习打下良好的基础。

对概念进行对比在新课教学或阶段性复习的过程中,对有关概念进行有目的地比较,让学生辨别其区别与联系很有必要。例如分子和原子,元素与原子,还有物理变化与化学变化,化合反应和分解反应,溶解度与百分比浓度等。通过对比,既有益于学生准确、深刻地理解基本概念,又能启发学生积极地抽象思维活动。

如化合反应和分解反应,化合反应由两种或两种以上物质生产另一种物质反应叫化合反应。A+B=AB,而分解反应是由一种物质参加反应,生成两种或两种以上其它物质的反应。AB=A+B

在化学概念中,有些概念之间虽有本质的不同,但也有相互联系的一面。教师在教学中讲解新概念时,可提出与已学过的有联系的概念作类比,寻求它们的内在联系和本质差异,避免概念混淆。如“物理变化”和“化学变化”的本质区别在于能否生成其它的物质:“混合物”和“纯净物”的区别在于是否同种分子,“分子”和“原子”的区别在于化学反应中能否再分;“单质”和“化合物”的区别在于是否同元素。