模具设计论文范例

模具设计论文

模具设计论文范文1

1.1进料箱的结构

进料箱、进料管及软布套管共同组成了进料装置。其中进料管被安装在机架上,通过软布套管联接到进料。在进料管的内部,有1个偏心锥形圆筒,该锥形圆筒的作用就是改变物料落点位置,并且引导物料准确落入进料箱的中心。进料箱是被安装在装置中的筛体上,当筛体开始振动,进料箱随之振动,这样可在一定程度上保证喂料的均匀性。固定在进料箱内有一个分料板,其中部会垂直箱壁,分料板的两侧略朝下倾斜,分料板中间有匀料闸门,可调整伸缩,以保证物料均匀分布在筛面宽度。进料箱与机架之间的联接为刚性联接,这样可以保证抽查筛格,同时进料箱也可以自由的拆卸与翻转。

1.2出料箱的结构

螺栓与筛体联接在一起是出料箱的特点之一,主要包括大杂出料口、粮食出料口、机箱、及小杂出料口,通过焊接,不同的出料口结构都可以与出料箱机箱联接,不同的出料口和筛体之间都存在着密封装置。出料箱结构通过筛面筛出的大杂项经过大杂出料口输出到一旁的机箱,上筛面与下筛面之间的物料经过物料输出口后直接输出,而小杂项通过下筛面选出,并通过小杂出料口输出。机器在使用之前,需要检查其严密情况,保证设备不存在泄漏情况,以保证各个出料口之间不会发生混合的可能。

1.3机架

采用分离式设计是该振动筛的特点之一,同时横梁和底座的支撑采用分开设计,支撑横梁与底座之间使用可调式螺栓联接,这样的好处是横梁可以上下移动,因此保证了筛体调节角度在0~12°。不同角度的调节可以满足不同情况下的不同的筛选要求。该方案的优点是实用性强,并且制作简单,运输方便。物料输入和进料机构联接的设备是移动架。螺栓进行联接是料筒盘和进料筒之间的主要联接方式,物料也可以经过管道直接进入物料筒。料筒盘可以直接在支架的横梁上进行焊接。上支架的组成部分包括了加强板、料筒盘、封板。移动架和支撑架之间是刚性联接,这是由支撑板和螺栓完成的。在设备开始运转之前,要保证移动架支撑架的联接紧密,这样才能保证物料准确进入进料箱。

1.4驱动电机的设计

驱动电机的驱动设置一般都选择在筛体两侧,并且要保证筛体重心的位置重合。在4只螺栓的固定下,电机安装在圆盘上,当圆盘的固定螺栓被松开时,电机和圆盘将同时绕着中心轴旋转,以至于改变电机安装角度,实现调节振动角,振动角在0~45°可调节。

2模具设计

在模具的设计过程中,以下现象需要考虑到,有模具头部的成形,在球形顶端的飞边、打偏等现象。与此同时还需要考虑到限位工件、出料自动等来自各个方面的多因素。各个部件的关系如下:上锻模被安装固定在了工作头的主轴孔中,下锻模被安装固定在定位模具中,压板紧紧压住下锻模,工作台与压板在工作台的T形槽的作用下,由联接螺栓被紧密联接在一起。工作台和定位模具为了提高定位与定心的精确度,选择了比较小的间隙进行配合。模具中存在着顶芯,机床底座的下面存在着模具底座,在连杆和工作头的作用下联接为一个整体。设计的模具的工作原理如下:模具被固定在指定位置后,把加热后的材料放在下锻模里面,上锻模在工作头的带动下,压在了下锻模上,模具底座在联接杆的作用下随之往下,顶芯因此落到了定位模具的下边。顶端的部分刚好比下锻模的底部高出部分,可以支住工件。等工件加工完毕,工作头将会随之升起,并带动上锻模和模具随之升起,在顶芯的作用下,模具底座的柱销也因此被顶出模具。

3设计时注意的问题

(1)下锻模下锻模在实际作业时受到的压力非常大,因此若强度方面没达到标准,很容易因此而断裂。所以在实际选用特殊材料,并且加热处理,满足强度方面要求。下锻模的台阶过渡时选择了大圆弧过渡。(2)定位模具为了在实际作业中避免锻压工件偏倒现象,为此特别设计一个定位模具,作用主要体现在3个方面:①保证上锻模与下锻模的同心度;②对顶芯的支撑作用,对工件的定位作用;③若顶芯上升的话,将起到一个导向的作用。(3)顶芯上锻模通过工件对顶芯施加锻压压力,同时,为了保证下锻模和定位模具能够在允许范围内正常滑行,那么一定不能存在形变,所以也需要选择特殊材料,并进行热处理。

4结语

模具设计论文范文2

熔模铸造是一种优异的工艺技术,采用熔模铸造生产阀块的毛坯,可以有效保证毛坯的制造精度,并减少阀块的机械加工量。在Pro/E的模具设计模块中,根据阀块毛坯的结构特点采用装配法和分型面法相结合,进行阀块的熔模模具结构设计。

1.1蜡模相关数据的确定

该阀块毛坯表面粗糙度的最大值为3.2,考虑到中温蜡的铸件表面粗糙度可达到2.0左右,充分满足非加工表面粗糙度要求,故选用中温蜡作为蜡模原料。铸件的收缩率由合金收缩率、模料收缩率和型壳膨胀率综合决定,最终确定铸件的综合收缩率为1%。

1.2蜡模的模具CAD

在Pro/E的模具模块中进行模具设计,最关键的工作是设计合理的分型面。分型面的位置和结构的合理性,不仅对毛坯的制造效率和精度有影响,而且也关系到模具操作的方便性和模具零件的结构工艺性以及经济性。本文中阀块模具的分型面方案和结构设计过程是:首先复制阀块毛坯的上顶孔面并延伸到模具顶面形成第一个分型面,构造出模具的型芯;再利用双侧拉伸创建第二个分型面将模具整体一分为二,构造出模具的上下模型腔。分型面设计完成后,在Pro/E中进行开模检测,没有干涉。另外,为方便脱模和便于型腔的加工,下模设计了顶杆,并将型腔中加工难度大的部分设计了活块和型芯。从制造的工艺性和生产率的角度考虑,将下模型芯与顶料机构的顶杆设计为一体,使铸件能够完好的取出。

2上、下模型腔的CAM刀路设计及仿真

2.1文件格式转换

将Pro/E造型完成的上、下模实体另存为IGES格式。由于IGES文件是Pro/E和MasterCAM的通用文件,所以在MasterCAM中可以IGES格式的模具零件实体进行仿真加工。在加工中一些小的圆角加工效果不是很理想,所以将切削用量适当调整,并且对刀具参数、加工方式进行改进。加工困难的部位需要多次精铣,以保证加工精度。

2.2CAM编程及仿真

在MasterCAM里建立加工任务,选择以外形环状铣削加工方式,先选择Φ10的平铣刀粗铣内型腔,再换Φ5的球头铣刀精铣内型腔,调整切削参数开始加工仿真并生成数控代码。

3结论

1)本文的阀块零件在液压系统中需求量大,材料昂贵,毛坯制造精度要求高,采用熔模铸造其毛坯可有效保证其批量和精度的要求。采用Pro/E软件的三维造型功能快速准确地建立了阀块的毛坯数模,并在其模具模块中结合熔模铸造工艺设计了阀块毛坯的熔模铸造模具,经开模检测,模具结构合理。

2)在MaseterCAM软件中对模具的上、下模型腔进行数控加工刀路设计,经加工仿真显示刀路轨迹合理,导入到CIMCO软件,为传给数控机床进行实际加工做准备。

模具设计论文范文3

1.1制件分析

卡箍制件要求成形加工后表面平整、光滑、无皱折、无压痕及划伤等现象。在该制件的制造过程中,成形工序是工艺流程中的重要工序,正确的成形工艺方法、模具结构设计合理与否是加工出合格制件、提高生产效率的关键。该卡箍制件结构分析无特殊的装配和使用要求。弯曲件外形简单,精度要求不高,工件厚度1mm,定位较为容易,且定位精度易保证,该类似结构的制件较多,材料不同,有不锈钢、高温合金、铝合金、20钢、铜合金等,根据不同环境选择不同材料的卡箍制件,以下选择其中的一种规格来进行分析。冲压技术要求:材料:LY12-M;材料厚度:1mm;生产批量:大批量;未注公差:按GB/T1804-m级确定。

1.2工艺存在的问题

原工艺流程为:落料、手工整形、成形(弯曲)。存在的问题:由于操作工人手工整形时手工控制,半成品制件无法达到一致性,造成预弯时尺寸和外观不一致,压痕、划伤,表面不平整、不光滑、圆度差等质量问题,并且工作效率很低,给后续工序带来很大困难,造成最后一道成形工序后的制件外观不一致,稳定性不好、质量差、安全性较差。目前简易弯曲模具如图2所示,要想解决目前存在的这些问题,必须摸索更合理、高效率、高质量的成形工艺方法,设计合理的模具结构,提高加工质量和效益。

2工艺优化

成形方法和模具设计必须着重考虑。通过该工件的工艺性分析可知,卡箍是典型的弯曲件。针对上述存在的问题,提出初步的改进方案,确定用2次成形单工序来代替一次成形来完成。将工艺流程初步改为:落料、预成形(第一次成形)、成形(第二次成形)。

3模具结构改进

根据工艺初步方案,确定为二次成形,即预成形和成形,每次成形由模具来保证。

3.1预弯模装配图结构

自动完成制件的预成形,结构如图4所示。模具工作过程:毛坯件放在凹模2上,用定位板13定位,上下模分别设置压料杆6和顶料杆15,可避免弯曲过程中毛坯件窜动。当上模下压时,压料杆和顶料杆起定位作用,毛坯逐渐受力向下弯曲,直到凸模、坯料和凹模三者完全压合,弯曲过程结束。当上模回升时,弹簧回复,顶料杆顶出工序件。

3.2二次成形模(卷圆模)装配图结构

完成成形工序,考虑要卸模和取件方便,用连杆机构来完成这个动作。卡箍卷圆模的工作过程:预成形件放在凹模1上,用定位销6和定位块7定位,当上模下压时,连杆机构带动推件块以凸模本身作为滑动轨迹向后移动,凸模逐渐向下压工序件,直到凸模、坯料和凹模完全压合,弯曲过程结束。当上模回升时,连杆机构的带动推件块向前移动,从而推出工件。

4结束语

模具设计论文范文4

该塑件为半透明的壳体状,总体尺寸为Φ60mm×40mm,壁厚2~3mm。其材料为PP,成型性能良好,收缩率较小,流动性能中等。塑件尺寸精度要求一般,表观质量要求较高。水杯盖外表面有两个凸台结构A和B,且B上有一个侧通孔。根据上述综合分析,选择模具的整体结构为一模四腔、点浇口三板模,位于定模一侧的斜导柱抽芯机构成型侧孔,液压驱动的齿轮传动装置实现螺纹型芯旋脱杯盖以及推件板将塑件脱模。

2模具结构设计

2.1浇注系统

浇注系统的设计重点是浇口类型及其尺寸。为了保证较高的表观质量,通常选用点浇口或潜伏式浇口。考虑到水杯盖内部有旋转的螺纹型芯,所以只能选择点浇口。它既实现了浇注系统凝料的自动脱落,还具有易排气和消除熔接痕的优点。将点浇口设置在塑件几何对称平面、且位于A和B凸台中间的位置。浇口尺寸及第一级、第二级分流道尺寸均按经验数据选取,并留有一定的修模余量。

2.2成型零件

综合分析水杯盖的结构,并兼顾模具零件的加工和装配,设计时采用4个独立的整体嵌入式凹模,将其嵌入到定模板中。这样既降低了凹模的材料和加工成本,又保证了一定的强度和刚度,同时也确保塑件表面不会出现拼接缝或夹线痕迹。因为水杯盖有内螺纹,外表面非完全对称,因此模具型芯采用组合式结构,由外螺纹型芯包裹固定型芯组合而成。螺纹型芯进行旋转运动,确保其能够从杯盖上旋出;固定型芯在模具中固定不动,使水杯盖在未被推出前保持静止状态。

2.3侧抽芯机构

针对水杯盖上凸台B处直径4mm、深度12mm的侧孔成型,设计选用常见的斜导柱滑块抽芯机构。为了保证凸台表面光滑且无夹线,侧型芯采用隧道式抽芯结构。细长的侧型芯以独立的镶件与滑块连接,其最前端圆柱部分成型侧孔,而其他部位对塑件表面无任何封胶影响。非成型部分有一段锥面,是为了降低抽芯阻力,防止模仁被拖伤。在模具中,整个侧抽芯机构都在定模一侧。此时模具工作过程相对复杂,在定模和动模分开前,需要在定模一侧先进行一次分型从而完成侧抽芯过程。由于模具采用了点浇口、三板模,侧抽芯过程恰好与点浇口被拉断的过程在第一次分型时一并完成,并没有额外增加开模动作和时间。根据侧孔的深度,在抽芯距确定为15mm后,通过经验和计算确定了斜导柱倾斜角为15°、直径20mm、总长度95mm,以及完成侧抽芯所需第一次分型距离应大于56mm。

2.4自动脱螺纹机构

由于水杯盖螺纹深度较深,强度和精度较高,所以设计采用了自动化的旋转脱模法。其中,设计的细节包括传动装置、螺纹型芯的运动及旋转方向和塑件的止转。为了使螺纹型芯能平缓地旋转,防止水杯盖中的螺纹在旋脱时被拉坏,设计中选用可控的液压力而非快速的开模力来驱动齿条4,将运动传递给同一轴上的小齿轮5和大齿轮3,并由齿轮3与螺纹型芯1的轮齿啮合,带动螺纹型芯后退,最终旋出塑件。为了保证运动平稳,设计了与螺纹型芯1相配的导向元件2,其螺距和旋向应与水杯盖内螺纹相同。由于水杯盖螺纹是右旋,所以螺纹型芯1应顺时针旋转才能旋出水杯盖,而小齿轮5则逆时针旋转,齿条在液压活塞杆的牵引下应向右上角运动。

2.5推出机构

水杯盖表面质量要求较高,所以采用无推出痕迹的推件板进行脱模。为了防止磨损及节省材料,设计了单独的推件镶块,将其嵌入到推件板中用于推出塑件。为了防止推件镶块与螺纹型芯摩擦而磨损,将两者以锥面配合。模具中推件板与复位杆用螺钉连接,确保推件板推出完成后不会滑落,同时也有利于推出机构的平稳复位。

3模具工作原理

注射保压冷却后,在弹簧弹力和开闭器阻力共同作用下,模具先从分型面Ⅰ打开,点浇口被拉断与塑件分离;同时,开模力由斜导柱传至滑块和侧型芯,完成侧孔的抽芯分型运动。模具分开至定距拉杆时,分型面Ⅰ停止移动,但触动了脱凝料板,分型面Ⅱ被打开,促使浇注系统凝料自动从模具上脱落。限位套的位置限定了分型面Ⅱ的分开距离,使其无法继续分开。此时,注射机的开模力迫使开闭器分开,主分型面Ⅲ被分开,从而使包在型芯上的塑件与定模脱离。模具结束所有开模行程后,油缸通过液压力驱动齿条,并由齿轮传动使螺纹型芯旋转后退,与水杯盖中的成型螺纹脱离。接着,注射机顶杆将推出力传至复位杆,带动推件板将塑件从模具中推出。随后,油缸活塞杆回程,驱动齿条和齿轮反向运动,将螺纹型芯旋转复位。此后,模具将进行3个分型面的闭模过程,并先后完成推出机构和抽芯机构的复位。

4结语

模具设计论文范文5

该合页片属铰链式弯曲件,经分析:L/d=90/2.2=40.9>30,属细长制件,由于制件细长、材料薄、刚度差,如果采用传统的铰链加工方法分预弯和卷圆两道工序弯曲,则在卷圆弯曲过程中当板料受到挤压和弯曲作用时,极易因弯曲和振动而失稳,致使制件不易达到理想的形状精度和表面质量;还会因弯曲、圆度和直线度误差,以及表面划伤等瑕疵而报废;或者由于失稳,致成形失败。其次铰链卷圆件的回跳在所难免,要满足卷圆内径公差要求较为困难。所以,该制件的工艺性不好,加工难度大,在成形方法和工装设计中必须着重考虑。

2传统的铰链加工方法存在的问题

资料介绍,对于r=(0.6~3.5)t的铰链件,常用推卷的方法弯曲成形。弯曲成形一般分为两道工序,首先将毛坯头部预压弯,然后再卷圆。立式结构较简单,便于制模和弯曲成形,但此工艺方法和模具只适用于材料较厚且长度较短的铰链件。对本合页片由于材料较薄,长径比大于30,显然不适合。卧式模具结构是利用斜楔对凹模作用,使其产生水平运动而完成卷圆过程,有压料装置,弯曲件质量较好。但由于卷圆内径有公差要求,弯曲件的质量还是不够理想,还需增加一副整形模才能达到要求。而且图2c模具结构较复杂,模具制造成本高,周期长,对于小批量的合页片生产,经济性不好。从上述模具结构可以看出,该类模具比较适合加工小型铰链件。制件则相当困难,甚至不可能进行。因此,必须考虑其他工艺方法,设计新结构的模具来解决这些问题。经过多次摸索,终于找到了解决问题的方法:即在预弯成形后,卷圆弯曲之前增加一道U形弯曲工序,从而使推卷成形变得容易,同时也使模具的结构设计得到简化。优化后的冲压工艺流程为:下料→落料→去毛刺→制标→头部预弯→头部U形弯曲→卷圆成形。

3模具结构及工作过程

模具工作过程:卷圆模置于液压机(Y41-10T)工作台上,将模柄4固定在液压机上滑块上。工作时,液压机上滑块上升,模具开启,压块3与上模6脱离接触,将经U形弯曲后的坯件由端面从上模与下模右侧面的缝隙中插入下模7的型槽内,放入芯棒1,开动液压机上滑块下行,使轴向压块3向下传力给上模6,从而使坯件受限并卷圆弯曲成形。成形后,液压机上滑块回升,弹簧2将上模6顶起,用手将制件从芯棒1上取出,完成一个冲压过程。一个批次加工完后,将芯棒1插入下模7存放芯棒的孔内,以备下次使用。

4结束语

模具设计论文范文6

该制件成形的难点为ϕ120mm的大圆,该圆在卷圆成形时回弹较大。制件按照传统工艺预弯、卷圆成形后会出现较大的回弹,回弹后圆筒开口处间距增大20~30mm,而且圆筒呈椭圆形,虽经反复调整,修研模具,效果不理想,尺寸稳定性差,难以冲压出合格的制件。经分析,预弯成形是该制件卷圆成形的关键,把预弯形状由3段不同大小的圆弧组合而成,其中中部的圆弧同卷圆件成形方向相反,以控制卷圆件的回弹量,同时还应在卷圆成形工序上采取改变圆弧直径大小的措施来减小制件成形的回弹,最后用整形工序对卷圆后的制件进行整形。

2工序图设计

根据以上分析,成形该制件需7副模具,分别为1副冲孔、切断模,5副弯曲模和1副整形模来完成。箍圈成形工序如图2所示,具体工序为:①板料冲孔、切断;②板料两端第1次弯曲;③板料两端第2次弯曲;④板料两端头部卷圆;⑤板料两端波浪形弯曲;⑥卷圆;⑦整形。

3模具设计需注意的问题

(1)该制件有多处弯曲,毛坯展开长度按理论计算结果会与实际长度尺寸相差较大,为此,先按理论计算毛坯的展开长度并采用线切割加工制出毛坯,再在弯曲模进行试制,根据试制结果再调整毛坯的展开长度。(2)板料两端头部卷圆工序中,在凹模的两端头部必须加工出与制件头部相同的圆弧,否则难以卷成制件相同的圆弧,影响制件的质量。(3)板料两端波浪形弯曲工序中,如按通常的设计方式用3个相等的圆弧连接一波浪形的弯曲,反弹也会很大。根据经验,取中间的圆弧R=70mm,两边的圆弧R=52mm。弯曲成形后,靠近开口的圆弧会比制件略小,然后在整形工序整形出与制件要求的圆弧尺寸。

4模具结构设计

4.1板料两端第1次弯曲模结构设计

板料两端第1次弯曲模结构如图3所示。(1)为确保弯曲凸、凹模位置精度,在上、下模座上设置有ϕ16mm的滑动导柱、导套进行导向。(2)板料两端第1次弯曲时,两端头部的形状对称,直接利用凸模与凹模刚性成形,模具结构简单。(3)为方便模具调整、维修,凸、凹模采用镶拼式结构。把凸模和凹模各分为3块,并用螺钉固定,其螺纹孔为盲孔,可防止制件在冲压过程中产生压痕,影响制件的外观质量。

4.2板料两端第2次弯曲模结构设计

板料两端第2次弯曲模结构。(1)板料两端第2次弯曲时,凸、凹模的相关尺寸直接影响头部卷圆的尺寸,要合理控制弯曲凸、凹模的间隙,以免弯曲后的回弹较大,在后一工序难以卷圆。因该制件为SUS430不锈钢,设计时,在凹模的侧面加一挡块19,能平衡制件弯曲过程对凹模产生的侧向力。(2)制件的板料较厚(t=2.0mm),为保证制件成形质量,模具采用3个ϕ80mm的橡胶12进行弹性压料,橡胶安装在下模座8的底部。(3)模具工作过程为:将上工序冲压出的制件放入模具内,挡料块6对制件进行定位。上模下行,对制件进行弯曲成形。上模上行,弯曲成形后的制件随凸模一起上行,制件从凸模的侧面取出。

4.3板料两端头部卷圆模结构设计

(1)该模具结构较复杂,为保证上、下模的位置精度,在上、下模座上设置ϕ38mm的滚动导柱、导套导向。(2)为保证上、下模有足够的弹簧压缩行程,上模设计上托板1和垫块6,下模设计下托板14和垫块13。(3)为平衡弯曲凸模2、8在卷圆过程中产生的侧向力,分别在弯曲凸模2、8后侧相对应的下模上设置有挡块20。在成形时凸模的头部先对板料两端进行导向,再卷圆成形。(4)模具中压料板5较狭窄,为保证压料板的强度,不能在其内部设置小导柱,为保证压料板滑动过程中的顺畅,在压料板的侧面设计4块压料板挡块7,压料板在压料板挡块内滑动。该结构稳定性好,可以代替小导柱导向。(5)模具工作过程为:将上工序冲压出的制件放入模具内,用浮动导料销18对制件进行粗定位。上模下行,压料板压住制件,上模继续下行,弯曲凸模2、8头部的导向部分对制件进行导向,浮动导料销在凸模下行的同时随之下行。上模继续下行,开始对板料两端进行卷圆成形。

4.4板料两端波浪形弯曲模结构设计

(1)板料两端波浪形弯曲形状简单,但弯曲模结构复杂。为便于加工,弯曲凹模采用分体结构,为平衡凹模在弯曲成形过程中产生的侧向力,在凹模的左、右侧面设置凹模挡块14。(2)凸模7、19固定在凸模固定板11上,中间的凸模5采用滑动结构。模具工作过程为:上模下行,中间的凸模5利用橡胶2的压力对制件进行预成形,上模继续下行,成形制件两边的弧形,直到上、下限位柱接触后,制件波浪弯曲过程结束。

4.5卷圆模结构设计

(1)卷圆模结构简单,上、下模靠卷圆芯棒固定座3的头部进入导向块7和导向块8内导向,无需再设置导柱、导套导向。(2)为提高卷圆芯棒10的强度,在卷圆芯棒的上方加工出一缺口,镶入支撑块11,支撑块的上方与上模座1连接,侧面与芯棒固定座连接,支撑块同时也起到隔离卷圆件开口处的作用。(3)用卷圆芯棒作凸模,把上工序冲压出的制件(见2(e))反向放置在卷圆凹模5上,并用挡料块4定位。上模下行,卷圆芯棒先接触前一工序件的中间圆弧R70mm的顶部,上模继续下行,对制件进行卷圆。上模上行,已经卷圆的制件随卷圆芯棒一起上行,制件从卷圆芯棒侧面取出。

4.6整形模结构设计

该工序为制件卷圆后调整圆弧的回弹,整形模结构复杂,对模具的各零部件制造精度要求高。(1)上、下模靠凸模5、19的头部分别进入导向块8、17内导向,无需再设置导柱、导套导向。(2)模具的芯棒18固定在芯棒固定座7上,而芯棒固定座在下模导向块12、14内滑动。(3)把上工序卷圆的制件套入芯棒中,芯棒的凸出部分对制件起定位作用,以防止制件旋转影响整形质量。上模下行,顶杆4在弹簧的压力下首先使芯棒固定座及芯棒一起下行,直到制件的圆弧底部接触到凹模9的圆弧后,凸模5、19对制件进行整形,整形后的制件从芯棒侧面取出。该整形模能很好地控制制件的回弹。

5结束语

模具设计论文范文7

CAE软件实现了计算机与设计人员相互作用,计算机技术发挥其高效率的特长,设计人员发挥其灵活性特点,这样就使模具的制作流程更加灵活,并且提高了模具的生产效率。CAE软件采用计算机技术把设计方案优化,使模具在制作过程中结构合理,工艺参数精确。CAE软件可以提高企业的生产率,节省时间。CAE软件实现了设计计算的自动化和图样绘制的精确化,这样就大大节省了设计人员的时间,而且使设计的精确度提高。CAE的使用使设计到制作的时间减少,从而降低了劳动力和材料的成本。计算机的运转提高了绘图的效率,计算机进行设计的优化时考虑到原材料的使用问题,确保原材料得到充分利用,节省了企业成本,提高了企业的经济效益。

2散热器罩的工艺分析

2.1覆盖件冲压工艺的主要特征

在进行覆盖件的冲压过程中,尽量运用一道工序就可以完成任务,使覆盖件的轮廓清晰,如果覆盖件在两次工艺才成形的话,会导致成形不完整的问题,使覆盖件的质量降低。当覆盖件的形状确定后,尽可能使覆盖件表面平滑均匀,使各个部位的变形程度能够达成统一,在不同的工序完成时,能够确保各个工序能够相互调整,使工序的状态良好。覆盖件上的孔是在各个工艺完成后再制作,以免在孔的形成过程中产生畸变问题。当覆盖件成型以后,就可以进行翻遍等工作,先确定好工料的形状和尺寸,然后对成形的工艺进行分析,对模具的结构进行分析,然后分析在模具成形过程中需要的零部件。

2.2散热器罩冲压工艺分析

2.2.1结构工艺介绍

散热器罩在形状设计的过程中是对称的,在覆盖件的制作中,在水平面上形成X和Y两个方向,这两个方向在制作的过程中设计的深度是不一样的,这就导致了在设计覆盖件的时候,确定形状会存在很多的问题,按照覆盖件制作的特点,为了能够提高制作的效率,就要减少相关的工序,可以将冲孔与两边的工艺在统一的模具中完成,运用水平修边的方法,使修边与侧壁的冲孔工艺同步进行。散热器罩是沿着Y方向对称的,而且其顶部形成一个较为平缓的面,在冲压的时候可以运用正装的方式,这样就不会出现凸模的死角,使模具的形状可以顺利地形成,X边的深度比较大,在制作的过程中需要进行压边操作。

2.2.2冲压方案的确定

在进行冲压的过程中,一般都会经过成形、修边这两个步骤,在成形的过程中,在X方向因为深度比较大,因此要采用拉伸的方式,在修边的过程中一般会采用单工序的方式,在拉伸成形的时候,在覆盖件的制作中一定要注意,一定要在一副磨具中完成,这样才能够确保拉伸的质量。

3散热器罩拉伸成形的CAE分析

3.1CAE仿真分析的功能

在对汽车的覆盖件进行设计时,运用CAE软件,实现了软件的制作的仿真,在运用CAE软件进行仿真的过程中,首先要运用三维建模的方法,建立一个曲面的模型,然后将零部件的模型放到仿真软件中,分析二者是否可以匹配。按照冲压设备在设计中拉伸的效果,从而对接触的方式进行确定。在模具冲压的过程中,可以在参考力学模型的基础上,运用有限元的相关知识,建立有限元的模型,加入零部件的曲面模型中没有确定补充面,这时,就要运用CAE软件进行模型表面的设计,从而能够运用软件自动生成补充面。在CAE软件中,由于网格的自动划分功能并不能很好地实现求解器的需求,当网格被划分完成后,就可以运用CAE对网格进行检测,将那些不合格的网格检查出来。通过对模具的类型进行分析,从而建立分析模型。通过对零部件的分析,从而能够计算出毛坯的尺寸,运用CAE软件对毛坯的尺寸进行进一步的计算,从而确定毛坯的形状,运用CAE软件分析毛坯的主要轮廓,从而能够制作出毛坯的主要模型。在对拉伸筋进行定义的过程中,可以分析出金属的流动状况,能够在制作模具的时候防止起皱问题的发生,从而能够制作出更加平整的模具,运用拉伸筋能够将成形的数据进行模拟和分析,运用拉伸筋建立几何模型,这种方法在计算数据时精确度比较高,但是,这种方法在建立拉伸筋模型时需要耗费很多时间,而且在建立拉伸筋模型的过程中容易出错。也可以运用建立等效的拉伸筋模型的方法,这种方法能够按照尺寸建立出等效的模型,比较灵活,能够对数据进行准确地分析,被广泛地应用。

3.2散热器罩的CAE仿真分析

在散热器罩的CAE仿真分析的过程中,在对单元进行划分的时候一定要格外注意,一般都是运用四边形单元,而且要根据模型,设计合理的划分方法,在对自动的网格进行划分后,其中四边形单元占单元总数的大部分。在分析冲压方向的时候,一般都会运用CAE来确定,确保没有死区的产生,而且尽量可以使拉伸的深度减小。为了能够使拉伸成形更加得成功,就必须要对模具的工艺进行完善,要对补充面进行设计,并且要分析压料面的问题,在对压料面进行设计的时候,不能出现凹凸不平的问题,要使压料面保持平整,而且要尽量简化压料面制作的流程。对压料面的工艺进行完善,要确定好压料面的拉伸方向和位置,从而能够使压料面的各个部位都能够均匀分布。在进行压边设计后,确定了拉伸筋的结构后,运用CAE的分析,对模具的起皱问题进行考量,模具的内部如果出现了起皱的问题,可以发现,模具出现起皱的部分几乎都在模具的中心部分,在模具的中间部分,在压边的过程中由于受力不足,而且,在拉伸筋设计的环节存在一定的问题,因此,在解决这种问题的时候,可以运用强化压边力度,或者是增加拉伸筋的数量,对拉伸筋的位置进行调整,将拉伸筋调整到模具的中间部位,也可以通过使用润滑剂,从而能够减小摩擦系数。在对模具进行计算的过程中,一般来说,模具的厚度在0.8毫米的时候,能够形成一个较大的节点,这时不会发生模具起皱的问题,而且不会影响模具的美观度,也不会出现模具出现局部开裂,给汽车带来安全隐患的问题。

4结语

模具设计论文范文8

随着科学技术的快速进步,在生产模具的过程中广泛应用CAD/CAM技术,通常情况下在以市场调查的基础上进行周密研究,然后进行生产决策,之后生产计划下达开始操作手段,紧接着开发设计模具的工作人员使用模CAD工作站,对模具设计中的分析、造型、计算以及绘制工程图等工作进行完成,而且评价产品性能在设计阶段就可以进行,设计者从繁重的绘图中可以得到解脱,可以在创造性的工作上应用更多的时间。

2CAM过程

2.1集成制造CAD/CAM技术

建立单一的图形数据库是模具CAD/CAM系统的集成重点,在CAD、CAM各单元间获得自动转换与传递数据,使CAM阶段能对CAD阶段的三维图形完全吸收,降低了中间建模的误差和时间;利用计算机反复优化和修改温度在模具工作中的分布情况,以及在模具中的模具结构、性能以及塑料液体流动、加工精度情况等,在正式生产前查找问题、发现问题,使制模时间大大减少,模具加工精度大大提高。模具集成制造运行图见图1,采用CAD/CAM软件具备详细设计、基础设计、概念设计等功能,面向的对象是参数化造型和统一数据库,它提供了一个良好的平台发展模具的集成制造技术。

2.2模具高速加工应用CAD/CAM

Salomon于60多年前提出高速加工的概念,并进一步研究了高速加工技术。刀具直径与主轴速度对高速加工产生很大作用,刀具寿命、所切削的材料及加工工艺等对还高速加工也会产生一定的影响。通常来讲,达40000r/min以上主轴速度可加工小型模具细节结构,而称12000r/min以上的主轴加工速度为高速加工,通常可加工大型汽车覆盖件模具。高速加工相比于传统模具的加工方式,其优点为:模具加工工序简化;模具表面的质量加强;模具加工的速度提高;利于模具修复。因高速加工与传统加工存在区别,高速加工的加工工艺要求比较特殊,所有的工艺过程都包含于数控加工的数控指令,所以,应用CAM系统在高速加工的系统中对其相应的特殊要求必须满足:具有全程自动刀柄干涉检查和自动防过切处理能力;CAM系统的计算编程速度必须很快;优化处理进给率功能;模具高速加工改变编程方式与要求编程人员;具有丰富的、与高速加工要求符合的加工策略。

2.3生产过程管理应用CAD/CAM

基本由个人计算机和小型计算机终端组成CAD/CAM系统的应用网络,在整个生产过程中FMS管理系统软件可实施跟踪管理。如外购件的采购状况、流转零件状况、加工进度、加工品质、收货状况等都能够掌握。通过对这种软件的应用可以节省劳动力,帮助进行适当的外购物品时机选择。完善的材料清单生成,就是在库存管理中使所有加工状况信息全部进入。然后以加工工艺路线为依据实施加工。停工待料的时间、机床运转时间的数据及操作人员加工工时都可以通过该系统逐日提供。这样不仅能够减少机床空耗的时间,还能计算出实际的生产成本,以此实现生产成本减少的目的。

2.4模具检测应用CAD/CAM

可移动式三坐标测量仪在传统模具加工中的作用与三坐标测量仪在配合CAD/CAM系统进行检验中的作用有很大区别。CAD/CAM系统测量空间在3250×2090×1370mm中,三标测量仪的任何一点都为0.015mm精度定位,可达40t测量塑料模或冲模的零件质量。测量仪的测量精度如何保持最好的效果,应将它放在一个独立的机房中,与外界环境隔绝,保持室温20℃。为了避免振动影响测量结果,安装三坐标测量仪应在质量为100t的由气垫支承的混凝土底座上。三坐标测量仪作为一种工具,不仅可以最终检验模具品质,也可以在加工过程实施检测,也就是中间检验各道加工工序,从而掌握所需的几何形状如何更精确地加工。在对模具实施检验的过程中,零件的各部位需以较密的轨迹进行检测。通常情况下检验每一副模具需两次,在冲压加工之前一次、之后一次。检验的过程中,上、下模型腔的对合状况应通过理论计算厚度方式测量,从而了解CAD设计数据精度的具体情况。

2.5提高模具精度应用CAD/CAM

引入CAD/CAM系统实施模具制造,对于冲压模具来讲,提高了加工精度,而主模型和靠模不必再使用。如公差加工具有很严的要求,且磨削主要型腔面后需要的模具需手工抛光,具有良好效果的是用CAD数据加工,远胜于靠模和主模型的效果,其根本差距就是加强了控制尺寸。一般情况下模具的主要型腔表面是用CAD数据精确地加工出来的,然后把主要型腔面与其他零件一起配合加工。现阶段模具工程师可以利用各种CAD/CAM软件生成CNC机床的刀具轨迹和实施模具设计,并且还能够提供用于模具的热性能分析和铸造品质改进的有限元分析。

3结语