废水中磷的处理方法范例6篇

废水中磷的处理方法

废水中磷的处理方法范文1

[关键词]磷污染 氧化物 固体废弃物 离子交换

一、引言

伴随着我国化工行业的高速 发展 ,近二十年来,我国磷化工得到了迅速的发展,并取得了令人鼓舞的成绩。但是,伴随着磷化工的发展而产生的环境污染状况也日趋严重。因此,防治磷化工污染,保护生态环境,合理利用不可再生的有限资源,是我国磷化工健康发展所面临的一项迫切任务和重要课题,认识磷污染的危害和研究除磷的方法具有重大的现实意义。

二、磷化工污染的危害

我国现有磷化工生产 企业 300家左右,从业人数十余万人,已形成固定资产约60亿元,约占全国化工固定资产总额的20%左右。主要产品有磷矿石、硫酸、普通过磷酸钙、钙镁磷肥、重过磷酸钙、黄磷、赤磷、磷酸(包括 工业 级和食品级)、三聚磷酸钠、磷酸氢钙(包括饲料级和牙膏级)、三氯化磷、五硫化二磷、磷酸三钠、磷化锌、磷化铝、含磷农药、有机磷水质稳定剂、金属磷化剂等。我国磷化工行业给社会提供了大量的物资财富,同时也伴随着产生了大量的污染物,主要是废气和粉尘、废水、固体废物(简称“三废”)。这些污染物中含有许多有毒有害的物质进入了大气,江河湖海和陆地成为我国环境污染最主要的来源之一。

1.废气和粉尘。磷化工在生产过程中产生的废气主要有一氧化碳、二氧化硫、二氧化碳、氟化氢、四氟化硅、磷化氢、硫化氢等,还会产生一些粉尘。

一氧化碳(co)是一种无色无味具有可燃性的有毒气体。黄磷尾气是产生co的主要来源。因此,防止co2气体造成的全球变暖危害到了刻不容缓的严峻时刻。

二氧化硫(so2)是一种无色而略有臭味的窒息性气体,也是污染大气的主要物质之一。

2.废水。磷化工在加工生产中都要产生大量的含有磷、氟、硫、氯、砷、碱、铀等有毒有害物质的废水。黄磷生产中要产生黄磷污水,其黄磷污水中含有50~390 mg/l浓度的黄磷,黄磷是一种剧毒物质,进入人体对肝脏等器官危害极大。长期饮用含磷的水可使人的骨质疏松,发生下颌骨坏死等病变。黄磷污水中还含有68~270 mg/l的氟化物,经过处理后可降至15~40 mg/l,但仍高于国家规定的10 mg/l的排放标准。

3.固体废弃物。磷化工生产中产生的固体废物主要有矿山尾矿、废石;黄磷生产排出的磷渣、碎矿、粉矿、磷泥、磷铁;湿法磷酸生产中产生的磷石膏;硫酸生产中排出的硫铁矿渣、钙镁磷肥高炉灰渣等。这些固体废物在厂区内长期堆积,不仅占用大量土地,而且对周围环境造成了较严重的污染。因此这些固体废物的处理和利用是当前磷化工行业必须解决的实际问题。

三、国内外常用除磷方法

1.化学沉淀法。该方法是通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁、石灰与氯化铁的混合物等。为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。研究发现,原水含磷 10mg/l时,投加 300mg/l的a12(s04)3或 90mg/l的fecl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的磷污染。该方法具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水ph值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。

2.生物法。20世纪70年代美国的spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的fe和al的氧化物反应或与粘土中的oh-或sio32-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。但要求管理较严格,成本较高。

3.离子交换法。该方法是利用强碱性阴离子交换树脂,与废水中的磷酸根阴离子进行交换反应,将磷酸根阴离子置换到交换剂上予以除去的方法。离子交换树脂脱除po43-户的交换容量比较稳定,其再生后交换容量也比较稳定。但离子交换树脂的价格较高,树脂再生时需用酸、碱或食盐,运行费用较高

4.吸附法。20世纪80年代,多孔隙物质作为吸附剂和离子交换剂就已应用在水的净化和控制污染方面。黄巍等以粉煤灰作为吸附剂,对含磷50~120mg/l模拟废水脱磷的 规律 特征进行了研究。研究表明粉煤灰中含有较多的活性氧化铝和氧化硅等,具有相当强的吸附作用,粉煤灰对无机磷酸根不是单纯吸附,其中cao、feo、a12o3等可以和磷酸根生成不溶或直溶性沉淀,因而在废水处理方面具有广阔的应用前景。吸附法由于占地面积小、工艺简单、操作方便、无二次污染,特别适用于低浓度废水的处理而倍受关注。在吸附法研究中,寻找新的吸附剂是开发新的除磷工艺的关键所在,因此 自然 界广泛存在的天然粘土矿物是人们研究的热点。

5.膜分离方法。液膜分离法是一种新型的、类似溶剂萃取的膜分离技术。液膜法通常是将按一定比例配制的有机溶剂(有机相)同膜内试剂混合制成乳液微滴,微滴表面形成一层极薄的(l~10μm)液膜,膜内为内相试剂。在混合柱内,将此表面积极大的乳液微滴与废水接触,水中待除的金属离子便通过选择性渗透、萃取、吸附等穿过液膜,进入内相试剂进行化学反应,废水中的金属离子因而得到分离去除。

四、结语

人与自然的和谐 发展 是21世界 工业 发展的主旋律,在发展工业的同时,尽量较少对环境的污染已经已经成为世界各个国家的共识。

参考 文献 :

[1]崔砺金,章苒.触目惊心与无可奈何——化工污染重灾区实录[j].记者观察, 2003,(07).

废水中磷的处理方法范文2

综述了现阶段传统有机磷农药废水处理工艺的发展现状,并介绍了磁分离、超声波处理等新技术的原理与成果,提出了有机磷农药废水处理的发展方向。

关键词:

有机磷农药废水;发展现状;发展方向

有机磷农药是用于促进农作物成长、保证产量,所施用的杀虫、菌、有害动物及杂草的一类含磷药物统称。我国具有13亿人口,耕作面积18.26亿亩,人均耕地只有1.39亩,仅为世界平均水平的40%。其中常年病虫害发生面积约60亿亩,使用农药每年可以减少直接经济损失约800亿元[1],因此农药对保障农作物产量和市场需求具有重要意义。然而,由于不科学地使用化学农药,已对土壤与水体环境产生影响。我国受农药污染的农业土地面积约1600万公顷,全国11万公里河流中有70.6%已被污染[2-3]。另一方面,农药经过富集进入食物链,造成了一系列的农药中毒、食品安全等事件,对人体健康构成严重威胁。据“十二五”规划报道,2010年我国农药生产企业有1800多家,行业员工约16万人,2011年我国农药产量达264.87万吨。每年农药废水排放达1.5亿m3,80%为有机磷农药废水,其中仅70%已进行治理,而治理达标率只有1%。有机磷农药废水的特点[4]:(1)有机物的质量浓度高;(2)污染物成分复杂;(3)毒性大,难生物降解;(4)有恶臭及刺激性气味;(5)水质、水量很不稳定。本文综述了处理有机磷农药废水的传统工艺及新技术,并对今后治理有机磷农药废水污染发展方向进行分析。

1有机磷农药废水处理方法

为尽量减少有机磷农药废水对人类和环境的有害影响,必须对有机磷农药废水进行无害化处理。有机磷农药废水处理方法包括物理法、化学法、生物法等传统处理方法,以及近年发展起来的新方法新技术。

1.1物理法

物理法常作为预处理手段,起到回收有用物质和提高后续处理效率的作用,主要包括萃取法、吸附法、混凝沉淀法等。

1.1.1萃取法

萃取法是利用溶剂或特种萃取剂对废水中的有害物进行萃取回收[5]。农药生产中存在许多反应物的相分离过程,因此萃取法是一种常用的方法。由于萃取是一个物理转移过程,并没有发生降解,不涉及化学反应,对被萃取的有机物和废水仍需近一步处理,故萃取法主要用于有机磷农药残留分析和回收废水中有价值的有机物。CPSanz等[6]通过微波辅助胶束萃取的方法,使用POLE和GenapolX-080提取鉴定8种有机磷农药,结果表明POLE对大多数化合物回收率高于70%,相对标准偏差低于2.6%,在提取有机磷农药方面比GenapolX-080更有优势。YinhuiYang等[7]结合QuEChERS法和气相色谱火焰光度检测器测定44种有机磷农药残留,结果表明优化条件下,在0.04-1.5ug/mL浓度范围内对有机磷农药校准曲线相关系数高于0.9909。检出限和量化范围分别为0.004-0.02ug/mL和0.01-0.04ug/mL,平均回收率为99.34%,平均相对偏差为3.71%。

1.1.2吸附法

吸附法是利用吸附剂的多孔结构和较大的比表面积吸附废水中的污染物。在农药废水处理中常用的吸附剂主要有活性炭和人工合成大孔吸附树脂。但是由于废水中的有机磷酸酯类化合物极性和水溶性都较强,一般吸附剂的处理效果都不好,且吸附剂的费用较高,回收与再生方法尚未解决,工业应用还存在问题。MAKamboh等[8]采用一种新型氨基取代的杯芳烃基磁性孢粉素去除水中毒死蜱和二嗪磷,结果表明在pH值为7,接触时间为10min的条件下,毒死蜱和二嗪磷最大去除率分别为97%和88%,并且符合二级动力学模型。

1.1.3混凝沉淀法

混凝沉淀法是通过投加、混合一定药物,使污水中发生电中和、网捕卷扫等过程,达到污染物质脱稳的目的,使不易沉降的微粒絮凝成较大的聚集体在重力作用下从溶液中分离。混凝沉降法工艺流程简单、操作管理方便、设备投资省、占地面积小,常作为有机磷农药废水预处理方法。李家元[9]采用响曲面分析法对PAZC和PAC混凝处理乐果废水进行优化,结果表明,模型与实验结果吻合度较高,在pH值分别为11.80和11.79,PAZC和PAC投加量分别为11.97mg/L和12.27mg/L的条件下,去除率达到最高。石川精一等[10]使用硫酸对给水污泥中的混凝剂进行提取再利用,并将对117种农药的去除率结果与硫酸铝和PAC进行比较,结果表明,对这些有机磷农药的去除率在10.8-100%范围内,均等同或高于硫酸铝和PAC的去除效果。

1.2化学法

化学法是通过发生化学反应,从而去除有机污染物。常用的方法有Fenton试剂氧化法、湿式氧化法、电化学氧化法等。

1.2.1Fenton试剂氧化法

Fenton试剂氧化法是一种高级氧化技术,其作用机理是在酸性条件下将Fe2+与H2O2相结合催化产生羟基自由基,使溶液具有强氧化性,能够将废水中的有机污染物氧化成水,二氧化碳,无机酸和盐。与其他高级氧化工艺相比,Fenton试剂氧化具有操作简单,反应速度快、不会对环境造成二次污染等优点,可有效处理有机磷农药废水。田澍等[11]利用Fenton试剂降解含有机磷农药废水,结果表明对125mg/L乐果溶液,在温度60°C,H2O2加入量为5mmol/L,FeSO4•7H2O加入量为3g/L,pH值为3的条件下,30min内乐果完全降解,延长反应时间至8h以上时,对COD去除率可达100%。另考察了光与超声波的协同作用,发现3h内COD去除率可超过90%,大大提高反应速率。蒋皎梅等[12]研究Fenton试剂对甲胺磷模拟废水处理,结果表明反应符合一级动力学模型,H2O2投加量为9/5,[Fe2+]/[H202]=1:3,pH=4,反应时间为40min的条件下废水COD去除率可达88.1%。吴昊等[13]联合Fenton与臭氧氧化预处理有机磷农药废水,结果表明在H2O2投加量为5mL,[Fe2+]/[H2O2]=1:10,初始pH值3.0,控制臭氧量1.0L/min的最佳条件下,当反应时间为90min,COD去除率达86.9%,TP去除率为82.2%。G.Pliego等[14]利用聚合氯化铁协同Fenton试剂处理高浓度农药废水,研究发现使用聚合氯化铁进行第一步处理可以显著减少后续H2O2的使用量,COD去除率达80%。

1.2.2电化学氧化法

电化学法是借助电流使废水中污染物发生化学反应的方法。在电解槽中放置两电极板并通过一定大小的直流电,使废水中阴阳离子在对应极板上发生氧化还原反应,最终将污染物转化为难溶物质沉淀或气体从水中逸出。电化学法具有反应条件温和,方法灵活,不需要添加药剂,二次污染少,处理后水的保存时间持久等优点,对处理生物难降解的有机磷农药废水效果良好。YoussefSamet等[15]使用Nb/PbO2作阳极和石墨碳棒作阴极处理一种有机磷杀白蚁剂,考察了初始浓度、电流密度、温度等参数对其电化学性能的影响。结果表明,化学需氧量的去除总是遵循一个伪二级动力学过程,降解率随着表观电流密度和温度的升高显著增加,随着初始污染物浓度的增加而降低。最好的COD去除率(76%)是在表观密度为50mA/m2,初始COD为450mg/L、70°C时电解10h。YingmeiHu等[16]利用介质阻挡放电处理敌敌畏和乐果农药,考察了DBD放电参数和空气间隙距离的影响,结果表明,在较高的放电功率和较短的空气间隙距离下能够获得更好的降解效率,并且研究了添加自由基清除剂的影响,发现降解效率受自由基清除剂的抑制,因此判断羟基自由基很可能是降解的主要动力。

1.2.3光催化氧化法

光催化氧化法通过向污水中投入光敏半导体材料,并接受一定量的光照辐射,使半导体材料表面激发生成电子-空穴对,电子-空穴对与半导体材料表面吸附的水分子、溶解氧反应产生氧化性极强的•OH等自由基,最后与有机物质发生矿化反应最终生成CO2和H2O。光催化氧化是一种环境友好型技术,具有处理范围广,反应充分等优点,在处理有机磷农药废水方面具有优越性。李雪银等[17]采用溶胶-凝胶法制得TiO2和ZnO作为光催化剂降解敌百虫,探究农药初始浓度,pH值,光催化剂投加量等因素的影响,结果表明,TiO2和ZnO最佳投加量范围为100-150mg/L,降解率随初始浓度增加而降低,随光照时间延长上升后趋于稳定,碱性条件和汞灯光照有利于敌百虫的降解,并且5个影响因素下,TiO2降解活性低于ZnO。王金翠等[18]以悬浮态TiO2为光催化剂降解乐果溶液,结果表明在纳米TiO2添加量为0.1g/L,乐果初始浓度为20mg/L,反应体系温度为30℃,初始pH为6.5的条件下,再辅以空气量2.5L/min通入,反应60min后,乐果降解率可达97.15%。王芳等[19]采用溶胶-凝胶法制备二氧化钛/多壁碳纳米管复合材料降解乐果溶液,结果表明在25°C,紫外光照30min,乐果初始浓度为5mg/L和复合光催化材料添加量为0.25g/L的条件下,降解率为80.7%。并且在自然光照下,复合光催化材料降解率为79.2%。

1.3生物法

生物处理法通过微生物代谢作用将水中有机物同化分解,作用机理有酶促反应和非酶促反应两种。酶促反应是通过微生物分泌降解酶,将水中大分子毒性有机物降解为无毒的小分子物质;非酶促反应是通过改变环境中PH、产生化学物质等方式,参加有机污染物转化,主要包括氧化、还原、脱卤、脱烃、酰胺及脂的水解等方式。农药废水中含有高浓度难生物降解的有毒物质,可以破坏细胞结构或抑制微生物生长,因此微生物法对处理农药废水有局限性。贾阳等[20]将有机磷农药降解菌PseudomonasstutzeriYC-YH1中克隆到的两种水解酶基因mpd和ophc2,连接载体pET-32a在大肠杆菌BL21(DE3)中表达,并进行酶学性质分析,结果表明MPH酶在40°C,pH8-12范围内活性较高,OPCH2酶最适温度为30°C,pH范围8-12。且两种酶按1:1混合,在30-40°C范围内,活性达95%以上。

1.4有机磷农药废水处理新技术

1.4.1磁分离技术

磁分离技术是借助磁场力的作用,对磁性不同的物质进行分离的一种物理分离方法。通过高梯度磁分离技术可以分离具有较强磁性的污染物质,对于磁性较弱的污染物,可以通过外加磁种和混凝剂增强污染物磁性,或借助于微生物吸附,再通过磁分离技术去除。磁分离技术具有处理效率高、占地少、设备简单、运行费用低、可去除难降解有机物质等优点。磁分离技术是一种物理性质的固液分离手段,在实际应用中常与其他技术联合发挥作用。

1.4.2超声波处理技术

超声波处理技术机理比较复杂,常见的有空化理论和自由基理论。声空化是液体中微小泡核在声波作用下被激化,经过振荡、生长、收缩及崩溃等一系列过程产生能量,加速化学反应进程。由于声空化作用产生高温、高压导致水分子裂解成为自由基。自由基化学性质活泼,能够处理难降解的有机磷农药废水。

1.4.3超临界水氧化技术

超临界水氧化是在水温374°C和临界压力22MPa时的超临界状态下,以氧气为氧化剂,超临界水为介质,使有机物质在超临界水中均相氧化。废水中C、H元素生成CO2和H2O,Cl、P、S及金属元素转化为盐析出。超临界氧化技术具有反应速度快、去除率高、产物干净、需要能量少、设备应用方便等优点。

2有机磷废水处理展望

2.1多种工艺组合运用

有机磷农药废水成分日益复杂,对处理水质要求日益提高,使用单一方法已逐渐无法满足要求,随着各种污水处理工艺的发展,将多种方法组合运用不仅可以提高有机磷农药废水处理效率,并且可以弥补单一方法所具有的缺陷,增强了可行性和降低了成本。如利用多壁碳纳米管负载TiO2合成复合光催化剂,在一定程度上解决了吸附材料的再生与光催化剂的回收问题;将混凝沉淀法作为预处理,可以改善后续生化方法的处理环境,提高出水水质,减少药剂投加,节省成本。

2.2开发新型有机磷农药处理技术

传统有机磷农药废水处理工艺存在处理难度大、效率低等问题,加强新技术的开发研究可以打破局限性,为有机磷农药废水处理找到新方向。张鹤楠等[21]采用超临界水氧化技术处理高浓度吡虫啉农药废水,考察温度,压力等影响因素,结果表明在过氧量充足、温度为450°C、压力为24MPa最佳反应条件下,反应时间仅为140s,并研究发现了吡虫啉中间产物为吡啶环等。

3结语

有机磷农药现已造成严重的土壤与水体污染,加强有机磷农药废水治理刻不容缓。不仅需要在完善传统废水处理工艺的同时,还要开发研究新组合、新技术,在现有的研究理论与经验基础上不断总结、创新,探索更加高效的有机磷农药废水处理道路。保护我国环境质量,坚持可持续发展道路是每个环境工作者义不容辞的责任。

作者:张伟 王珏 单位:沈阳建筑大学 湖南城市学院

参考文献:

[1]王润涵.国际背景下我国农药使用及行业现状分析和发展趋势研究[D].浙江大学,2013.

[2]亓飞.浅谈土壤污染防治[J].法制与社会,2008(16).

[3]李立军,王旭琴.有机磷和有机氯对水体的污染[J].内蒙古科技与经济,2010(20):74-75.

[4]矫彩山,彭美媛,王中伟,等.我国农药废水的处理现状及发展趋势[J].环境科学与管理,2006,

[5]蛋维昌.我国农药废水处理现状及展望[J].化工进展,2000,19(5):18-23.

[9]李家元.优化混凝沉淀法处理乐果农药废水的研究[J].安徽农业科学,2010,38(23):12564-12566.

[11]田澍,顾学芳,石健.Fenton试剂降解含有机磷农药废水的研究[J].安徽农业科学,2009,37(31):15354-15356.

[12]蒋皎梅,杨丽,洪颖,等.Fenton试剂预处理有机磷农药废水的研究[J].安徽农业科学,2010,38(28):15688-15689.

[13]吴昊,田帅慧,王绍峰,等.Fenton联合臭氧氧化预处理有机磷农药废水研究[J].山东化工,2015(2):127-129.

[17]李雪银,朱丽珺,张海洋,等.TiO2和ZnO光催化降解敌百虫的影响因素研究[J].农业环境科学学报,2015(10).

[18]王金翠,王欣,杜银花,等.纳米TiO_2光催化降解乐果影响因素的研究[J].应用化工,2012,41(9):1540-1544.

[19]王芳,廖婵娟,罗琳,等.二氧化钛/多壁碳纳米管的制备及其对乐果光催化降解的影响[J].农药学学报,2015(3).

废水中磷的处理方法范文3

[论文摘要]目前磷肥生产企业,特别是湿法工艺放出的三废对环境造成的危害很大,尤其是三废的排出治理长期以来尚未得到全面控制。论述湿法磷酸中三废的治理和综合利用情况,为湿法磷酸中三废的利用和开发提供了研究和参考的方向。 

 

 

一、废水 

 

湿法磷酸装置的废水来源:1.过滤机冲洗滤布水(或称冲盘水)。2.泵密封水、跑冒滴漏和冲洗设备地坪水。3.反应系统尾气洗涤水。4.浓缩、闪蒸冷却和过滤机真空系统的冷却水。对于废水的主要来源是磷酸系统。一般的处理方法是可以达到排放标准的,但是要排出大量的污水。因而要消耗大量的水,中和剂和动力且对环境还有不利影响。为了解决此类的问题。国内已研究成功污水封闭循环新工艺。当封闭循环装置正常运转时,整个磷酸系统无污水排放。但是如果要把全部的污水都实现封闭循环的话,又将带来一系列问题。 

1.对工艺的影响:由于中国的磷矿资源的多样性。各种矿石优良不一。当然各种矿石产生的污水性质也可能不同。在我国一些磷矿就出现过循环使用污水后,自从将污水(特别是污水池中的水)加入稠浆槽进入磷酸系统,在正常的生产条件下,过滤饼出现板结现象,湿渣斗连续出现堵塞,在降低过滤机滤洗真空度后,但滤饼板结现象仍时有发生,有时还相当严重,结块硬度较大。这部分污水进入酸系统后,整个系统结垢现象加剧,特别是闪蒸室、石墨换热器内结垢堵塞比较严重,换热管内结垢物带有大量白色黏稠的硅酸盐类。停止使用这部分污水后,系统工艺状况逐渐恢复正常。 

2.对酸系统设备的影响:在处理后的污水进入酸系统后,设备负担肯定会有所增加,另外。由于氯蚀现象的产生,搅拌器的桨叶。萃取槽、各个轴,过滤洗液泵及浓缩轴流泵的桨叶、轴等浸没于液相中的运转设备,其磨蚀较前均有不同程度的加剧。无论是磷矿还是磷酸中氯的存在对设备都有腐蚀作用,其腐蚀性随其它杂质如硫酸、氟的相互作用及氯含量的增大、设备所处环境温度的升高而加强。 

 

二、废气 

 

磷酸生产的废气主要来自过滤机、熟化槽、贮槽和各处密封槽逸出的气体和磷酸反应槽在反应以及冷却过程中产生的气体。废气中的污染物都是sif4和hf,通常都用水洗涤,生成的稀氟硅酸溶液作为污水,送去处理后外排或循环使用。 

我国大多数湿法磷酸装置都是沿用鼓风冷却方法,将空气吹向磷酸反应槽液面使磷酸料浆冷却,废气排出量约为12000~14000m3/t(p205计),少数装置采用rp工艺,在磷酸反应槽内把料浆扬撒用空气吹扫冷却,其排气量约为6000~7000m3/t(p205计)。大量的废气使其处理设备庞大,投资多,让控制污染的困难加剧。最近几年来,我国湿法磷酸装置,其反应槽的磷酸料浆都采用了低位闪蒸真空冷却工艺,使反应槽的废气量大为减少。该流程对氟的洗涤效率达99%。另外采用错流洗涤器该装置后,采用多级逆流洗涤,洗涤效率高、操作弹性大、设备容易清洗、作业率高。实践表明排出物远低于国家标准。 

含氟废气吸收液的回收和利用:含氟废气吸收液的主要成分时氟硅酸,可用它做原料生产氟硅酸钠na2sif6。氟化铝,和冰晶石等副产品。

三、废渣 

 

湿法磷酸生产有大量磷石膏的排出,无论从环境保护或经济效益,资源的合理利用方面来看都是一个亟待解决的重要问题。国外大多数工厂都作为废弃物堆存,极少数工厂加以综合利用,但是国内对此很重视。磷石膏在工业上主要用于制墙粉,石膏板,水泥缓凝剂等。硫酸铵以及硫酸和水泥。在农业上主要用于作硫和钙的补充来源。盐碱土改良剂和某些农药的填料。石膏中含的少许五氧化二磷也具有一定的肥效。但是目前大多都是用大坝堆积起来,因为没有找到一种经济技术都合理的方法。对于这种方法应该强化管理,避免雨水冲刷污染环境以及污染地下水。 

(一)用于水泥工业和建材制品 

在某些情况下,为了延长水泥的凝结时间,增加水泥的最终强度,一般在水泥熟料中加入5%左右的石膏作为缓凝剂。但是其放射性元素度应该符合《建筑材料放射性核素限量》的要求,否则对环境有害。磷石膏经过再浆,洗涤,净化,降低了磷石膏中游离的p2o5和f的含量后入脱水机和烘干机,脱除了水分和部分氟的磷石膏经冷却后进入配料仓。焦炭和各种添加物经过粉碎后也进入配料仓。配好的水泥生料加入煅烧窑,经过一系列的除尘,净化送入制酸。出煅烧窑的水泥熟料,经冷却加入部分缓凝剂等原料后,通过配料,粉碎即得到水泥产品。磷石膏因为有胶凝性,所以作为建材原料只要适当净化处理后,脱水成半水合硫酸钙,可产各种石膏墙体材料,如粉刷石膏、石膏板、建筑标准砖、烧结节能砖、免烧砖和装饰吸声板等。 

(二)制硫酸铵和硫酸钾以及改良土壤 

制硫酸基于简单的复分解反应,caso4+(nh4)2co3=(nh4)2so4+caco3 

目前制硫酸钾,国内采用“二步法”。主要是使磷石膏中的硫酸钙与碳酸氢铵反应得到硫酸铵和碳酸钙,将碳酸钙分离后,含硫酸铵的母液再在适宜条件下与氯化钾反应,即制得硫酸钾。磷石膏为酸性,ph在2.5~3.5之间。由于碱性土地上,可以显著降低土壤碱性,有实验得出,使用磷石膏后土壤的氯盐,酸性显著改善。 

(三)磷石膏综合利用需注意的问题 

磷矿石品种不同、生产工艺和污水处理方式的差异造成磷石膏杂质含量、理化性能波动很大,给废物利用带来一系列问题,使目标产品的质量波动大。若是作为建材制品,其放射性会对人带来危害。如镭等在衰变过程中会析出、扩散放射性气体,导致人产生肿瘤、癌症甚至死亡。因此只有作为掺杂剂少量使用,使其达到《建筑材料放射性核素限量》(gb6566-2001)的要求。因此,理论利用于实践中,应根据矿源品位、废渣理化性质等灵活选用回收利用的方式。 

 

参考文献: 

[1]海成立,磷铵系统污水的利用[a].磷肥与复肥,2002.3.第17卷第2期. 

[2]梁陪训,对我国磷肥环境保护工作的展望[j].化工环保,2002,30(2):21~22. 

[3]张泰,含氟废气的治理[m].上海:上海科学技术出版社,2000. 

[4]冯金煌,磷石膏及其综合利用的探讨[j].无机盐工业,2001.334:34~36. 

[5]赵建茹、玛丽亚·马木提,浅谈磷石膏的综合利用[j].干旱环境监测,2004.18(2):95~97. 

[6]郭翠香等,磷石膏的综合利用,中国资源综合利用. 

废水中磷的处理方法范文4

湿法磷酸装置的废水来源:1.过滤机冲洗滤布水(或称冲盘水)。2.泵密封水、跑冒滴漏和冲洗设备地坪水。3.反应系统尾气洗涤水。4.浓缩、闪蒸冷却和过滤机真空系统的冷却水。对于废水的主要来源是磷酸系统。一般的处理方法是可以达到排放标准的,但是要排出大量的污水。因而要消耗大量的水,中和剂和动力且对环境还有不利影响。为了解决此类的问题。国内已研究成功污水封闭循环新工艺。当封闭循环装置正常运转时,整个磷酸系统无污水排放。但是如果要把全部的污水都实现封闭循环的话,又将带来一系列问题。

1.对工艺的影响:由于中国的磷矿资源的多样性。各种矿石优良不一。当然各种矿石产生的污水性质也可能不同。在我国一些磷矿就出现过循环使用污水后,自从将污水(特别是污水池中的水)加入稠浆槽进入磷酸系统,在正常的生产条件下,过滤饼出现板结现象,湿渣斗连续出现堵塞,在降低过滤机滤洗真空度后,但滤饼板结现象仍时有发生,有时还相当严重,结块硬度较大。这部分污水进入酸系统后,整个系统结垢现象加剧,特别是闪蒸室、石墨换热器内结垢堵塞比较严重,换热管内结垢物带有大量白色黏稠的硅酸盐类。停止使用这部分污水后,系统工艺状况逐渐恢复正常。

2.对酸系统设备的影响:在处理后的污水进入酸系统后,设备负担肯定会有所增加,另外。由于氯蚀现象的产生,搅拌器的桨叶。萃取槽、各个轴,过滤洗液泵及浓缩轴流泵的桨叶、轴等浸没于液相中的运转设备,其磨蚀较前均有不同程度的加剧。无论是磷矿还是磷酸中氯的存在对设备都有腐蚀作用,其腐蚀性随其它杂质如硫酸、氟的相互作用及氯含量的增大、设备所处环境温度的升高而加强。

二、废气

磷酸生产的废气主要来自过滤机、熟化槽、贮槽和各处密封槽逸出的气体和磷酸反应槽在反应以及冷却过程中产生的气体。废气中的污染物都是SiF4和HF,通常都用水洗涤,生成的稀氟硅酸溶液作为污水,送去处理后外排或循环使用。

我国大多数湿法磷酸装置都是沿用鼓风冷却方法,将空气吹向磷酸反应槽液面使磷酸料浆冷却,废气排出量约为12000~14000m3/t(P205计),少数装置采用RP工艺,在磷酸反应槽内把料浆扬撒用空气吹扫冷却,其排气量约为6000~7000m3/t(P205计)。大量的废气使其处理设备庞大,投资多,让控制污染的困难加剧。最近几年来,我国湿法磷酸装置,其反应槽的磷酸料浆都采用了低位闪蒸真空冷却工艺,使反应槽的废气量大为减少。该流程对氟的洗涤效率达99%。另外采用错流洗涤器该装置后,采用多级逆流洗涤,洗涤效率高、操作弹性大、设备容易清洗、作业率高。实践表明排出物远低于国家标准。

含氟废气吸收液的回收和利用:含氟废气吸收液的主要成分时氟硅酸,可用它做原料生产氟硅酸钠Na2SiF6。氟化铝,和冰晶石等副产品。

三、废渣

湿法磷酸生产有大量磷石膏的排出,无论从环境保护或经济效益,资源的合理利用方面来看都是一个亟待解决的重要问题。国外大多数工厂都作为废弃物堆存,极少数工厂加以综合利用,但是国内对此很重视。磷石膏在工业上主要用于制墙粉,石膏板,水泥缓凝剂等。硫酸铵以及硫酸和水泥。在农业上主要用于作硫和钙的补充来源。盐碱良剂和某些农药的填料。石膏中含的少许五氧化二磷也具有一定的肥效。但是目前大多都是用大坝堆积起来,因为没有找到一种经济技术都合理的方法。对于这种方法应该强化管理,避免雨水冲刷污染环境以及污染地下水。

(一)用于水泥工业和建材制品

在某些情况下,为了延长水泥的凝结时间,增加水泥的最终强度,一般在水泥熟料中加入5%左右的石膏作为缓凝剂。但是其放射性元素度应该符合《建筑材料放射性核素限量》的要求,否则对环境有害。磷石膏经过再浆,洗涤,净化,降低了磷石膏中游离的P2O5和F的含量后入脱水机和烘干机,脱除了水分和部分氟的磷石膏经冷却后进入配料仓。焦炭和各种添加物经过粉碎后也进入配料仓。配好的水泥生料加入煅烧窑,经过一系列的除尘,净化送入制酸。出煅烧窑的水泥熟料,经冷却加入部分缓凝剂等原料后,通过配料,粉碎即得到水泥产品。磷石膏因为有胶凝性,所以作为建材原料只要适当净化处理后,脱水成半水合硫酸钙,可产各种石膏墙体材料,如粉刷石膏、石膏板、建筑标准砖、烧结节能砖、免烧砖和装饰吸声板等。

(二)制硫酸铵和硫酸钾以及改良土壤

制硫酸基于简单的复分解反应,CaSO4+(NH4)2CO3=(NH4)2SO4+CaCO3

目前制硫酸钾,国内采用“二步法”。主要是使磷石膏中的硫酸钙与碳酸氢铵反应得到硫酸铵和碳酸钙,将碳酸钙分离后,含硫酸铵的母液再在适宜条件下与氯化钾反应,即制得硫酸钾。磷石膏为酸性,PH在2.5~3.5之间。由于碱性土地上,可以显著降低土壤碱性,有实验得出,使用磷石膏后土壤的氯盐,酸性显著改善。

(三)磷石膏综合利用需注意的问题

磷矿石品种不同、生产工艺和污水处理方式的差异造成磷石膏杂质含量、理化性能波动很大,给废物利用带来一系列问题,使目标产品的质量波动大。若是作为建材制品,其放射性会对人带来危害。如镭等在衰变过程中会析出、扩散放射性气体,导致人产生肿瘤、癌症甚至死亡。因此只有作为掺杂剂少量使用,使其达到《建筑材料放射性核素限量》(GB6566-2001)的要求。因此,理论利用于实践中,应根据矿源品位、废渣理化性质等灵活选用回收利用的方式。

废水中磷的处理方法范文5

关键词:涂装废水;预处理;物化+生化

涂装工艺在汽车表面处理中运用极其广泛,在生产过程中基本上都有废水产生[1],而汽车涂装废水的处理已成为当今污水处理工程的一大难题,急待解决。通过多年的摸索和工程实践,发现采用物化+生化处理汽车涂装废水是 经济 有效的,但在实际的应用中也存在一些问题,需要对此工艺进行优化和改进,使汽车涂装废水处理更加稳定和有效。

1汽车涂装废水的来源及特点

在涂装工艺中产生的废水主要有前脱脂、酸洗和磷化表调等前处理废水、电泳涂装废水和喷涂底、中、面漆时的喷漆废水[2]。各股废水的成分复杂,浓度各不相同,处理难度大。

此废水除部分水洗水从水槽连续溢流外,各工序所产生的废水或废液多为间歇排放,各股废水混合后形成高浊度的涂装废水,废水的水量及水质在一天内变化很大,且无 规律 可循,废水中污染物成份复杂,含有多种有毒物质,浓度高,可生化性差。Www.133229.cOm经多年的监测,其综合水质情况为:codcr浓度1000~2500mg/l,bod5浓度100~250mg/l,ss浓度400~600mg/l,石油类浓度30~85mg/l,磷酸盐浓度25~50mg/l,ph7.0~8.5,zn2+浓度5.0~20mg/l。

2处理工艺的研究

2.1单纯物化法

由于汽车涂装废水的可生化性差,单纯的物化处理工艺流程一般为:调节池——混凝沉淀或气浮——砂滤——活性炭过滤,也有的工艺是将每个工序的废水分开,各自加药反应进行预处理(如含油废水则加药破乳)后再进行混凝沉淀或气浮,通过选择适当的混凝剂和絮凝剂,在理论上该工艺处理涂装废水是可行的,但单纯的物化处理后出水水质不稳定,涂装废水在混凝沉淀或气浮后,cod去除率为30%~60%,最高80%,即出水cod会在450mg/l左右,而且绝大部分为溶于水的有机物,这部分有机物的去除主要靠活性炭吸附,加大活性炭过滤器的负荷,很快使活性炭失效,从而导致出水不达标。同时工艺流程长,操作维护复杂,运行成本高。

2.2物化+生化相结合的处理方法

目前处理汽车涂装废水最具前景的方法之一为物化+生化法,此工艺的核心原理为:以物化法作为预处理,然后采用生化法处理,使废水稳定达标。

(1)物化预处理

由于汽车涂装废水中含有大量磷酸盐等生化不能完全去除或难去除的物质,必须依靠物化法来去除。在实际工程中多采用石灰,利用石灰乳将废水的ph值控制在11.5以上,使磷酸根和锌离子生成羟基磷灰石和氢氧化锌沉淀物而去除,使废水中的磷酸盐浓度低于5.0mg/l。同时利用ca2+完成乳化油、高分子树脂的胶体脱稳、凝聚过程,为混凝反应创造条件。

(2)生化处理

废水经物化法预处理后,水质有所改善,但必须通过生化法处理后才可稳定达标。由于涂装车间废水主要污染物质可生化性较差(bod/cod=0.1),因此,提高原水可生化性是该废水生化处理的首要条件。其次,由于 工业 废水中营养物不均衡,为提高废水生化性需投加营养源。另一方面,在生化处理前段,首先将废水进行水解酸化处理,即将厌氧控制在水解酸化阶段,利用水解酸化菌将难以降解的合成有机物如环氧树脂、醚类物质之类的环状有机物、芳香族有机物等断链,分解成小分子有机物,从而提高了废水可生化性。

废水经水解酸化处理后,再采用好氧工艺进行后续处理。好氧生化段是整个废水处理工艺的核心部分。在有氧条件下,废水中的可降解污染物在好氧微生物作用下,一部分合成为微生物细胞,另一部分分解为co2、h2o,得以彻底去除,部分多余的微生物有机体通过排泥从系统中排除,从而使水质得到净化。

而在工程实践中用得较多的好氧工艺有sbr法和接触氧化法。由于汽车涂装废水的水质和水量变化很大,接触氧化法难以稳定运行,出水水质波动较大,需要采用微絮凝过滤或活性炭吸附作为补充,出水才能稳定达标。而sbr工艺的进水、曝气反应、静止沉淀、排上清液和闲置阶段循环操作,将生物处理和沉淀集于一体,具有运行效果稳定、耐水量和有机负荷冲击、运行灵活、构造简单、操作和维护方便等特点[4],故sbr工艺在汽车涂装废水中应用较广泛。

2.3工艺流程

以湖南某汽车制造公司的涂装废水处理为例,设计处理水量:q=300m3/d,水质如前所述,工艺流程如下:

由于涂装预处理中存在不定期的倒槽工序,倒槽废液间歇排放,水量大,且浓度非常高,必须进行分质分流处理。倒槽浓废液收集在浓废液槽中;而其他浓度较低的废水则进入调节池中,然后用泵将浓废液定期定量打到调节池中,与其他废水充分混合均匀;在混凝反应池中投加石灰乳和pam,充分混合反应后去除大部分磷酸盐、重金属和ss,然后经沉淀澄清后,投加盐酸调节废水ph。经物化处理后出水经过水解酸化后进入sbr池,在sbr池中进行好氧生化反应,废水中的有机物被好氧分解,从而使废水得以净化,达到国家一级标准排放。

3工艺的改进

通过多个汽车涂装废水处理厂的设计与实际运行,发现采用物化+生化法处理涂装废水是经济可行的,能达到预期的处理效果,但也存在一些问题,需要对此工艺进行优化与改进。

3.1均匀水质水量

由于汽车涂装废水大多间歇排放,瞬时排放水量大,浓度高,必须在调节池内混合均匀,减少对后续处理的冲击。在设计调节池时,须满足废水在池内停留足够的时间来混合均匀,一般调节池的有效容积占设计水量的40%以上,运行时特别注意池内必须留出安全容积来稀释从倒槽废液池中泵入的高浓度废液,防止水质的大幅波动,造成系统无法稳定运行。

3.2化学除磷的控制

汽车涂装废水中磷酸盐浓度较高,必须考虑采用物化除磷。运行时加入过量的石灰乳,调节废水ph值至11.5以上,去除重金属离子,又能作为廉价高效的除磷剂。根据实际运行,以石灰为混凝剂,pam为絮凝剂,磷酸盐的去除率可达到99%左右,出水浓度小于0.5mg/l。但如此高效的化学除磷,导致废水中磷酸盐过低,影响后续生化反应的进行,必须适当控制石灰乳的投加量,保证出水中的磷酸盐的浓度为2.0~3.0mg/l内,既能满足生化反应的需要,又能保证最终出水磷酸盐稳定达标。

3.3废水营养物的补充

由于汽车涂装废水中缺少微生物所需的各种营养源,必须考虑补充废水的营养物。目前常用的方式有:(1)人工投加氮磷;(2)引入生活污水。从运行管理和实际运行效果来看,最简单有效的方法是引入生活污水,补充微生物所需的各种营养源。

3.4提高水解酸化的效率

汽车涂装废水的重要特征之一为可生化性差,采用水解酸化来提高废水的可生化性能是首要条件,水解酸化的设计水力停留时间一般为6~9h,bod5/codcr由原来的0.2提高到0.3以上,基本满足生化反应的条件。但从多个工程实例的对比来看,在水解酸化池中安装填料,组成复合水解酸化工艺,codcr的去除率可提高20%~30%,废水可生化性可提高15%左右,减轻sbr的处理负荷。

3.5合理分配供氧,降低能耗

目前汽车涂装废水的好氧工艺多采用sbr法,其运行方式为:进水时间4h,进水1h后进行曝气8h,沉淀2h。排水0.5h,闲置0.5h。sbr池供氧采用罗茨鼓风机和微孔曝气器,池内溶解氧的浓度控制在2.0~5.0mg/l。

在sbr法处理涂装废水时,多采用非限制性或限制性曝气。在充水的起始阶段,由于池内污染物浓度较低,需氧量较小;但随着进水量的加大,污染物的浓度逐渐加大,在进水的后半期应加大废水的供氧量[4]。在曝气阶段,由于池内污染物浓度逐渐降低,需氧量也逐渐减少,在曝气的后半期应减少废水的供氧量。在实际运行时,罗茨鼓风机变频运行可很好的解决供氧分配问题,节省能耗约20%~25%。

4处理效果及运行成本分析

经多年运行表明,系统运行稳定,处理效果好,处理后的水质经当地环境监测站多次采样分析,结果为ph=6.0~9.0,codcr≤80%~90mg/l,ss≤60~70mg/l,bod5≤4~20mg/l,石油类物质≤5.0mg/l,磷酸盐≤0.5mg/l,达到国家《污水综合排放标准》中的一级排放标准。

优化与改进后,总的运行成本由原来的1.36元/立方米降到0.93元/立方米,减少运行成本约30%左右, 经济 效益明显。

5结论

5.1对于汽车涂装废水的处理,必须对原水进行分质分流,重视废水水质均匀。

5.2经实践表明,采用物化+生化法处理汽车涂装废水是经济可行的,较之其它方法具有处理效果稳定、运行成本低、操作维护简单等特点。

5.3通过对物化+生化处理工艺的改进,使汽车涂装废水处理工艺更趋完善,处理效果更稳定。

参考 文献 :

[1]工锡春.最新汽车涂装技术[m].北京:机械械业出版社,1998.

[2]孙华.涂镀三废处理工艺与设备[m].北京:化学 工业 出版社,2006.

废水中磷的处理方法范文6

关键词:海绵铁 锰砂 吸附 含磷废水

1 试验方法

1.1 静态法

量取一定量模拟废水(用化学试剂KH2PO4配制而成)于三角烧瓶中,加入一定量的海绵铁及锰砂,在室温下以60 r/min速度振荡20 min,然后静置2h,取上清液用氯化亚锡法分析溶液中磷的含量,计算吸附容量及去除率。

1.2 动态法

采用φ14的有机玻璃柱,内填充10∶1海绵铁及锰砂混合物,填充物高为600 mm,废水以一定流速顺流通过吸附柱。用氯化亚锡法分别分析流出液达不同体积时的磷含量,计算流出液体积和磷去除率,求出吸附剂的吸附容量。

2 试验结果及讨论

2.1 静态试验

2.1.1 海绵铁粒径的影响

海绵铁粒径直接影响磷的去除效果,选取不同粒径海绵铁处理含磷废水的试验结果如图1所示。随着海绵铁粒径的减小,磷的去除率增加(由62.16%增加到81.48%),但海绵铁的粒径越小其磨损率越大,水力阻力加大,成本增高。从水质要求、经济成本综合考虑,试验时选取1.5 mm的粒径。

2.1.2 海绵铁与锰砂配比的影响

取5 g海绵铁,加入不同配比的锰砂,测定不同配比时海绵铁与锰砂的处理效果,结果见图2。

由图2可知,当海绵铁与锰砂的配比为10∶1,对磷的去除率最高,并且在动态试验中加入适量的锰砂,可防止海绵铁板结,减少水头损失,因此试验选用海绵铁∶锰砂为10∶1。

2.1.3 溶液pH值的影响

当模拟原水含磷浓度为50 mg/L(以PO3-4计)时,吸附剂对磷的去除率与溶液pH值的关系如图3所示。酸度越大,去除率越高;在中性范围(pH值6~8)内吸附剂的吸附量基本保持不变且去除率较高,为81.12%;当pH>9时,由于滤料表面发生化学反应而使去除率迅速降低。因此该法适合于处理酸性及中性或弱碱性含磷废水。试验模拟废水的pH为6~7。

2.1.4 吸附时间的影响

试验结果表明:吸附达80 min以后,吸附剂的吸附容量基本不再变化而达到平衡,吸附量可达9.0 mg/g,磷的去除率在89%以上,结果令人满意。

2.2动态吸附试验

2.2.1 流速对磷去除率的影响

准确称取200g海绵铁和20g锰砂,混合均匀后填充在¢14的有机玻璃柱内,柱高为600 mm,原液起始浓度为C0=50mg/L(以PO3-4计),以不同的流速通过吸附层,并计算不同流速下吸附剂对磷的去除效果,结果见图4。由试验结果可知,流速越小,去除率越高,但流速太小对实际处理工艺没有意义,因而试验选6 m/h的流速做动态试验。

2.2.2 动态吸附试验

原水浓度C0=100mg/L,流速为6m/h,自运行开始至滤料出现穿透,全部时间为10d,进水总磷酸根量为10479.34 mg,处理水量为115.7 L,共吸附磷酸根量为1 646.00mg,动态吸附容量为8.23mg/g,总去除率为15.7%,动态吸附曲线如图5。

3 含磷污水处理试验

用海绵铁处理城市生活污水,在最佳吸附条件下,静态试验结果见表1。

表1 城市生活污水处理结果 序号 吸附剂用量

(g/L) 进水PO3-4浓度

(mg/L) 残余PO3-4浓度

(mg/L) 磷的去除率

(%) 1

2

3 4.0

8.0

12 78.32

78.32

78.32 36.26

8.78

5.42 53.70

88.29

92.10

可见,海绵铁对城市生活污水中的磷有良好的去除效果,当投加量为10g/L时,磷的去除率可达90%以上,达到城市生活污水排放标准。