前言:中文期刊网精心挑选了通信技术原理范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

通信技术原理范文1
关键词:光纤通信 原理 应用 趋势
Abstract: Communication network and telephone communication network in optical fiber communications network to replace the cable communication network has become the world recognized the fact. At this time because the communication distance influence, falling to the utilization rate of optical fiber communication, so as to achieve further development, must find a new way, using new technology. This paper analyzes the principle of optical fiber communication technology, practical application and to explain the new technology in optical fiber communication, the trend of research on new technology of optical fiber communication.
Key words: optical fiber communication; principle; application; trend
中图分类号:[TN913.7] 文献标识码:A 文章编号:
一、光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
二、光纤通信技术的原理
2.1光纤通信是利用半导体激光器或半导体发光二极管作为光源器件,把电信号转换为光信号并将其耦合进石英光纤中进行传输,在接收端使用半导体检测器件,如雪崩光电二极管或光电二极管等,将光信号再还原为电信号的一种通信方式。光纤的结构是由:纤芯、包层、涂敷层和护套组成。
2.2纤芯的作用是传到光波,包层的作用是将光波封闭在光纤中传播。为了达到传到光波的目的,需要使纤芯材料的折射率大于包层的折射率。为了实现纤芯和包层材料的折射率差,必须使纤芯和包层的材料有所不同。目前实用的光纤主要是石英系光纤,其主要材料是石英。如果在石英中掺入折射率高于石英的掺杂剂,则就可以作为纤芯材料。同样,如果在石英中掺入折射率比石英低的掺杂剂,则就可以作为包层材料,经这样掺杂后,上述的目的就可以达到了。
2.3目前广泛应用的掺杂剂主要是:二氧化锗、五氧化二磷、三氧化二硼、氟。前两种用于提高适应材料的折射率,后两种用于降低石英材料的折射率。实际应用中的光纤,外面加几层塑料涂层,以保护光纤,增加光线的强度。经过涂料以后的光纤成为光纤心线。根据光纤心线的涂料结构的不同,可以分为紧套光纤和松套光纤。
三、光纤通信技术发展的现状
3.1波分复用技术
波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
3.2光纤接入技术
光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
四、光纤通信技术的广泛应用
光纤通信技术在电力系统和舰艇及水下系统中的应用。
4.1在电力系统中的应用
电力系统通信与邮电公用网相比,有着自身的特点,比如要求高可靠性、业务多、大部分业务容量小、具有丰富的杆路资源。因此,在电力通信光纤网络建设的过程中,通常会针对电力通信的特点并充分利用电力部门的特征进行光纤通信的建设。
4.1.1通过电力系统所独有的线路杆塔资源架设的电力特种通信光缆称为电力特种光缆。电力特种光缆分为以下几类:OPGW、ADSS、OPAC、OPPC、MASS、GWWOP、ADL ,电力特种光缆由于其自身结构以及安装形式比较特殊,所以遭到外力破坏的可能性相对来说比较小。目前,应用最为广泛的是OPGW 和ADSS 这两种光缆。
4.1.2OPGW有以下几个方面的优点:光缆同时与地线相复合,从而节省了重复建设的巨大费用;传输信号损耗小,且有着较高的通信质量;具有较好的安全性,不容易被偷盗。其缺点是在应用中有雷击损伤的问题。另一种较常应用于电力通信中的光缆ADSS 光缆由于其材料采用绝缘介质,具有重量轻、不会对铁塔照成较大影响等优点,可应用于强电场和长跨距。同时由于其杆塔添加型的安装形式,光缆的架设对输电线的运作影响较小,所以在其安装、维护的过程中可以不用停电。
4.1.3ADSS光缆在实际使用中最大的问题是电腐蚀
根据其各自的特点,通常在新建线路时,会采用OPGW光缆;在老线路加挂光缆时,会使用ADSS光缆。而新型特种光缆光纤复合相线(OPPC) 同时具备电能传输功能,国外已应用多年,国内应用处于起步阶段。与ADSS 和OPGW 等常用光缆比较,OPPC 具有一系列优点,包括与相导线复合,基本不存在OPGW 雷击断缆问题;不存在ADSS 电腐蚀断缆问题;处于高电压状态,具有防盗功能。当无法找到合适的ADSS 和OPGW 的敷设空间时,OPPC 是适当的选择。目前,在波长1260 ~ 1680nm 范围内,光纤可以传输的波段有6 个。利用波分复用 (WDM) 技术,每个波段可同时传输多个信道。不同类型的光纤所能传播的光波波长范围也不同。
4.2光纤在舰艇及水下系统中的应用
光纤通信在舰艇上的应用主要基于光纤优良的传输性能, 同时也由于光纤对电磁现象的不敏感性, 而且能减少重量和尺寸等, 舰用光纤通信就是在这一背景下产生的。当前舰船电子技术深入到各种电器设备和控制系统, 舰用雷达、导航、传感器和指挥系统的信号电缆, 加上其它电器设备和电力电缆, 带来了严重的电磁干扰、射频干扰和电磁泄漏等问题, 使得电磁兼容性的矛盾日益加剧。虽然各种设备的电磁信号在严格的控制之下, 但干扰依然存在,只能在某种程度上减少干扰, 而无法从根本上消除。光纤是一种无源、不导电的介电波导材料, 对电磁现象不敏感, 其自身也不产生辐射, 以光纤作为信息传输材料, 可以免除各种信号之间的干扰, 传输数据的准确率、灵敏度将大大提高, 保密性也大大增强。特别对于通信监视设备尤为适宜, 可使舰船电磁兼容性矛盾大大缓解。舰艇采用光纤通信技术可使传输的频带增宽、信息容量增大、传输速率提高, 同时还可以极大地节约空间和重量, 而且可以简化安装。
4.2.1光纤的固有化学稳定性和物理特性, 使得它作为传输材料绝缘性能好, 能承受舰艇及水下的恶劣环境耐高湿、抗潮湿和盐份的腐蚀, 而且光纤不会自燃也提高了舰船的安全性。
五、光纤通信技术的发展趋势
5.1向超高速系统的发展
网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%:目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了2000倍,比同期微电子技术的集成度增加速度还快得多。
5.2向超大容量WDM系统的演进
采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。
5.3实现光联网
波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。
5.4新一代的光纤
近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础。 5.5光接入网
过去几年间,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都已更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络。
六、结语
光纤通信是利用光波在光导纤维中传输信息的通信方式,是现代通信网的主要传输手段,技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。
参考文献:
通信技术原理范文2
[关键词] 光纤;通信原理;光纤通信系统;发展前景
中图分类号: TN929.11 文献标识码: A
1前言
光纤通信是现代通信网的主要传输手段,它的快速发展历史只有二十多年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。进入21 世纪后,由于因特网业务的迅速发展和音频、视频、数据、多媒体应用的增长,对大容量(超高速和超长距离) 光波传输系统和网络有了更为迫切的需求。光是一种频率极高的电磁波,因此用光作为载波进行通信容量极大,是过去通信方式的千百倍,具有极大的吸引力,光通信是人们早就追求的目标,也是通信发展的必然方向。
2 通信原理
2.1 光纤的优点
光纤是由中心的纤芯和的包层同轴组成的圆柱形细丝。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤通信之所以发展迅猛。主要原于它具有以下特点:
1) 通信容量大、传输距离远。一根光纤的潜在带宽可达20THz,无中继传输距离可达几十、甚至上百公里;
2) 信号串扰小、保密性能好;
3) 绝缘、抗电磁干扰性能强,传输质量佳;
4) 光纤线径细、重量轻,原料为石英,节省有色金属铜材料,有利于资源合理使用;
5) 具有抗腐蚀能力强、抗辐射能力强、可绕性好、无电火花、泄露小、保密性强等优点;
6) 无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外;
7) 光缆适应性强,寿命长。
2.2 光纤通信的原理
所谓光纤通信,就是在发送端首先要把传送的信息(如话音) 变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率) 变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM- DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。
基本的光纤通信系统是由数据源、光发送端、光学信道和光接收机组成。数据是数字,声音,图像等各种信号的数字化。光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31 和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图像、数据等信息。
2.3 光纤通信系统
光纤通信系统的主要工作流程如图2- 1
图2-1 光纤通信系统
2.3.1 PCM电端机
在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(Pulsecodemodulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。
2.3.2 光发信机
光发信机是实现电/ 光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于PCM 电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。
2.3.3 光中继器
光中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲进行整形。
2.3.4 光收信机
光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。
2.3.5 光纤连接器、耦合器等无源器件
由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。
2.4 光纤通信的应用领域
光纤通信的应用领域很广泛,主要用于通信中继网和用户接入网。光纤通信的优点在这里可以充分发挥,逐步取代电缆,得到广泛应用。长途干线通信过去主要靠电缆、微波、卫星通信,现已全面使用光纤通信,并形成了占全球优势的比特传输方法。光纤通信还可用于全球通信网、各国的公共电信网(如我国的国家一级干线、各省二级干线和县以下的支线)、高质量彩色电视传输、工业生产现场监视和调度、交通监视控制指挥、城镇有线电视网、共用天线(CATV) 系统等。
3 光纤通信技术的发展前景
过去有人对光纤通信的发展情景,有些困惑。其一,在2000 年IT行业的泡沫,使光纤通信的生产规模投入过大,生产过剩,IT行业中许多小公司倒闭。特别是光纤,国外对中国倾销。其二,有人认为光纤通信的传输能力已经达到10Tbps,几乎用不完,而且现在大干线已经建设得差不多,埋地的剩余光纤还很多,光纤通信技术不需要更多的发展。
3.1 光纤到家庭(FTTH) 的发展
FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。FTTH所需要的光纤可能是现有已敷光纤的2~3 倍。过去由于FTTH 成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。
近来,无线接入技术发展迅速。可用作WLAN 的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100 米以上,目前已可商用。如果采用无线接入WLAN作用户的数据传输,包括上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEES02.11g是可以满足的。而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。这就形成“光纤到家庭+ 无线接入”(FTTH+ 无线接入) 的家庭网络。这种家庭网络成本大大降低,维护简单。接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。FTTH+ 无线接入是未来的发展趋势。
3.2 光纤通信的市场
FTTH毕竟是信息社会的需求,光纤通信的市场一定有美好的情景。目前,我国大量建设FTTH的社会环境和条件尚未具备,可能需要等待一段时间。不过也有些大城市的所谓中心商业区CBD,有比较强的经济力量,现在已经采用光纤到住地PTTP 来建设。总的来说,目前中国的FTTH处于起步试点阶段。试点的作用,一方面是摸索技术和建设的经验,另一方面,还起竞争抢占用户的作用。所以,现在电信运行商,地方业主都积极对FTTH试点,以便发展宽带业务。因此,广播运行商受到巨大的挑战,广播商应加快发展数字电视的进程,并且要充实节目内容和采取有竞争力的商业模式。如果广播商要发展VOD点播电视,还需要对电缆电视网双向改造,如果采用光纤网,可更充分地适应未来的技术发展和市场需求。
参考文献
[1] 张国鸿.浅谈光纤设备通信原理及其布线技术[J].港口科技.通信与导航,2007.
通信技术原理范文3
关键词:通信交换原理;通讯网络技术;交换方式
随着信息技术的不断发展,人们的日常生活受现代通信技术的影响很大,在通信网络技术当中,交换技术在不断的被更新,在很大程度上推动了通信网络技术的快速发展。可以说,通信网络技术的核心技术就是交换技术。因此,在以后的发展中要充分考虑现代交换技术在应用过程中所受的影响因素,当出现问题时能够及时解决问题,使通信网络技术能够得到完善和发展,可见加大对交换技术在通信网络技术中的应用具有重要的研究意义。
1交换原理概述
交换技术是指有目的的传递用户之间的信息,而数据交换是指转换不同用户之间的数据,世界上要想进行信息的传递就必须进行交换,所以在很多领域上交换具有重要的应用,特别是在通信领域对交换功能则更加具有依赖性,应用于通信网络交换中心,负责转换来自四面八方的信息,在通过中心交换机,将这些信息向目的地进行传输。一开始的通信技术是步进制传输,已经发展为今天的IT,可以说通信行业有了巨大的发展,而通信技术要想实现转换大规模的数据就需要依靠交换技术进行信息之间的交换。现在地热层交换机结构模块主要用ASIC(ApplicationspecificIntegratedCircuit)芯片进行数据包的转发,具有非常快的转发速度。
2通信网络技术中常用的交换方式
随着科学技术的不断发展,信息技术得到了快速的发展,现在常见的交换技术已经有很多,常见的有程控交换、分组交换技术以及ATM交换技术等,具体如下。
2.1程控交换技术
以前在进行传输时采用的是语音传输,而现在通信业务已经转换为数据传输,这种给编,也使传统的电路交换技术转变现在数据软交换。程控交换技术,是指通过程序控制进行的交换技术,通过专门的计算机对数据和语音之间的程序交换。程序和数据是程控交换技术的要组成部分,而系统程序和应用程序组成了程序,而系统数据、用户数据、路由数据和交换框架数据则组成了数据。
2.2分组交换技术
分组交换技术是指将报文分成一些等长的报文组,在存储和转发这些报文组,具有较高的利用率。延时小以及较强的实时通信能力等特点,存储和转发是分组交换技术的交换形式,分组交换技术是报文交换网之后发展出的一个新型交换网络技术,在很大程度上能够使现代的通信数据传输要求得到满足。在此基础上产生了包括电子邮件、在线视频及数据交换等原理的增值业务,这些都是利用了动态技术将数据进行分割,转变成多组数据,并对这些数据进行标识,再通过分组进行传输。分组交换技术的应用范围比较广,其中包括机关单位和企事业单位内部的局域网,并对不同的机型以及不同传输速率的用户之间传输数据都适用。
2.3ATM交换技术
作为电交换技术的一种,ATM交换技术进行交换的交换单位是信元,对信头的交换处理是将信元从一个逻辑信道迁移到另一个逻辑信道,实现这些信元时间和空间的交换是通过一张翻译表,通过译码可以对当前的交换状态进行列出。在当今时代,人们对信息的依赖无异于对食物的依赖,现在应用广泛的宽带业务就是在ATM交换技术的基础上,结合数字电话网逐渐发展起来的。与其他的交换技术相比,ATM交换技术的安全性和封闭性更高,可以在很大程度上对用户的数据进行保护。
2.4软交换技术
随着信息技术的不断发展,下一代网络交换技术的主要技术将会是软交换技术,在很多企业的发展中起着重要的作用,软交换技术和传统的网络一直是相互联系的技术,保证了网络数据的统一性,网络控制的核心就是软交换技术,其业务层是第三方应用平台和数据,同时又提供了第三方应用以及管理业务,使协议对网络设备的干预得到了保证。
参考文献:
[1]李硕,王学望,康锐.面向完整性要求的航空电子全双工交换式以太网可靠性评价参数研究[J].西安交通大学学报,2013(3).
[2]于铁峰,刘晓静,李文卿,等.基于交换式以太网的实时工业通信相关理论与技术研究[D].武汉:武汉理工大学,2010.
[3]何育武.全局在胸道义在肩——中国电信新疆公司勇担责任高效执行应急通信保障任务[J].中国电信业,2010(4).
[4]张培.高职现代交换技术学习领域课程开发实践——以苏州市职业大学为例[J].南通职业大学学报,2015(A2).
通信技术原理范文4
【关键词】云技术网络平台新能源开发利用无线传输技术系统三者互为系统平台的全立体交互式综合应用
一、云技术
云计算(cloud computing),分布式计算技术的一种,其最基本的概念,是透过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算分析之后将处理结果回传给用户。透过这项技术,网络服务提供者可以在数秒之内,达成处理数以千万计甚至上亿计的信息,达到和“超级计算机”同样强大效能的网络服务。
“云计算(Cloud technology)”是一个很时尚的概念,它既不是一种技术,也不是一种理论,而是一种商业模式的体现方式。准确说,云计算仅描述了一类棘手的问题,因为现在这个阶段,“计算与数据”跷跷板的平衡已发生变化,即已经到“移动计算要比移动数据要便宜的多(Moving computation is cheaper than moving data)”。《著云台》的分析师团队结合云发展理论总结认为,基于云计算商业模式应用于网络技术、信息技术、整合技术、管理平台技术、应用技术等的总称,可以组成资源池,按需所用,灵活便利。
二、新能源
新能源有广义和狭义之分。广义的新能源泛指能够实现温室气体减排的得的可利用能源,外延涵盖了高效利用能源、资源综合利用、可再生能源、代替能源、核能、节能等。狭义的新能源指除常规性能源和大型水利发电之外的风能、太阳能、生物能、地热能、海洋能、小水电和核能等能源的总成。现阶段对风能、海洋能、小水电和核能的利用主要集中在电能的转换上,而对太阳能、生物能、地热能的利用除了将其转换为电能外,还应用于向热能和燃气的转换上。总体来讲,新能源的利用主要是围绕发电展开的。新能源的共同特点是比较干净,除核裂变燃料外,几乎是永远用不完的。由于煤、油、气常规能源具有污染环境和不可再生的缺点,因此,人类越来越重视新能源的开发和利用。
三、无线传输技术
无线传输技术按技术领域大致分为:无线能量(电能)传输技术、无线通信(数据)传输技术。
无线能量(电能)传输方式及技术原理:无线电力传输是一种传输电力的新技术,它将电力通过电磁耦合、射频微波、激光等载体进行传输。这种技术解除了对于导线的依赖,从而得到更加方便和广阔的应用。
无线电力传输的基本原理:
①电磁感应―――短程传输。电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系与转化。电磁感应是电磁学中的基本原理,变压器就是利用电磁感应的基本原理进行工作的。利用电磁感应进行短程电力传输的基本原理为,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。若线圈L1中通已交变电流,该电流将在周围介质中形成一个交变磁场,线圈L2中产生的感应电势可供电给移动设备或者给电池充电。
②电磁耦合共振―――中程传输。中程无线电力传输方式是以电磁波“射频”或者非辐射性谐振“磁耦合”等形式将电能进行传输。它基于电磁共振耦合原理,利用非辐射磁场实现电力高效传输。在电子学的理论中,当交变电流通过导体,导体的周围会形成交变的电磁场,称为电磁波。在电磁波的频率低于100khz时,电磁波就会被地表吸收,不能形成有效的传输,当电磁波频率高于100khz时,电磁波便可以在空气中传播,并且经大气层外缘的电离层反射,形成较远距离传输能力,人们把具有较远距离传输能力的高频电磁波称为射频(即:RF)。将电信息源(模拟或者数字)用高频电流进行调制(调幅或者调频),形成射频信号后,经过天线发射到空中;较远的距离将射频信号接收后需要进行反调制,再还原成电信息源,这一过程称为无线传输。中程传输是利用电磁波损失小的天线技术,并借助二极管、非接触IC卡、无线电子标签等等,实现效率较高的无线电力传输。
③微波/激光―――远程传输。理论上讲,无线电波的波长越短,其定向性越好弥散就越小。所以可以利用微波或激光形式来实现电能的远程传输,这对于新能源的开发利用解决未来能源短缺问题也有着重要意义。1968年美国工程师彼得格拉提出了空间太阳能发电(Space Solar Power,SSP)的概念,其构想是在地球外层空间建立太阳能发电基地通过微波将电能送回地球。
无线通信(数据)传输方式及技术原理:无线通信(Wireless communication)是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式。无线通信技术自身有很多优点,成本较低,无线通信技术不必建立物理线路,更不用大量的人力去铺设电缆,而且无线通信技术不受工业环境的限制,对抗环境的变化能力较强,故障诊断也较为容易,相对于传统的有线通信的设置与维修,无线网络的维修可以通过远程诊断完成,更加便捷;扩展性强,当网络需要扩展时,无线通信不需要扩展布线;灵活性强,无线网络不受环境、地形等限制,而且在使用环境发生变化时,无线网络只需要做很少的调整,就能适应新环境的要求。
(1)常用的远距离无线通信技术
目前偏远地区广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。它主要使用在较为偏远或不宜铺设线路的地区,如:煤矿、海上、有污染或环境较为恶劣地区等。
①GPRS/CDMA无线通信技术:GPRS (通用无线分组业务)是由中国移动开发运营的一种基于GSM通信系统的无线分组交换技术,是介于第二代和第三代之间的技术,通常称为2.5G。它是利用“包交换”概念发展的一种无线传输方式。包交换就将数据封装成许多独立的包,再将这些包一个一个传送出去,形式上有点类似寄包裹,其优势在于有资料需要传送时才会占用频宽,而且是以资料量计价,有效的提高网络的利用率。GPRS网络同时支持电路型数据和分组交换数据,从而GPRS网络能够方便的和因特网互相连接,相比原来的GSM网络的电路交换数据传送方式,GPRS的分组交换技术具有实时在线、按量计费、高速传输等优点。CDMA是码分多址的英文缩写(Code Division Multiple Access),是由中国电信运行的一种基于码分技术和多址技术的新的无线通信系统,其原理基于扩频技术。其最早是由于军事上对高质量无线通讯技术的需要而开发设计。CDMA在数据传送过程中,将数据用一个带宽远大于信号带宽的高速伪随机码进行调制,使数据信号的带宽被扩展,然后经载波调制将数据发送出去。接收端使用完全相同的伪随机码,进行相反过程的处理,把宽带信号换成原信息数据的窄带信号从而进行解扩,以实现数据传输。其特点是抗干扰能力强、抗衰落能力强、信号隐蔽性强、抗截获的能力强、可以多用户同时接收发送。
②数传电台通信。数传电台是数字式无线数据传输电台的简称。它是采用数字信号处理、数字调制解调、具有前向纠错、均衡软判决等功能的一种无线数据传输电台。数传电台的工作频率大多使用220~240 MHz或400~470 MHz频段,具有数话兼容、数据传输实时性好、专用数据传输通道、一次投资、没有运行使用费、适用于恶劣环境、稳定性好等优点。数传电台的有效覆盖半径约有几十公里,可以覆盖一个城市或一定的区域。数传电台通常提供标准的RS-232数据接口,可直接与计算机、数据采集器、RTU、PLC、数据终端、GPS接收机、数码相机等连接。传输速率从9600到19200 bps,误码低于10-6(-110 dBm时),可工作于单工、半双工、时分双工TDD、全双工方式。无线数传电台是通信行业发展较早的通信方式,也是比较成熟的一项无线通信技术,已经在各行业取得广泛的应用,在航空航天、铁路、电力、石油、气象、地震等各个行业均有应用,在遥控、遥测、摇信、遥感等SCADA领域也取得了长足的进步和发展。
③扩频微波通信。扩频通信,即扩展频谱通信技术(Spread Spectrum Communication)是指其传输信息所用信号的带宽远大于信息本身带宽的一种通信技术。最早始用于军事通信。它传输的基本原理是将所传输的信息用伪随机码序列(扩频码)进行调制,伪随机码的速率远大于传送信息的速率,这时发送信号所占据带宽远大于信息本身所需的带宽实现了频谱扩展,同时发射到空间的无线电功率谱密度也有大幅度的降低。在接收端则采用相同的扩频码进行相关解调并恢复信息数据。其主要特点是:抗噪声能力极强;抗干扰能力极强;抗衰落能力强;抗多径干扰能力强;易于多媒体通信组网;具有良好的安全通信能力;不干扰同类的其他系统等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。
④无线网桥。无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百兆bps)无线组网。扩频微波和无线网桥技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。
⑤卫星通信。卫星通信(satellite communication)是指利用人造地球卫星作为中继站来转发无线电信号,从而实现在多个地面站之间进行通信的一种技术,它是地面微波通信的继承和发展。卫星通信系统通常由二部分组成,分别是卫星端、地面端。卫星端在空中,主要用于将地面站发送的信号放大再转发给其它地面站。地面站主要用于对卫星的控制、跟踪以及实现地面通信系统接入卫星通信系统。卫星可分为同步卫星和非同步卫星,同步卫星在空中的运行方向和周期与地球的自转方向及周期相同,从地面的任何位置看,该卫星都是“静止”不动的;非同步卫星的运行周期大于或小于地球的运行周期,其轨道高度、倾角、形状都可根据需要调整。卫星通信的的特点是:覆盖范围广、工作频带宽、通信质量好、不受地理条件限制、成本与通信距离无关等,其主要用在国际通信、国内通信、军事通信、移动通信和广播电视等领域,卫星通信的主要缺点是通信具有一定的延迟,比如打卫星电话时,不能立即听到对方回话,主要原因是卫星通信的传输距离较长,无线电波在空中传输是有一定延迟的。
⑥短波通信。按照国际无线电咨询委员会的划分,短波是指波长l00m~l0m,频率为3MHz~30MHz的电磁波。短波通信是指利用短波进行的无线电通信,又称高频(HF)通信。短波通信可分为地波传播和天波传播。地波传播的衰耗随工作频率的升高而递增,在同样的地面条件下,频率越高,衰耗越大。利用地波只适用于近距离通信,其工作频率一般选在5MHz以下。地波传播受天气影响小,比较稳定,信道参数基本不随时间变化,故信道可视为恒参信道。天波传播是无线电波经电离层反射来进行远距离通信的方式,倾斜投射的电磁波经电离层反射后,可以传到几千千米外的地面。天波的传播损耗比地波小得多,经地面与电离层之间多次反射之后,可以达到极远的地方,因此,利用天波可以进行环球通信。天波传播因受电离层变化和多径传播的严重影响极不稳定,其信道参数随时间而急剧变化,因此称为变参信道。短波通信的特点是:建设维护费用低、周期短、设备简单、电路调度容易、抗毁能力强、频段窄,通信容量小、天波信道信号传输稳定性差等。长期以来,广泛用于政府、军事、外交、气象、商业等部门,用以传送电报、电话、传真、低速数据和图像、语音广播等信息。
(2)常见短距离无线通信技术
短距离无线通信技术是指通信双方通过无线电波传输数据,并且传输距离在较近的范围内,其应用范围非常广泛。近年来,应用较为广泛及具有较好发展前景的短距离无线通信标准有:Zig-Bee、蓝牙(Bluetooth)、无线宽带(Wi-Fi)、超宽带(UWB)和近场通信(NFC)。
①Zig-Bee。Zig-bee是基于IEEE802.15.4标准而建立的一种短距离、低功耗的无线通信技术。Zig-bee来源于蜜蜂群的通信方式,由于蜜蜂(bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的来与同伴确定食物源的方向、位置和距离等信息,从而构成了蜂群的通信网络。其特点是距离近,其通常传输距离是10-100米;低功耗,在低耗电待机模式下,2节5号干电池可支持1个终端工作6~24个月,甚至更长;其成本,Zig-Bee免协议费,芯片价格便宜;低速率,Zig-bee通常工作在20~250 kbps的较低速率;短时延,Zig-bee的响应速度较快等。主要适用于家庭和楼宇控制、工业现场自动化控制、农业信息收集与控制、公共场所信息检测与控制、智能型标签等领域,可以嵌入各种设备。
②蓝牙(Bluetooth)。蓝牙(Bluetooth)是在1998年5月由东芝、爱立信、IBM、Intel和诺基亚等公司共同提出的一种近距离无线数据通讯技术标准。它能够在10米的半径范围内实现点对点或一点对多点的无线数据和声音传输,其数据传输带宽可达1Mbps。通讯介质为频率在2.402GHz到2.480GHz之间的电磁波。蓝牙技术可以广泛应用于局域网络中各类数据及语音设备,如PC、拨号网络、笔记本电脑、打印机、传真机、数码相机、移动电话和高品质耳机等,蓝牙的无线通讯方式将上述设备连成一个微微网,多个微微网之间也可以实现互连接,从而实现各类设备之间随时随地进行通信。蓝牙技术被广泛应用于无线办公环境、汽车工业、信息家电、医疗设备以及学校教育和工厂自动控制等领域,蓝牙目前存在的主要问题是芯片大小和价格较高;抗干扰能力较弱。
③无线宽带(Wi-Fi)。Wi-Fi诞生于1999年,它是一种基于802.11协议的无线局域网接入技术。Wi-Fi技术突出的优势在于它有较广的局域网覆盖范围,其覆盖半径可达100米左右,相比于蓝牙技术,Wi-Fi覆盖范围较广;传输速度非常快,其传输速度可以达到11mbps(802.11b)或者54mbps(802.11a),适合高速数据传输的业务;无须布线,可以不受布线条件的限制,非常适合移动办公用户的需要。在一些人员密集的地方,比如火车站、汽车站、商场、机场、图书馆、校园等地方设置“热点”,可以通过高速线路将因特网接入上述场所。用户只需要将支持无线网络的终端设备该区域内,即可高速接入因特网;健康安全,具有WiFi功能的产品发射功率不超过100毫瓦,实际发射功率约60~70毫瓦,与手机、手持式对讲机等通讯设备相比,WiFi产品的辐射更小。
④超宽带(UWB)。UWB(Ultra Wideband)是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据,其传输距离通常在10m以内,使用1GHz以上带宽,通信速度可以达到几百兆bit/s以上,UWB的工作频段范围从3.1GHz到10.6 GHz,最小工作频宽为500MHz。其主要特点是:传输速率高;发射功率低,功耗小;保密性强;UWB通信采用调时序列,能够抗多径衰落;UWB所需要的射频和微波器件很少,可以减小系统的复杂性。由于UWB系统占用的带宽很高,UWB系统可能会干扰现有其他无线通信系统。UWB主要应用在高分辨率、较小范围、能够穿透墙壁、地面等障碍物的雷达和图像系统中。军事部门利用UWB技术已经开发出了高分辨率的雷达。据相关报道,一些具有特殊功能的UWB收发器已经被开发出来,用在了能够看穿地面、墙壁、身体等障碍物的雷达和图像装置,这种装置可以用来检查楼房、桥梁、道路等工程的混凝土和沥青结构中的缺陷,以及定位地下电缆及其它管线的故障位置,也可用于疾病诊断。另外,在救援、治安防范、消防及医疗、医学图像处理等领域都大有用途。
⑤NFC。NFC(Near Field Communication)是一种新的近距离无线通信技术,由飞利浦、索尼和诺基亚等公司共同开发,其工作频率为13.56 MHz,由13.56 MHz的射频识别(RFID)技术发展而来,它与目前广为流行的非接触智能卡ISO14443所采用的频率相同,这就为所有的消费类电子产品提供了一种方便的通讯方式。NFC采用幅移键控(ASK)调制方式,其数据传输速率一般为106 kbit/s、212 kbit/s和424 kbit/s三种。NFC的主要优势是:距离近、带宽高、能耗低,与非接触智能卡技术兼容,其在门禁、公交、手机支付等领域有着广阔的应用价值。NFC的应用情境基本可以分为以下五类:A、接触-通过,主要应用在会议入场、交通关卡、门禁控制、和赛事门票等方面;B、接触-确认/支付,主要应用在手机钱包、移动和公交付费等方面;C、接触-连接,这种应用可以实现2个具有NFC功能的设备实现数据的点对点传输;D、接触-浏览,用户可以通过NFC手机了解和使用系统所能提供的功能和服务;E、下载-接触,通过具有NFC功能的终端设备,使用GPRS\CDMA网络接收或下载相关信息,用于门禁或支付等功能。
四、三者互为系统的立体式应用
通信技术原理范文5
【关键词】电力通信;通信电源;蓄电池
【中图分类号】TN86【文献标识码】A【文章编号】1006-4222(2016)10-0136-02
引言
这几年,我国对通信设备技术这方面比较关注,在这方面的发展日也益深入,并且也取得了非常大的成果,在我国通信网络正在不断的完善,这使电网运行的稳定和安全大幅度增高。通信电源对于通信设备来说非常重要相当于人的心脏,在通信过程中有着不可忽视的低位。目前,我国关于通信的理论性研究也正在不断壮大,电源设备的加强成了发展的必须。现阶段通信技术研究与开发的供电设备,主要是针对供电设备在整流电流器的应用。
1关于通信设备供电方式
通信电源对于通信设备来说就像是人的心脏,哪怕是在通信站里,都有着非常重要的地位。目前这方面的理论技术也在不断的进步,随之,通信电源也跟着不断的发展,主要变现是供电方式不同了,由集中向分散式供电靠拢和新型电力电子整流技术的使用以及免维护蓄电池的应用等。通信电源的供电方式都是采用集中供电的供。这种供电方式需要条件,一般是在可控硅相控整流器以及普通铅酸蓄电池的情况下运行,而且还存在缺点,其设备大、噪声严重、并且还伴有酸雾,所以不能将其放在靠近人群的地方。由于电力设备和负荷中心两者距离很远,并且在花费方面也比较高,因此该系统并不可靠。从20世纪80年代到现在,我国对开关整流器和免维护蓄电池的应用越来越重视,让我们看到了分散式供电的未来。关在使用分散式供电的同时也同样可以使用集中式供电,如果在通信机房中安置上供电设备,依据其相关环境我们可以有各式各样的方法。其与一般的供电发方法不同,它有投资少,操作方便、可靠,且容易实现智能化管理和不需要安排人值班的优点。与此同时也存在着缺点:电池的数量和花费的增多,对于交流供电的可靠性、电磁兼容性、供电设备等操作性能和维修人员的技术水平都有较高的要求。
2电力通信设备电源新技术
2.1开关器件
对于通信电源系统来说,整流器显得也尤为重要,其技术含量很高,同时对于技术更新程度也是很快的。晶闸管相控整流器在早期最常使用,并且现在正在广泛应用。对于开关整流器来说,开关装置是不可忽略的。在以前的使用中,可控硅整流做为整流开关,其输出电压和工作频率使用变导通角来实现的,这对于电网来说是致命的,且相应的液晶工作频率也为整流电源频率,使其出现体积大、低功率密度等现象的发生。现如今,MOSFET和IGBT等新开关器件被广泛使用,MOSFET的工作频率很大,可以达到几百千赫,甚至更高,在软开关技术后,达到数百千赫都是有可能的,这些都使高频率和高功率密度的整流器的发展有了很好的铺垫。开关电源作为DC-DC转换器的关键,并且受到世界的高度重视,成为各个国家研究的重点,最近30年以来,DC-DC变换技术也完成了从硬件到软件的转变过程。
2.2功率因数校正
一般来说,双击变换作为开关整流器内场使用的形式:首先由AC-DC整流以及滤波电路把交流输入改为到直流,然后由相应的DC-DC环节变成直流。对于非线形元件以及储能元件来说,它们为上一个阶段的整流和滤波电路的一个组合,因此,从电网侧看,可以把开关整流器看作以一个电容负载,以上所说使得电网供电过程出现不可预计的问题,不再是单一的基础波频率的正弦波,会出现谐波污染现象。同时还会使配电系统和变压器的损耗增加,使其电路电流增大,对于各种无线通信来说同样这是致命的干扰。
2.3防雷网络
雷电会使没有被保护的设备在一瞬间达到很高的电压,对于电力设备来说,其损害无法估计。雷击分为两类:①直击雷另;②感应雷,直接雷击线路和沿线的电线或电缆通过大量的雷电电流,同时会出现很大的电压直接加载到电源设备上和,会持续若干微赫兹,使电网无法正常工作,并且相关的整流器的工作频率也都是工频,导致出现体积大和低功耗密度的现象。
2.4免维护蓄电池
一般的开口式电源,在平常水在充电结束阶段被分解,在这个过程中,我们必须要适当添加蒸馏水。同时在充电的最后阶段,产生的氢和氧慢慢上升,并且将硫酸稀释并形成酸雾,对周围环境造成一定程度上的污染,所以必须清洗,这就加大了工人的功能工作量。免维护蓄电池与铅酸蓄电池的电解液一样,但是免维护蓄电池的密封非常好,电解液被吸附在高孔率的隔离板上,与开口式的电池不同的是,其电解液可以自由流动;极板栅往往使用少锑和无锑铅合金,正极和负极板均为独立板,使可以利用的物质不会轻易掉落,这就使其变得使用寿命更长;并且由于密封很好,水分不会被轻易分解,并且阴极吸收法会是气体的产生受到抑制,且氢数产生量也很少,所以无需再加蒸馏水。根据上述所说,免维护蓄电池将会降低了维修人员的工作量,在通信系统中也得到了广泛的应用。
2.5电源集中组网监控
关于通信电源的监控,必须有科学、集中的管理方案对通信电源进行管理,这将成为以后的发展潮流,这要做是为了对设备进行科学化化管理,并对其他通信设备进行集中化监控,能做到远程遥控、远程通信以及实时监控设备的运行状态,能够及时发现问题以此提高供电的效率。目前,国内通信部门正在形成一个智能电力和环境监测网络,同样,做这些工作也是达到对设备进行实时监控,在发现问题后能快速做出判断。
3通信设备对通信电源的要求
3.1可靠
要想使通信能够顺利进行,就必须将通信设备的可靠性提高,另外,还要提高电力系统的可靠性,要求电力系统不能出现1m/s的空隙,一个电源往往服务于几个通信设备,因此电力系统故障,会使通信系统发生故障。要想保障供电的可靠性,往往把整流器和电池进行并联。此外,在先进的开关整流器与多个整流模块并联运行时,若某个模块出现问题不会对供电造成影响。
3.2小型
现如今,集成电路发展迅速,小型化、集成化也越来越多的出现在集成电路中。为了附和通信设备的发展,供电单元必须也实现小型化、集成化。此外,要求通信设备体积小也体现在移动通信设备和航天通信设备中。为了提高各种集成电压调节器的供电质量和供电效率,无工频变压器的开关电源也得到了广泛推广。最近几年,在通信设备中,工作频率非常高并且体积也不大高的谐振开关电源得到广泛应用。
3.4高频率
随着通信设备容量的增加以电力系统负荷的增加,为达到节约的目的,必须将供电设备的供电效率提高。使用有效的设备电源是节能的一个最好方式节,在以前,通信设备大多采用相控整流,这样的电源效率很低而且损耗还特别大。但是高频开关电源不同,能达到2/3以上,所以选择高频开关电源能够做到节能作用。
4发展方向
电力系统通信电源系统设计在现在具有技术限制,电力系统通信电源技术的发展是现在电力行业应关注的重点。通过不断参考国内外相关经验,并把它加到自己身上可以有效提高技术的水平,正确把握发展方向,保证电力系统通信技术的先进性和实用性。
5结束语
现如今,电力系统通信正在不断的发展,同时,电源供电系统也日益发展壮大,供电系统的可靠性增强,尤其在电源发生故障时,其通信设备不能停止,若交流电源停止工作,通信专用的电池仅能维持8h,若果有必要的话,可以配备相应的备用电源。
参考文献
[1]王兆佩.电力通信规划的编制与管理.电力系统通信,2008:12~13.
[2]孙立成,周.电力通信专网的规划与实施.黑龙江通信学会学术年会论文集,2005,13.
通信技术原理范文6
虽然目前公众媒体将无线通信炒的很热,但这个领域从1897年马可尼成功演示无线电波开始,已经有超过一百年的。到1901年就实现了跨大西洋的无线接收,表明无线通信技术曾经有过一段快速发展时期。在之后的几十年中,众多的无线通信系统生生灭灭。
20世纪80年代以来,全球范围内移动无线通信得到了前所未有的发展,与第三代移动通信系统(3g)相比,未来移动通信系统的目标是,能在任何时间、任何地点、向任何人提供快速可靠的通信服务。因此,未来无线移动通信系统应具有高的数据传输速度、高的频谱利用率、低功耗、灵活的业务支撑能力等。但无线通信是基于电磁波在自由空间的传播来实现传输的。信号在无线信道中传输时,无线频率资源受限、传输衰减、多径传播引起的频域选择性衰落、多普勒频移引起的时间选择性衰落以及角度扩展引起的空间选择性衰落等都使得无线链路的传输性能差。和有线通信相比,无线通信主要由两个新的问题。一是通信行道经常是随时间变化的,二是多个用户之间常常存在干扰。无线通信技术还需要克服时变性和干扰。由于这个原因,无线通信中的信道建模以及调制编码方式都有所不同。
1.无线数字通信中盲源分离技术分析
盲源分离(bss:blind source separation),是信号处理中一个传统而又极具挑战性的问题,bss指仅从若干观测到的混合信号中恢复出无法直接观测的各个原始信号的过程,这里的“盲”,指源信号不可测,混合系统特性事先未知这两个方面。在研究和工程应用中,很多观测信号都可以看成是多个源信号的混合,所谓“鸡尾酒会”问题就是个典型的例子。其中独立分量分析ica(independent component analysis)是一种盲源信号分离方法,它已成为阵列信号处理和数据分析的有力工具,而bss比ica适用范围更宽。目前国内对盲信号分离问题的研究,在理论和应用方面取得了很大的进步,但是还有很多的问题有待进一步研究和解决。盲源分离是指在信号的理论模型和源信号无法精确获知的情况下,如何从混迭信号(观测信号)中分离出各源信号的过程。盲源分离和盲辨识是盲信号处理的两大类型。盲源分离的目的是求得源信号的最佳估计,盲辨识的目的是求得传输通道混合矩阵。盲源信号分离是一种功能强大的信号处理方法,在医学信号处理,阵列信号处理,语音信号识别,图像处理及移动通信等领域得到了广泛的应用。
根据源信号在传输信道中的混合方式不同,盲源分离算法分为以下三种模型:线性瞬时混合模型、线性卷积混合模型以及非线性混合模型。
1.1 线性瞬时混合盲源分离
线性瞬时混合盲源分离技术是一项产生、研究最早,最为简单,理论较为完善,算法种类多的一种盲源分离技术,该技术的分离效果、分离性能会受到信噪比的影响。盲源分离理论是由鸡尾酒会效应而被人们提出的,鸡尾酒会效应指的是鸡尾酒会上,有声、谈话声、脚步 声、酒杯餐具的碰撞声等,当某人的注意集中于欣赏音乐或别人的谈话,对周围的嘈杂声音充耳不闻时,若在另一处有人提到他的名字,他会立即有所反应,或者朝 说话人望去,或者注意说话人下面说的话等。该效应实际上是听觉系统的一种适应能力。当盲源分离理论提出后很快就形成了线性瞬时混合模型。线性瞬时混合盲源分离技术是对线性无记忆系统的反应,它是将n个源信号在线性瞬时取值混合后,由多个传感器进行接收的分离模型。
20世纪八、九十年代是盲源技术迅猛发展的时期,在1986年由法国和美国学者共同完了将两个相互独立的源信号进行混合后实现盲源分离的工作,这一工作的成功开启了盲源分离技术的发展和完善。在随后的数十年里对盲源技术的研究和创新不断加深,在基础理论的下不断有新的算法被提出和运用,但先前的算法不能够完成对两个以上源信号的分离;之后在1991年,法国学者首次将神经网络技术应用到盲源分离问题当中,为盲源分离提出了一个比较完整的框架。到了1995年在神经网络技术基础上盲源分离技术有了突破性的进展,一种最大化的随机梯度学习算法可以做到同时分辨出10人的语音,大大推动了盲源分离技术的发展进程。
1.2 线性卷积混合盲源分离
相比瞬时混合盲源分离模型来说,卷积混合盲源分离模型更加复杂。在线性瞬时混合盲源分离技术不断发展应用的同时,应用中也有无法准确估计源信号的问题出现。常见的是在通信系统中的问题,通信系统中由于移动客户在使用过程中具有移动性,移动用户周围散射体会发生相对运动,或是交通工具发生的运动都会使得源信号在通信环境中出现时间延迟的现象,同时还造成信号叠加,产生多径传输。正是因为这样问题的出现,使得观测信号成为源信号与系统冲激响应的卷积,所以研究学者将信道环境抽象成为线性卷积混合盲源分离模型。线性卷积混合盲源分离模型按照其信号处理空间域的不同可分为时域、频域和子空间方法。
1.3 非线性混合盲源分离
非线性混合盲源分离技术是盲源分离技术中发展、研究最晚的一项,许多理论和算法都还不算成熟和完善。在卫星移动通信系统中或是麦克风录音时,都会由于乘性噪声、放大器饱和等因素的影响造成非线性失真。为此,就要考虑非线性混合盲源分离模型。非线性混合模型按照混合形式的不同可分为交叉非线性混合、卷积后非线性混合和线性后非线性混合模型三种类型。在最近几年里非线性混合盲源分离技术受到社会各界的广泛关注,特别是后非线性混合模型。目前后非线性混合盲源分离算法中主要有参数化方法、非参数化方法、高斯化方法来抵消和补偿非线性特征。
2.无线通信技术中的盲源分离技术
在无线通信系统中通信信号的信号特性参数复杂多变,实现盲源分离算法主要要依据高阶累积量和峭度两类参数。如图一所示,这是几个常见的通信信号高阶累积量。
在所有的通信系统中,接收设备处总是会出现白色或是有色的高斯噪声,以高阶累积量为准则的盲源分离技术在处理这一问题时稳定性较强,更重要的是对不可忽略的加性高斯白噪声分离算法同时适用。因此,由高阶累积量为准则的盲源分离算法在通信系统中优势明显。
分离的另一个判据就是峭度,它是反映某个信号概率密度函数分布情况与高斯分布的偏离程度的函数。峭度是由信号的高阶累积量定义而来的,是度量信号概率密度分布非高斯性大小的量值。