集成电路的设计方法范例6篇

前言:中文期刊网精心挑选了集成电路的设计方法范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

集成电路的设计方法

集成电路的设计方法范文1

关键词:全寿命成本;输电线路设计;设计方法

中图分类号:TM621.5文献标识码:A

一,输电线路全寿命成本的预测模型

1,预测模型研究流程

对输电线路全寿命周期成本分析研究的本质是:在输电线路的设计阶段,在系统规划给定的决策信息条件下,基于输电线路的一般设计,对输电线路全寿命周期内的所有成本进行有效地预测,以根据全寿命成本的比较对输电线路的原有设计进行必要的反馈以改善其设计,使之符合输电线路建设的全寿命理念要求。

既然本项目是对输电线路全寿命成本进行先期的预测性研究,因此,应界定输电线路全寿命成本预测分析基本的前提假设条件,即在设计阶段,输电线路的全寿命成本预测是在输电线路的正常设计、正常施工及正常运营的情况下进行的,不考虑输电线路全寿命周期中的不可预测的偶然事件影响。

本文推荐的全寿命成本预测模型研究流程是:在输电线路部分确定性己知条件下,由常规性设计的经验,进行输电线路后续本体的设计假定,从而确定模糊的假设条件,如后续设计部件大约的型号、数量等参数,以此进行输电线路各个设计过程的全寿命成本计算。

依据输电线路设计过程进行的输电线路全寿命成本计算思路,在实质上,无论是在输电线路哪个设计过程及设计层次,通过已知的确定设计条件及根据设计经验确定的后续其它部件设计的模糊条件,构成输电线路一般设计的所有条件,由此,在足够的设计信息下根据同一分析方法进行同样的输电线路全寿命成本计算。

2,全寿命成本表示方法

依据输电线路的设计过程,在各类确定的及模糊的部件设计条件及设计参数下,其全寿命成本的的现值是与路径相关的成本现值、导地线的全寿命成本现值、杆塔的全寿命成本现值、基础的全寿命成本现值、绝缘子的全寿命成本现值、金具的全寿命成本现值、防雷及接地的全寿命成本现值、其它成本的全寿命成本现值等之和。

二,基于全寿命成本的输电线路设计方法

设计作为输电线路项目全寿命周期管理的龙头环节,全寿命周期设计意味着,在设计阶段就要考虑到产品寿命历程的所有环节,以求产品全寿命周期所有相关因素在产品设计阶段就能得到综合规划和优化。输电线路设计不仅是设计功能和结构,而且要考虑到电网的规划、线路本体的设计、线路的施工安装、线路的运行、维修保养、直到回收处置的全寿命周期过程。

根据全寿命成本的预测分析及输电线路的分层次设计方法,可建立基于全寿命成本的输电线路设计方法,其本质是:在系统规划给定的决策信息条件下,在满足输电线路各部件及整体技术性要求的基础上,通过一般性的设计,对输电线路全寿命周期内的所有成本进行有效地预测,从而可根据全寿命成本的比较对输电线路的原有设计进行必要的反馈以改善其设计,使之符合输电线路建设的全寿命理念要求。该方法的设计流程可见下图基于全寿命成本的输电线路“分层循环反馈”设计流程:

由上图可知,输电线路的设计是基于全寿命成本的分层次设计,即各个层次的设计均需全寿命成本的循环比较来进行具体设计的选择,可称为“分层循环反馈”设计方法。应用本设计方法,输电线路的设计和全寿命成本的预测是共同进行的,即各个层次的输电线路设计及全寿命成本预测均是在部分确定的己知条件下,由常规性设计的经验,进行输电线路后续本体的设计假定,从而确定模糊的假设条件,如后续设计部件大约的型号、数量等参数,以此进行输电线路各个设计过程的全寿命成本预测,从而对设计方案的选择提供全局性的经济指标。

三,实例分析

本节以导线方案优选举例说明基于全寿命成本的输电线路设计方法。

1,前提条件的确定

经过预测模型研究流程分析,架空导地线路全寿命成本的具体分析是在输电线路路径已选择完成的情况下,经过导地线的具体设计已掌握了部分必要的已知条件,它们包括了:输电线路设计的具体长度;输电线路路径的不同地形比例及气象信息分区;输电线路经过地区的各类状况;输电线路导地线的型号及相应长度;输电线路导地线的预期设计使用寿命;输电线路导地线的失效模式及相应的失效概率。

2,成本模型的建立

导地线包括了导线与地线,由于两者的使用寿命不一致,因而需分别进行建模。导地线成本主要包括了建设成本(即初始材料成本及初始建造成本)、检测维护成本、维修更换成本、失效成本、线路能耗成本及残值等。

以某5O0kV输电线路工程导线方案比选为例,已知该项目的路径长度为119km,采用双回路,主要气象条件为最大风速32m/S,覆冰厚度10mm;系统输送功率额定为1200MW.通过计算比较发现:是依据本文推荐的“分层循环反馈”设计流程,完全可以精确预测整个项目方案的全寿命成本。

本文推荐的全寿命成本预测模型研究流程是:在输电线路部分确定性已知条件下,由常规性设计的经验,进行输电线路后续本体的设计假定,从而确定模糊的假设条件,如后续设计部件大约的型号、数量等参数,以此进行输电线路各个设计过程的全寿命成本计算。根据全寿命成本的预测分析及输电线路的分层次设计方法,可建立基于全寿命成本的输电线路设计方法一“分层循环反馈”,其本质是:在系统规划给定的决策信息条件下,在满足输电线路各部件及整体技术性要求的基础上,通过一般性的设计,对输电线路全寿命周期内的所有成本进行有效地预测,从而可根据全寿命成本的比较对输电线路的原有设计进行必要的反馈以改善其设计,使之符合输电线路建设的全寿命理念要求。最终本文以导线方案优选举例说明基于全寿命成本的输电线路设计方法。

结语

在输电线路设计中提出了基于全寿命成本的输电线路设计方法一分层循环反馈方法。根据输电线路的确定性已知条件和模糊性假定条件,建立了输电线路主要部件全寿命成本的分层循环反馈预测模型。该模型通过仿真计算输电线路全寿命周期内的所有成本,并对输电线路的设计流程加入反馈功能实现对设计方案的改进,使之符合输电线路建设的全寿命理念。通过案例分析,证明了基于全寿命成本的分层循环反馈方法切实可行。

参考文献

集成电路的设计方法范文2

在非微电子专业如计算机、通信、信号处理、自动化、机械等专业开设集成电路设计技术相关课程,一方面,这些专业的学生有电子电路基础知识,又有自己本专业的知识,可以从本专业的系统角度来理解和设计集成电路芯片,非常适合进行各种应用的集成电路芯片设计阶段的工作,这些专业也是目前芯片设计需求最旺盛的领域;另一方面,对于这些专业学生的应用特点,不宜也不可能开设微电子专业的所有课程,也不宜将集成电路设计阶段的许多技术(如低功耗设计、可测性设计等)开设为单独课程,而是要将相应课程整合,开设一到二门集成电路设计的综合课程,使学生既能够掌握集成电路设计基本技术流程,也能够了解集成电路设计方面更深层的技术和发展趋势。因此,在课程的具体设置上,应该把握以下原则。理论讲授与实践操作并重集成电路设计技术是一门实践性非常强的课程。随着电子信息技术的飞速发展,采用EDA工具进行电路辅助设计,已经成为集成电路芯片主流的设计方法。因此,在理解电路和芯片设计的基本原理和流程的基础上,了解和掌握相关设计工具,是掌握集成电路设计技术的重要环节。技能培训与前瞻理论皆有在课程的内容设置中,既要有使学生掌握集成电路芯片设计能力和技术的讲授和实践,又有对集成电路芯片设计新技术和更高层技术的介绍。这样通过本门课程的学习,一方面,学员掌握了一项实实在在有用的技术;另一方面,学员了解了该项技术的更深和更新的知识,有利于在硕、博士阶段或者在工作岗位上,对集成电路芯片设计技术的继续研究和学习。基础理论和技术流程隔离由于是针对非微电子专业开设的课程,因此在课程讲授中不涉及电路设计的一些原理性知识,如半导体物理及器件、集成电路的工艺原理等,而是将主要精力放在集成电路芯片的设计与实现技术上,这样非微电子专业的学生能够很容易入门,提高其学习兴趣和热情。

2非微电子专业集成电路设计课程实践

根据以上原则,信息工程大学根据具体实际,在计算机、通信、信号处理、密码等相关专业开设集成电路芯片设计技术课程,根据近两年的教学情况来看,取得良好的效果。该课程的主要特点如下。优化的理论授课内容1)集成电路芯片设计概论:介绍IC设计的基本概念、IC设计的关键技术、IC技术的发展和趋势等内容。使学员对IC设计技术有一个大概而全面的了解,了解IC设计技术的发展历程及基本情况,理解IC设计技术的基本概念;了解IC设计发展趋势和新技术,包括软硬件协同设计技术、IC低功耗设计技术、IC可重用设计技术等。2)IC产业链及设计流程:介绍集成电路产业的历史变革、目前形成的“四业分工”,以及数字IC设计流程等内容。使学员了解集成电路产业的变革和分工,了解设计、制造、封装、测试等环节的一些基本情况,了解数字IC的整个设计流程,包括代码编写与仿真、逻辑综合与布局布线、时序验证与物理验证及芯片面积优化、时钟树综合、扫描链插入等内容。3)RTL硬件描述语言基础:主要讲授Verilog硬件描述语言的基本语法、描述方式、设计方法等内容。使学员能够初步掌握使用硬件描述语言进行数字逻辑电路设计的基本语法,了解大型电路芯片的基本设计规则和设计方法,并通过设计实践学习和巩固硬件电路代码编写和调试能力。4)系统集成设计基础:主要讲授更高层次的集成电路芯片如片上系统(SoC)、片上网络(NoC)的基本概念和集成设计方法。使学员初步了解大规模系统级芯片架构设计的基础方法及主要片内嵌入式处理器核。

丰富的实践操作内容1)Verilog代码设计实践:学习通过课下编码、上机调试等方式,初步掌握使用Verilog硬件描述语言进行基本数字逻辑电路设计的能力,并通过给定的IP核或代码模块的集成,掌握大型芯片电路的集成设计能力。2)IC前端设计基础实践:依托Synopsys公司数字集成电路前端设计平台DesignCompiler,使学员通过上机演练,初步掌握使用DesignCompiler进行集成电路前端设计的流程和方法,主要包括RTL综合、时序约束、时序优化、可测性设计等内容。3)IC后端设计基础实践:依托Synopsys公司数字集成电路后端设计平台ICCompiler,使学员通过上机演练,初步掌握使用ICCompiler进行集成电路后端设计的流程和方法,主要包括后端设计准备、版图规划与电源规划、物理综合与全局优化、时钟树综合、布线操作、物理验证与最终优化等内容。灵活的考核评价机制1)IC设计基本知识笔试:通过闭卷考试的方式,考查学员队IC设计的一些基本知识,如基本概念、基本设计流程、简单的代码编写等。2)IC设计上机实践操作:通过上机操作的形式,给定一个具体并相对简单的芯片设计代码,要求学员使用Synopsys公司数字集成电路设计前后端平台,完成整个芯片的前后端设计和验证流程。3)IC设计相关领域报告:通过撰写报告的形式,要求学员查阅IC设计领域的相关技术文献,包括该领域的前沿研究技术、设计流程中相关技术点的深入研究、集成电路设计领域的发展历程和趋势等,撰写相应的专题报告。

3结语

集成电路的设计方法范文3

关键词:集成电路 设计验证 发展策略

1 引言

近些年来,微电子技术的集成度每过一年半就会翻一番,前后30年的时间里其尺寸缩小了近1000倍,而性能增强了1万倍。目前,欧美发达国家的IC 产业已经非常专业,使设计、制造、封装以及测试形成了共同发展的情形。因为测试集成电路可以作为设计、制造以及封装的补充,使其得到了迅速发展[1]。

我国经济处于稳定增长中。目前,全球半导体产业都在重点关注我国的集成电路产业,因为我国存在着庞大市场、廉价劳动力以及非常优越的政策支持等,因此,我国的集成电路产业在近几年有了迅速的发展。而计算机、通信以及电子类技术也被集成电路产业带动发展,而广泛地使用互联网也产生了很多新兴产业。与此同时,对集成电路进行测试的服务业也得到了很大发展。现如今,集成电路在我国有世界第二大市场,但是国内的自给率低于25%,特别是在计算机CPU上,国内技术与欧美发达国家还存在较大的差距。

微电子技术的发展已经迈进纳米与SoC(系统级芯片)时期,而CPU时钟也已进入GHz,在发展高端的集成电路产业上,我国还需要继续努力,与发达国家缩小差距。尤其与集成电路测试相关的技术一直是国内发展集成电路产业的薄弱点,因此,必须逐步提升集成电路的测试能力。

2我国集成电路测试技术能力现状

上世纪七十年代,我国开始系统地研发集成电路的测试技术。经过40年的实际,我国的集成电路已经从开发硬件和软件发展到系统集成,从仿制他国变成了独立研发。伴随着集成电路产业在我国飞速发展,与之相关的检测技术与服务也发挥着越来越大的作用,公共测试的也有了更大的需求,国内出现了一大批专业芯片测试公司进行封装测试板块。而集成电路的测试产业在一定程度上补充了设计、制造以及封装,使这些产业得到飞速发展。

但是,因为IC芯片的应用技术需要越来越高的要求与性能,所以必须提高测试芯片的要求。对于国内刚步入正轨的半导体行业来说,其测试能力与IC设计、制造和封装相比较是很薄弱的一个环节。尤其是产品已经迈进性能较高的CPU和DSP 时代,而高性能的CPU和DSP产品的发展速度远高于其他各类IC产品。相比较于设计行业的飞速发展,国内的测试业的非常落后,不但远远跟不上发达国家的步伐,也不能完全满足国内集成电路发展的需求,从根本上制约着我国集成电路产业的发展,缺少可以独立完成专业测试的公司,不能完全满足国内IC设计公司的分析验证与测试需要,已经是我国发展集成电路产业的瓶颈。尽管有很多外企在我国设置了测试机构,但是他们中的大部分都不会提供对外测试的服务,即便提供服务,也极少对小批量的高端产品进行测试开发、生产测试和验证。目前国内对于一些高端技术的集成电路产品的测试通常是到国外进行。而对于IC发展,不仅仅对其测试设备有着新要求,测试技术人员也必须有较高的素质。将硬件和软件进行有机结合,完善管理制度,才可以保证测试IC的质量,从而使整机系统的可靠性得到保障[2]。因此,必须加快建设国内独立的专业化集成电路测试公司,逐步在社会中展开测试芯片的工作,能够大量减少测试时间,增强测试效果,最终使企业减少测试花销,从根本上解决我国测试能力现存的问题,才能够加强集成电路设计和制造能力,从而使国内的集成电路产业得到发展。

3我国集成电路测试的发展策略

伴随着不断壮大的IC 设计公司,关于集成电路产业的分工愈发精细,建立一个有着强大公信力的中立测试机构进行专业化的服务测试,是国内市场发展的最终趋势与要求。因此,系统地规划和研究集成电路测试业的策略,对设计、制造与封装进行强有力的技术支撑,必将使集成电路产业得到飞速发展。以下是使我国集成电路测试产业得到进一步发展的建议:

3.1发展低成本测试技术

目前,我国的高端IC 产品还没有占据很高的比例,市场主要还是被低档与民用的消费类产品占据,例如MP3 IC、音视频处理IC、电源管理IC以及功率IC等,其使用的芯片售价本来就比较低,所以没有能力承受非常昂贵的测试费,因此企业需要比较低成本的测试。这就从根本上决定国内使用的IC 测试设备还不具有很高的档次,所以,选择测试系统时主要应该注重经济实惠以及有合适技术指标的机型。

3.2研发高端测试技术

伴随着半导体工艺的迅速发展,IC产品中的SoC占据了很大的比重,产值也越来越多。但是SoC在产业化以前需要通过测试。所以,快速发展的SoC 市场给其相关测试带来了非常大的市场需要。在进入SoC时代之后,测试行业同时面临着挑战和机遇。SoC的测试需要耗费大量的时间,必须生产很多测试图形与矢量,还必须具有足够大的故障覆盖率。以后,SoC会逐渐变成设计集成电路主要趋势。为了良好地适应IC 设计的发展,对于测试高端芯片技术也必须进行储备,测试集成电路的高端技术的研究应该快于IC设计技术的发展[3]。

4结束语

我国作为世界第二大生产集成电路的国家,目前测试集成电路的技术还比较落后,比较缺乏设计高水平测试集成电路装备的能力。对集成电路进行测试是使一个国家良好发展集成电路产业不可或缺的条件。集成电路企业需要不断地增强测试技术的消化、吸收以及创新,政府也需要发挥自身的导向性,为集成电路企业设计和建立服务性的测试平台。

参考文献:

[1]程家瑜,王革,龚钟明,等.未来10年我国可能实现产业跨越式发展的重大核心技术[J].中国科技论坛,2004(2):9-12.

集成电路的设计方法范文4

关键词:同步数字集成电路 设计 时钟偏移

中图分类号:TN431 文献标识码:A 文章编号:1007-9416(2012)07-0229-01

面对当前21世纪科学技术的迅速发展,在同步数字集成电路的设计中,时钟偏移的影响力也越来越受到设计人员的关注。受时钟偏移的影响,导致在长时间的应用中,时钟频率出现的越来越高,也由此增加了时钟偏移在同步数字集成电路中的重要性。一般而言,任何一个系统中若出现过多的流水线级数,则会导致时钟偏移的可能性增加,并由此影响数字集成电路的同步进行。在解决这一问题的过程中,本文从同步数字集成电路、时钟偏移、时钟偏移分析等三个方面出发,对这一问题的完善做如下简要分析:

1、同步数字集成电路

在当前数字集成电路设计中,最常用的方法为同步方法,这一方法除了能最大限度的发挥出集成电路的优势外,还具备高度的可靠性。但在实际应用中,所谓的同步,具体是指该电路系统在实际影响中,其所包含的触发器都能在一个公共时钟的控制下进行运行。结合同步电路的整体运行结构,其内部构造主要由组合电路、时序电路及时钟分配网络等三个方面构成。这三者之间有着相辅相成、缺一不可的关系。集成电路在很大程度上与组成电路之间存在着较大的差别,组合电路能够随时输出稳定状态,而集成电路则不行。此外,在整个集成电路中,时钟偏移的出现,在扰乱整个时序单元的同时,还会使整个集成电路的内部处于混乱状态,甚至在情况严重时会出现瘫痪,这些,都需要设计人员进行考虑,并对其进行完善。换而言之,在整个同步数字集成电路的实际运行中,要想从根本上保证电路的运行秩序,其核心在于保证各个时序单元的时钟信号处于正确状态,只有这样才能得到正确的逻辑值,从而确保整个电路功能的正确发挥。

2、时钟偏移

在整个同步数字集成电路设计中,若使用边沿触发式触发器的同步系统,则必须要求所有的触发器都在同一时刻对时钟出发沿进行接收,并以此来确保集成系统的正常运行。若单纯的从理论角度出发,电路中的触发器所使用的都是同一个时钟信号,但其中一个触发器接收到的时钟信号要比另外一个的时间晚很多。换而言之,即同一信号在发出后,到达的时间不同,这就是所谓的时钟偏移。但在实际应用中,若出现最大传递延时的状况,则能从很大程度上反应出信号出现了变化,且最慢的接收器也会在一定时间内响应这种变化。而正是这种延时状况,在很大程度上确定了电力的最大允许速度,即人们常说的最大传递延时。与之不同的是,最小传递延时在实际应用中,能够在很大程度上表示输入时间的变化,一旦输出时间出现了变化,则其中传递的时间都会受到影响。但与最大传递延时相比,这种延时所造成的影响要小的多,因而在一定程度上更适合应用到时钟偏移的研究中。

3、时钟偏移分析

科研人员在整个同步数字集成电路的设计研究中,受时钟信号的影响,在考虑整个电路时序单元的同时,还需要电路设计的各个环节考虑进去。从现有的集成电路设计方案能够得出,在引起时钟偏移的众多原因中,导线长度及负载的不均衡是引起时钟偏移的主要因素;再加上串扰(即一根信号线的能量串入到另一根信号线中)因素的影响,都会在很大程度上引起时钟偏移的现象。在大型 PCBO或ASICO专用集成电路设计中,通常难以找到可能引起时钟偏移的所有原因。所以,大多数ASIC制造商都要求设计者提供额外的建立和保持时间容限,但在这些应用中,其时间容限往往存在与系统内部的延迟部位,这些部位都会因时间延迟而引起相应的后果。面对当前集成电路研究步伐的加快,时钟偏移的大小与极性都会对整个集成电路的稳定性及功能性造成影响,与此同时,任意两个相对的时序在运行中,其相邻的寄存器都会受自身极性的影响,出现颤抖,这些都会影响时钟的正常运行,并由此导致时钟不确定因素的出现,而这些,都需要科研人员对整个时序进行相应的分析,确保集成电路的顺利运行。

4、结语

综上所述,在当前同步数字集成电路设计的研究中,时钟偏移作为最常见的问题之一,在影响整个集成电路正常运行的同时,还会对系统的性能造成影响。在完善这一问题的过程中,设计人员只有在了解时钟偏移产生的机理上,才能采取相应的措施来缓解这一现象。这就需要设计人员能够结合着我国集成电路发展的基础,不断学习国外集成电路的研究技术,将其运用到我国的实际发展中,在推动集成电路发展的同时,还能为其今后的发展奠定坚实的基础。

参考文献

[1]殷瑞祥,郭镕,陈敏.同步数字集成电路设计中的时钟树分析[J].华南理工大学学报(自然科学版),2011,(06).

集成电路的设计方法范文5

数字集成电路低功耗优化设计

随着科技的不断发展和进步,在集成电路领域当中,数字集成电路的增长速度飞快,在各种新技术的应用之下,集成电路系统的集成度和复杂度也有了很大的提升。对着移动设备、便携设备的广泛应用,使得数字集成电路面临着越来越严峻的功耗问题。因此,在数字集成电路的未来发展当中,低功耗优化设计已经成为一个主要的发展趋势,在数字集成电路的工艺制造、电路设计等方面,都发挥着巨大的作用。

一、低功耗优化设计的方法和技术

对于可移动、便携式的数字系统来说,功耗具有很大的作用。因此在设计数字电路的时候,应当分析其功耗问题。在设计数字集成电路的过程中,要对功耗、面积、性能等加以考虑。而在这些方面,存在着相互关联和约束的关系。因此,在对数字电路性能加以满足的前提下,对设计方案和技术进行选择,从而实现低功耗优化设计。具体来说,应当平衡性能、面积、功耗方面的关系,防止发生浪费的情况。对专用集成电路进行高效应用,对结构和算法进行优化,同时对工艺和器件进行改进。

二、数字集成电路的低功耗优化设计

1、门级

在数字集成电路的低功耗优化设计中,门级低功耗优化设计技术具有较为重要的作用,其中包含着很多不同的技术,例如路径平衡、时许调整、管脚置换、们尺寸优化、公因子提取、单元映射等。其中,单元映射是在设计电路中,在逻辑单元、门级网表之间,进行合理的布局布线。公因子提取法能够对逻辑深度进行降低、对电路翻转进行减小、对逻辑网络进行简化从而降低功耗。路径平衡则是针对不同路径的延迟时间,对其进行改变,从而降低功耗。

2、系统级

系统级低功耗优化设计当中,主要包括了软硬件划分、功耗管理、指令优化等技术。其中,软硬件划分主要是对硬件和软件在抽象描述的监督,对其电路逻辑功能加以实现,通过对方案的综合对比,选择低功耗优化设计方案。功耗管理是针对电路设计不同的工作模式,将空闲模块挂起,从而降低功耗。而指令优化则包含指令压缩、指令编码优化、指令集提取等,通过对读取速度、密度的提升,使功耗得到降低。

3、版图级

在版图级低功耗优化设计中,需要对互联、器件等同时进行优化,对着集成电路工艺的发展,器件尺寸的减小,功耗也就自然降低。同时由于具有更快的开关速度,因此可以根基不同情况,在电路设计中选择合适的器件进行优化。而对于系统来说,互联作为连接器件的导线,对于系统性能也有着很大的影响。在信号布线的过程中,可以增加关键、时钟、地、电源等信号以及高活动性信号的横截面,从而降低功耗和延时。

4、算法级

在算法级低功耗优化设计当中,需要对速度、面积、功耗等约束条件加以考虑,从而对电路体系编码、结构等进行优化。在通常情况下,为了提升电路质量、降低电路功耗,会采用提高速度、增加面积等方法来实现。算法级低功耗优化设计与门级、寄存器传输级不同,这两者都是对电路的基本结构首先进行确定,然后对电路结构再进行低功耗优化调整。在算法级低功耗优化设计当中,主要包括并行结构、流水线、总线编码、预计算等技术。

5、电路级

在电路级低功耗优化设计中,NMOS管阵列构成的PDN完成了逻辑功能,其中只需要少量额晶体管,具有较快的开关速度,同时由于具有较低的负载电容,不存在短路电流。在电源与第之间,没有电流通路,因此不会产生静态功耗,对于总体功耗的降低有着很大的帮助。同时,在应用的异步电路当中,在稳定状态时,输入信号才会翻转,从而避免了输入信号之间的竞争冒险,也避免了功耗浪费。

6、工艺级

在工艺级低功耗优化设计中,主要包括按比例缩小、封装等技术。随着技术的发展,系统拥有了更高的集成度,器件尺寸得以减小、电容得以降低,在芯片之间,通信量也有所下降,因此功耗也能够得到有效的控制。其中主要包括了互连线、晶体管的按比例缩小。芯片应当进行封装,充分与外界相隔离,从而避免外界杂质造成腐蚀,降低其电气性能。而在封装过程中,对于芯片功耗有着很大的影响。通过合理的进行封装,能够更好的进行散热,从而是功耗得到降低。

7、寄存器传输级

在设计数字集成电路的过程中,寄存器传输级是一种同步数字电路的抽象模型,根据存储器、寄存器、总线、组合逻辑装置等逻辑单元之间数字信号的流动所建立的。在当前的数字设计中,工作流程是寄存器传输级上的主要设计,根据寄存器传输级的描述,逻辑综合工具对低级别的电路描述进行构建。在寄存器传输级的低功耗优化设计当中,主要包括了门控时钟、存储器分块访问、操作数隔离、操作数变形、寄存器传输级代码优化等方法。

随着科技的不断发展,在当前社会中,越来越多的移动设备和便携设备出现在人们的生活中,因此,数字集成电路也正在得到更加广泛的应用。而在电路设计当中,功耗问题始终是一个较为重点的问题,因此,应当对数字集成电路进行低功耗优化设计,从而降低电路功耗,提升电路效率。

参考文献:

[1]桑红石,张志,袁雅婧,陈鹏.数字集成电路物理设计阶段的低功耗技术.微电子学与计算机,2011(04).

[2]邓芳明,何怡刚,张朝龙,冯伟,吴可汗.低功耗全数字电容式传感器接口电路设计.仪器仪表学报,2014(05).

集成电路的设计方法范文6

【关键词】 集成电路 超低功耗 技术研究

集成电路在不断的发展过程中,其所具备的信息处理能力越来越高,然而集成电路板的功耗也在不断增大,这就使得电子设备设计者在性能和功耗的选择过程中往往只能进行折中选择,这些都制约了电子元件的纳米化发展,制约了集成电路的超大规模发展。这种愤怒格式的超低功耗技术只是通过对技术的制约来实现低功耗,因此超低功耗技术成为了一种制约集成电路发展的技术难题。

一、现有的集成电路的超低功耗可测性技术

在集成电路的发展进程中,超低功耗集成电路的实现是一项综合工程,需要在材料、电路构造及系统的功耗之间进行选择。可测性技术所测试出的数据影响制约着集成电路的发展。但随着集成电路在不断发展过程中趋于形成超大规模集成电路结构,这就导致在现有的测试技术中,超大规模的集成电路板容易过热而导致电路板损坏。现有的超低功耗可测性技术并不能满足对现有芯片的测试,并不能有效地通过对日益复杂的集成电路进行测试,因此在对超低功耗集成电路技术进行研究的同时,还要把握现有的集成电路的超低功耗的可测性技术不断革新,以摆脱现有测试技术对集成电路板发展的制约。

二、超低功耗集成电路研究发展方向

2.1 现有的超低功耗集成电路技术

在实际的操作过程,超低功耗集成电路是一项难以实现的综合性较强的工程,需要考虑到集成电路的材料耗能与散热,还要考虑到系统之间的耗能,却是往往在性能和功耗之间进行折中的选择。现有的超低功耗集成电路大多是基于CMOS硅基芯片技术,为了实现集成电路的耗能减少,CMOS技术是通过在在整体系统的实现设计,对结构分布进行优化设计、通过对程序管理减少不必要的功耗,通过简化合理地电路结构对CMOS器材、结构空间、工艺技术间进行立体的综合优化折中。在实际的应用工程中,通过多核技术等结构的应用,达到降低电路集成的耗能,但是睡着电子原件的不断更新换代,使得现有的技术并不能达到性价比最优的创收。

2.2 高新技术在超低功耗集成电路中的应用

随着电子元件的不断向纳米尺度发展,集成电路板的性能得到了质的飞跃,但是集成电路芯片的耗能也变得日益夸张,因此在集成电路板的底层的逻辑存储器件及相关专利技术、芯片内部的局域之间的相互联通和芯片间整体联汇。通过有效的超低功耗的设计方法学理论,进行合理的热分布模型模拟预测,计算所收集的数据信息,这种操作流程成为超低耗解决方案中的不可或缺的部分。

现在的主要的超低功耗技术有,在集成电路的工作期间采用尽可能低的工作电压,其中芯片的核电压为0.85V,缓存电压0.9V。通过电压的有效控制能够减少电路集成技术所运行期间所造成的热量散发,从而导致芯片过热。对非工作核的实行休眠的栅控功耗技术,减少芯片的运作所需要承受的功。通过动态供电及频率技术对集成电路芯片进行有效的控制节能。为了实现超低功耗集成电路,需要从器材的合理结构、对电路元件材料的选择、空间上的合理分配等多个层次进行努力。通过有效地手段减少芯片在运作过程中所存在的电力损耗,从而降电能功耗在电路总功耗中所占的比例,这样能够将集成电路板的耗能有效地控制。利用高新材料形成有效的多阀值CMOS/功率门控制技术,对动态阀值进行数据监控,可以有效地减少无用的做功,有效地减少器件泄漏电流。通过对多门学科知识的应用实践及高新材料的实际应用,能够有效地进行减少集成电路的功耗。