工程热物理论文范例6篇

工程热物理论文

工程热物理论文范文1

动力工程及工程热物理学科是与能源转换和利用紧密相关的一级学科,下设工程热物理、热能工程、动力机械及工程、流体机械及工程、制冷与低温工程、化工过程机械6个二级学科。是国民生产生活和科学、文化活动的动力之源,也是社会日常生活的必要保证。能源动力科学与材料科学、信息科学一起,构成了现代社会发展的三大基本要素。

动力工程及工程热物理的理论与技术应用于交通、工业、农业、国防等领域,与此相适应,如何培养21世纪社会需要的能源动力类及相关专业人才,是每个大学相关专业以及每位从事该专业教育的工作者亟需解决的重要问题,尤其是代表本专业高水平人才培养的博士研究生的培养更是重中之重。

全国优秀博士学位论文是贯彻落实《国家中长期教育改革和发展规划纲要(2010―2020年)》,提高研究生培养质量,鼓励创新,促进高层次创新人才脱颖而出的重要措施。因此,衡量博士研究生培养质量的指标之一就是全国优秀博士学位论文。下面以1999年至2013年动力工程及工程热物理全国优秀博士学位论文为基本素材,[1]分析讨论本学科的研究生培养的发展现状及趋势。

一、授予单位比重分析

从1999年到2013年,共有28篇动力工程及工程热物理学科的博士论文入选全国优秀博士学位论文,他们来自西安交通大学、浙江大学、清华大学、哈尔滨工业大学、东南大学、上海交通大学、江苏大学和海军工程大学等8所高校,各高校所占百分比如图1所示。

从图1中可以看到,占比由高到低依次是:西安交通大学29%,浙江大学25%,清华大学、哈尔滨工业大学和东南大学各占11%,上海交通大学7%,江苏大学和海军工程大学各占3%。除江苏大学和海军工程大学之外的其余6所高校都被列为国家“985”和“211工程”高校,占75%。据此可以看出“985”和“211工程”高校具有很强的竞争力。

西安交通大学、浙江大学、清华大学、上海交通大学和哈尔滨工业大学的动力工程及工程热物理都是一级学科国家重点学科,东南大学的热能工程和江苏大学的流体机械及工程是二级学科国家重点学科。依托“985”工程建设及国家重点学科优势,上述学校及学科几乎囊括了所有入选动力工程及工程热物理学科的全国优秀博士学位论文。由此可见,“985”工程建设及国家重点学科建设对提高博士生培养质量,促进高层次创新人才脱颖而出方面的重大意义和作用。

此外,北京是国家政治经济文化中心,上海、江苏和浙江是经济发达地区,汇聚了大量的相关人才。优秀生源充足,这一优势也是对提高研究生培养质量方面起到促进作用。

二、学科比重分析

表1 工学及动力工程及工程热物理占比

全国优秀博士论文在学科门类分布上主要集中在工学、理学、医学三个门类,其中工学包含动力工程及工程热物理在内的21个学科类,共79个专业。历年工学入选全国优秀博士论文的具体数据如表1所示,平均每年入选论文占入选总数的37.9%,同时,全国优秀博士学位论文获奖总数在所有大学科中排名第一。

图2是本一级学科优秀博士论文在所有学科优秀博士论文中所占比重的柱状图。从图2中可以看到,1999~2001年动力工程及工程热物理占比出现较大下降,2001~2003年占比又逐年上升,2004年到2006年占比回落到1%左右,2007年到2009年期间波动比较大,2009~2012年则稳定在2%附近,2013年占比达到3%。

参考本学科优秀博士论文在工学学科中所占比重及工学在全部学科中占比的柱状图(图3)。可以看出,工学占比虽然略有波动,但大体而言比较平稳,维持在38%左右,本学科在工学中的占比在3.8%左右波动。

通过分析可以发现西安交通大学和浙江大学对本学科全国优秀博士学位论文的占比影响较大,本学科在工学中占比较高的1999年、2003年、2007年及2013年上述两高校均有入选论文,而本学科在工学中占比较低的2001年、2002年和2008年则上述两高校均没有入选论文。

由此可以看出,相对而言,两校是本学科研究生培养质量和水平的领头羊,在学科内具有重要的地位和影响力。

三、论文影响因子分析

影响因子是测度期刊有用性和显示度的指标之一,同时也是测度期刊的学术水平,乃至论文质量的重要指标之一,所以对于论文影响因子的分析就显得非常必要。

图4是动力工程及工程热物理学科全国优秀博士学位论文获得者在攻博期间发表的论文(注:这里只统计优博获得者作为第一作者的论文)的影响因子的分布图。

从图中可以看到,本学科高影响因子的论文数量偏少,在统计分析的105篇论文中,影响因子超过3.5的有8篇,占总数的7.62%;影响因子在3.0~3.5之间的论文有7篇,占总篇数的6.67%;影响因子在2.5~3.0之间的论文5篇,占总篇数的4.76%;影响因子在2.0~2.5之间的论文有30篇,占总篇数的28.57%;影响因子在1.5~2.0之间的论文有7篇,占总篇数的6.67%;影响因子在1.0~1.5之间的论文3篇,占总篇数的2.86%;而影响因子低于1.0的论文数量为45,占总篇数的42.86%,占比还是比较大的。

本学科的高影响因子论文偏少与本学科领域的研究特点有关,由于本学科是传统的工科学科,研究的新兴热点相对理学学科不会太多。因此与大多数工学学科一样,整体学术刊物的影响因子不会太高。因此,大多数全国优秀博士论文的研究发表在影响因子低于1.0的学术刊物上。同时,由于全国优秀博士学位论文评审强调创新性,这可以通过在高水平高影响引因子的学术刊物上有若干代表性的工作发表来体现,这样的代表性论文不会太多。因此,本学科优秀博士论文在影响因子3以上的学术刊物上发表的论文并不多。

四、二级学科及作者性别分析

1999年至2013年,获全国优秀博士学位论文的动力工程及工程热物理学科的28位作者中,有14人在博士期间攻读工程热物理,占到优博论文作者的一半;攻读热能工程的有6人,占比为21%;4人攻读制冷及低温工程,占比是14%;2人攻读流体机械及工程,占比7%;能源环境工程和动力机械及工程的各一人,分别占比4%。各专业所占比例如图5所示。

同时在这28人中,男性人数25,占总人数的89%。女性人数3人,仅占总人数的11%,男女比例差距较大。

由此可以发现,若假设所有优秀博士论文作者具有相当的智力水平和勤奋程度,其导师的指导水平也相当,则可说明工程热物理二级学科最有可能产生创新性的研究。或者说,该二级学科由于涉及学科的基础理论问题较多,研究偏基础,产生创新性突破的可能性相对其他二级学科较大。此外,男性优秀博士作者数远较女性作者大,则说明了本学科男性在开展创新性研究工作中的普遍表现高于女性。

五、指导教师分析

本学科28篇动力工程及工程热物理学科的全国优秀博士学位论文是在22位博士生导师的指导下完成的。这22位指导教师中,有17人指导出1 篇全国优秀博士学位论文,4人指导出2篇全国优秀博士学位论文,1人指导出3篇全国优秀博士学位论文。

表2是历年指导教师的平均年龄。这22位导师指导的博士学位论文第一次被评为全国优秀博士学位论文时的平均年龄是57.5岁。50~59岁和60~69岁这两个年龄段的人数最多,分别是5人和10人,其次是40~49岁的有3人,70~79岁的有2人,40岁以下的有1人。

由此可见,从全国优秀博士指导教师所指导优秀博士数可以看出其在本学科领域内的学术水平和指导研究生的能力;同时,大多数年份的指导教师平均年龄在60~66岁,可以看出一般这个年龄段的研究学者其学术水平和造诣容易达到最高点。

工程热物理论文范文2

【关键词】 热力学;统计物理;教学方法

一、引言

热力学与统计物理是理论物理的五大分支之一,具有与其它四个分支(经典力学、电磁学、相对论、量子力学)同等重要的科学与工程地位。热力学与统计物理课程是本科教学中物理学及相关专业的一门重要基础理论课程,它以大量微观粒子组成的宏观物质系统为研究对象,基于热力学理论和统计物理理论,揭示热运动规律以及与热运动有关的物性及宏观物质系统的演化。许多工程科学都是由热力学所衍生的或与其密切关联,例如传热学、流体力学、材料科学等,该课程也是学习量子力学、固体物理的基础。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支援系统及人工器官等。

通过热力学与统计物理课程的教学,可以培养学生的形象思维和逻辑思维能力,提高学生的物理修养,使学生深入认识热力学与统计物理理论,能从热力学和统计物理学角度阐述热运动的规律及热运动对物质宏观性质的影响,能基于热力学和统计物理学理论解决实际热力学问题。热力学理论和统计物理学理论的统一性的教学,可使学生树立物质世界是分层次的、宏观现象与微观本质紧密联系、量的积累引起质的变化等物理学基本观点。然而该门课程抽象性强,教学难度很大,因此教学过程中必须有针对性的采用科学的教学方法以保证良好的教学效果。

二、重点突出物理思想和物理方法教学

科学思想和方法是物理科学的重要内容。美国著名物理学家费恩曼曾经说过:对学习物理的人来说,重要的不是如何正规严格地解方程,而是能猜出它们的解并理解物理的意义。清华大学著名物理学家叶企孙教授也曾强调指出: 物理教学不仅要给学生以知识,更要给学生科学思想和方法。可见物理思想和物理方法在物理教学中的重要性。物理知识的认识和发展是依赖于物理思想的发展和建立于科学的物理方法的基础之上的。物理知识的传授是“授人以鱼”,物理思想和物理方法的传授则是“授人以渔”。仅仅传授物理知识容易使学生对掌握的结论确信无疑,这将限制学生的创造性和个性发展。而物理思想和物理方法的传授不仅是为学生提供必要的知识储备外,也是为他们提供能力储备。

在热力学统计物理课程的教学中,除了物理思想和物理方法自身具有的重要地位之外,授课学时少和授课内容多的矛盾、化繁为简提高教学效果的要求也需要将物理思想和物理方法的传授放在一个重要位置。把握该课程的物理思想和基本方法,对授课内容和知识结构进行优化和调整,是解决授课学时少和授课内容多的矛盾的根本方法。热力学统计物理课程对学生数学基础要求也较高,涉及到大量繁复的公式数学推导和变换,导致学生在学习该课程的过程中很容易将注意力停留在物理公式的数学形式上而忽略了其中的物理意义、物理思想和物理方法,最终结果是导致学生思维混乱、满头雾水。因此,在热力学统计物理课程中应该尽量简化物理公式的数学推导和数学变换方面的教学,而将教学的重点放在物理公式的物理意义、物理思想和物理方法方面,帮助学生从物理角度对授课内容进行深入理解。

三、排除学生心理障碍

热力学与统计物理课程的特点是比较抽象,学生理解困难和难以建立相应的物理图像。较大的学习阻力会影响学生学习该课程的兴趣和爱好,导致学生存在接受热力学与统计物理的物理思想和相关理论的心理障碍。上述在把握课程的物理思想和基本方法的基础上对授课知识结构进行优化调整和将授课内容化繁为简是排除学生心理障碍的一个有效方法,此外好的课题引入对于排除心理障碍从而激发学生学习兴趣也会起到十分重要的作用。如教学实践证明,课程绪论由热力学发展史引入,从“热”本质的争论到焦耳、克劳修斯、开尔文、能斯脱、麦克斯韦、玻尔兹曼、吉布斯等科学家的丰功伟绩进行逐步阐述,可以有效激发学生学习统计物理的兴趣和增强学生的学习信心。恰当地运用热力学统计物理发展史能够提高学生的创新思维水平,提高学生整合信息、发现问题的能力。[1]同时也有利于激发学生的自我意识[2]和有助于学生理解物理知识,有助于学生体验物理学的批判精神和形成整体性的物理知识观。[3]再如在统计理论部分的课题引入时,重点突出物理思想,突出宏观系统由大量微观粒子组成的特点,使学生真正清楚统计物理学的研究对象及方法,理解统计物理与热力学的不同之处和统一之处,也可以有效消除学生学习统计物理的形成心理障碍。总之,通过好的课题引入,激发学生的学习兴趣和调动学生的学习积极性,消除学生的畏难情绪,对排除学生学习热力学统计物理的心理障碍不无裨益,这也是保证学生在热力学统计物理课程学习过程中始终保持学习主动性的关键。

四、详细阐述热力学与统计物理两种方法的关系

热力学方法与统计物理方法是热力学与统计物理研究大量微观粒子组成的宏观物质系统的热现象的两种基本方法,两种方法的有机结合是热力学统计物理理论的一个基本特征,应帮助学生很好地把握该基本特征。热力学的基本任务是研究热运动的基本规律,是研究热现象的宏观理论,它不涉及物质的微观结构,而是从能量转化的观点出发,依据在大量实践中总结出来的几条基本宏观定律,运用严密的逻辑推理而形成的一整套完整的热现象理论。统计物理学的基本任务是揭示热现象的本质,是研究热运动的微观理论,它从物质的微观结构出发,依据微观粒子所遵循的力学规律,再用概率统计的方法求出系统的宏观性质及其变化规律。热力学理论的发展先于统计物理学的发展,其起源可追溯至十七世纪末开始的长期而激励的“热”本质争论,到19世纪中页在焦耳测定热功当量的工作基础上热力学第一定律得以建立了“热质学”,奠定了热力学的发展基础,并在克劳修斯、开尔文、能斯脱等人的进一步努力下建立了热力学第二定律和第三定律,使热力学理论更臻完善。热力学能解决宏观热现象的一些问题,但仍未能对热现象的本质作出解释。在热力学发展的同时,分子运动论也开始发展起来。克劳修斯从分子运动论的观点出发导出波意耳-马略特定律。麦克斯韦应用统计概念研究分子的运动,得到了分子运动的速度分布定律。玻尔兹曼给出了热力学第二定律的统计解释。最后吉布斯发展了麦克斯韦和玻尔兹曼的理论,建立了系综统计法。至此统计物理学形成了完整的理论。可见热力学理论和统计物理理论的发展虽有先后之分,但是发展过程却紧密联系,对应的两种研究方法各有优缺点又有机结合,二者的区别和联系如下表所示:

基础 方法 优点 不足

热力学方法 由大量现象总结归纳的热力学基本定律 数学演绎、逻辑推理 高度的普适性、可靠性 无法解释涨落现象、无法揭示热现象本质

基础 方法 优点 不足

统计物理方法 物质微观结构、宏观量与微观量的关系、等概率原理 概率统计方法 可求具体物质的热性质、解释涨落、揭示热现象本质 近似性

可见,热力学方法和统计物理方法共同来自于人们对宏观热现象的明确认识和微观热运动特征的准确把握,二者相辅相成,互为补充,是一个有机统一体,缺一不可。课程教学过程中,应在详细阐述热力学与统计物理学的概念定义、发展历史的基础上讲授二者的有机统一关系,使学生对两种方法有一个整体的认识,准确把握课程的基本特征,这有利于学生理解热力学统计物理的物理思想和建立相应的物理图像。

五、帮助学生建立课程理论框架

学生在学习热力学与统计物理的过程中,难以理解相关的物理思想、定理定律和无法建立清晰的物理图像,很大程度上是由于没有很好地把握课程的知识要点和理论主线。热力学与统计物理课程有机结合思维方式截然不同的热力学和统计物理两种方法,分别从宏观和微观两个层面对物质系统的热运动规律进行研究,同时数学推导和变换繁复,因此学生在学习的过程很难捕捉到课程的知识要点和提炼出课程的理论主线,这就要求教师有意识的帮助学生把握课程的整体理论框架。

汪志诚的《热力学·统计物理》教材为例,[4]可以建立如下课程基本理论框架:课程分为热力学和统计物理两个部分。热力学部分包括热力学基本定律部分(核心)、均匀热力学系统的热力学公式、热力学基本定律和热力学公式的应用三部分,前两部分为热力学的基础理论,第三部分包括基础理论在均匀单元系、均匀多元系以及非均匀系中的应用。统计物理部分包括平衡态统计理论、涨落理论和非平衡态理论,平衡态统计理论为核心部分,又包括最概然统计理论和系综理论。在授课学时日渐缩减的情况下,可将最概然统计理论作为本科教学中统计物理部分的讲授主体。该部分可以分为系统微观构成的描述和基本统计规律、基本统计规律在不同微观系统中的应用两部分,后者包括了基本统计规律在玻尔兹曼系统、波色系统和费米系统中的应用。这样的一个简明的整体理论框架的建立,有助于学生对相关定理定律的融会贯通和对课程的物理思想和物理方法的整体理解,从而帮助学生建立完整的热力学统计物理图像,达到该课程的最终教学目的。

六、结论

热力学统计物理是本科物理学及相关专业的一门重要基础理论课程,具有抽象且数学知识要求高的特点,教学难度很大。在该课程的教学过程中通过重点突出物理思想和物理方法教学、排除学生心理障碍、详细阐述热力学与统计物理两种方法的关系、帮助学生建立课程理论框架等科学的教学方法的应用,可以有效提高教学质量,帮助学生深入理解相关的物理思想和掌握相关的物理方法,建立完整的热力学统计物理图像。

【参考文献】

[1] 周诗文.运用物理学史培养学生的创新思维[J].物理教学探讨,2005.9.15-16.

[2] 陈运保.物理学史对于培养学生自我意识的重要作用[J].物理教学探讨,2005.2.28-29.

[3] 赵长林,赵汝木.物理学史的课程价值[J].物理教学, 2005.2.32-35.

[4] 汪志诚.热力学·统计物理[M].北京:高等教育出版社,2003.

工程热物理论文范文3

关键词:传热学;教学探讨;基本概念

中图分类号:G642.3 文献标志码:A?摇?摇?摇?摇?摇文章编号:1674-9324(2014)06-0160-02

科学技术迅猛发展,知识更新的周期大大缩短,新学科、新领域的不断出现并很快转变为生产力。《传热学》是热能工程专业的一门主干课程,也是发展石油化工科技的支柱学科之一。长期以来,它围绕热传递现象的基本规律与工程计算,形成了一整套课程教学体系,在传授知识方面发挥了积极的作用。然而传热学虽然属于技术基础学科,但它不像流体力学和工程热力学那样系统严谨完备而偏于理论,而是一门发展中的实用性较强的工程学科。因此,对于传热学教学来说,应更注重培养学生理解传热现象的物理意义,教给学生解决实际问题的方法。下面我就按照《传热学》课程的顺序,谈谈在教学方面的切身体会。

一、绪论部分

这方面的教学内容除了介绍某些最主要的基本概念外,主要应该是加强内容的连贯性和系统性,使学生对学科结构和三种常见的传热方式建立起较完整的轮廓。这部分着重讲述两个问题:(l)传热的三种基本方式;(2)传热过程与传热系数。此外,向学生介绍一些参考书,培养他们的自学能力。为了激发学生的学习热情,我举了日常生活中经常碰到的两个例子:①为什么热水瓶中的水在相当长的时间内不会冷?②我们吃烫的食物时,舌头、嘴巴都有哪些习惯动作?这两个问题一个是常见的事物,另一个是学生的亲身体验。让学生带着这两个问题,我把传热的三种基本方式讲了一遍,并简要地介绍了热阻的概念。这样在课程一开始就吸引学生的兴趣,让他们带着问题进行下面的学习。

二、导热部分

由于现在的高等教育从“精英教育”向“大众教育”转变,学生的培养目标是以应用型的工程技术人员为主,所以除了推导导热微分方程外,更注重对一个具体问题微分方程的建立,边界条件从已知条件的抽象,以及对所得结果的物理意义的分析,在物理概念上多花功夫,使之对传热学的基本概念加深印象。对于稳态问题,一般采用导热微分方程(或傅立叶定理)加边界条件便可求解。热阻法在稳态求解中简便和直观,并且用类比法与电阻联系起来,使学生能理解一维稳态下热流处处相等(串连)。在教学方法上,采用由浅入深的教学方法。例如:在讲变导热系数的导热问题时,先讲定导热系数的求解方法,然后通过数学推导,得出只要求出变导热系数的平均值,可把变导热系数的问题转化为定导热系数问题的结论。在肋片导热的教学过程中,先讲装肋片的必要条件,然后建立数学模型,并给出精确解、近似解、修正解。让学生掌握对具体对象的数学建模,明白精确解和近似解之间的差别,懂得工程上对某些问题进行近似的合理性。这样处理,思路清楚,由简到繁,步步深入,加强了各内容之间的联系。对于非稳态问题,首先要向学生讲解什么是非稳态,它和稳态传热有什么区别?一般非稳态的问题都要查图表,学生只要认真做几道习题一般都能掌握图表的查阅方法。这部分的重点是集总参数法,用毕渥数来判断能否使用集总参数法,毕渥数的物理意义是表征内部导热热阻与外部对流热阻的比值,当然毕渥数要小到一定程度才能用集总参数法。这时物体内部的导热热阻远小于其表面的换热热阻,物体内部的温度趋于一致,以致可以认为整个物体在同一瞬间均处于同一温度下。这些物理意义既可以使学生更深刻理解计算公式的推导基础,也可以使学生灵洁运用所学公式解决工程计算问题,此外它更是学生对新问题进行简化分析的理论依据。

三、对流换热部分

影响对流换热的因素有五个方面:(1)流体流动的因素;(2)流体有无相变;(3)流体的流动状态;(4)换热表面的几何因素;(5)流体的物理性质。在这一部分我们最关心的是对流换热系数,通过分析知道粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方流速逐渐减小,而在贴壁处流体将被滞止。贴壁处这一极薄的流体层相对于壁面是不流动的,壁面与流体间的热量传递必须穿过这个流体层,而热量传递方式只能是导热。因此将傅立叶定律应用于贴壁流体层,就把对流换热系数和流体的温度场联系起来。为了求解有关未知数,需用质量守恒方程、动量守恒方程、能量守恒方程,这就使学生对对流换热系数的求解过程有总体的概念。对“对流换热的数学描写”、“层流边界层微分方程组”等内容,注重对建立方程的简化,假设条件的讲解,以及有关准则数物理意义的分析,即把时间花在重点和难点的讲解。这部分的实验关联式较多,主要讲解特征长度的选取,定性温度的选择,局部换热系数和平均换热系数的区别。对某一具体问题如何选择恰当的关联式以及在允许的误差范围内对同一问题用不同公式计算的合理性,培养学生工程应用能力。对于特征数方程和实验数据存在误差的问题,要引导学生用辨证和发展的眼光来看待,一个复杂的物理现象往往要经历长时间的探索,而目前的误差反映了现有的认识水平。

四、热辐射部分

我们把这部分的主要概念分成四组:(1)吸收率、反射率、透射率以及对应的黑体、镜体、透明体;(2)黑体辐射力、黑体单色辐射力及黑体辐射基本定律;(3)黑度、单色黑度及定向黑度;(4)投入辐射、光谱吸收比、灰体及基尔霍夫定律。每一组的概念存在数量关系和交叉关系。通过这种有意识地划类比较,更能清楚地揭示概念之间的内在联系,“信息”特征鲜明,从而有利提高学生的理解性、记忆力。角系数是这一部分的重点和难点,为了让学生理解角系数是与几何相对位置有关,我举了大量的例子,让学生在解题过程中灵活应用角系数的各项性质,加深理解。在多表面系统辐射换热的计算中,采用换热等效网络图,重点讲解了有一个表面为黑体和有一个表面绝热的区别,这样学生就明白为什么一个能采用并联热阻的求解法而另一个却不能的原因。

传热学是一门工程应用性很强的学科,需要考虑综合经济问题,像如何正确处理增强传热和流动阻力增大的矛盾。能量守恒是热传递现象所遵循的一个基本规律,《传热学》的形成、发展与它的运用息息相关。能否通过课程教学深刻理解热传递过程与能量守恒的关系,并基本掌握建立能量方程的方法与技巧,就成为提高学生解决问题能力的关键之一。随着计算机的迅速发展及应用的普及,热物理问题的数值模拟方法已越来越显示出其重要的作用,向学生介绍一些大型的商业计算软件,如:Fluent、ANSYS等,同时使学生了解传热学在现代生物医学、高新技术中的重要作用,这能够启发学生善于发现和解决工程问题,调动学生的学习积极性以及学习的创新热情,进一步巩固所学理论知识,提高工程实践能力和学习兴趣,培养应用型高级技术人才。

参考文献:

工程热物理论文范文4

关键词:数学物理;工程热力学;教学

作者简介:高蓬辉(1979-),男,山西兴县人,中国矿业大学力学与建筑工程学院,副教授;张东海(1977-),男,江苏徐州人,中国矿业大学力学与建筑工程学院,副教授。(江苏 徐州 221116)

基金项目:本文系中国矿业大学青年教师教学改革资助项目(项目编号:2001207)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)22-0087-02

“工程热力学”为能源工程、机械工程、化学工程、材料工程以及航空航天工程等多门学科的发展奠定了基础,热工理论的研究与应用直接决定能源转化效率、节能技术及环境保护实施的成效,对于人类社会的可持续发展具有重大意义。因此,作为高校工科专业的重要基础课,加强“工程热力学”的教学效果就尤为重要。我国近两百所高校开设建筑环境与能源应用工程专业,全部将“工程热力学”课程设置为主干专业基础课之一。“工程热力学”课程不仅是后续专业课程学习的理论基础,同时直接为学生今后的科研和工作实践提供理论指导,具有重要的学习意义和实际应用价值。[1]

笔者根据自身在“工程热力学”课程教学过程中的切身体会和经验,指出应注重将基础数学、物理理论知识融会于“工程热力学”课程讲授过程中,促进学生对热力学中抽象概念和过程的深入理解,达到提高和改善教学效果的重要作用和目的。

一、基础数学物理知识在热力学理论中的体现

热力学的先修课程主要有高等数学和普通物理等课程,在教学中发现许多学生高等数学知识薄弱,需要在课堂教学中讲解大量的高等数学知识,才能使课堂教学质量得到保证,然而却浪费了“工程热力学”课程自身的教学时数,因此探索基础数学、物理知识体系与热力学之间合理的联系以及有机过渡的教学方法成为热力学教学中必须重视的问题之一。

热力学作为一门非常系统且抽象的学科,其科学性、严谨性主要是通过各个章节中贯穿其中的数学体系来构建而成的。如何科学、深入理解这些繁杂这些概念和数学结论,成为课堂教学活动中非常关键的一环。以下我们将例举热力学中非常重要的一些基于数理知识的基本概念和理论推导过程。

1.状态参数

在热力学的教学过程中,我们把系统中瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。[2]热力状态反映了工质大量分子热运动的平均特性,描述工质状态特性的各种物理量称为工质的状态参数。而状态参数是热力系统状态的单值函数,与热力过程无关,状态参数的这一特性的数学特征为点函数,表示为:

(1)

循环积分为:

(2)

在教学活动中,应将微分的理念融入到状态参数概念的讲解中,并通过全微分将热力系统状态参数为点函数的特性进一步阐述,使学生深入理解热力状态参数的特殊性。

2.微变量dh与变化量h的区别

在热力学第一定律的学习过程中,对于焓有两个非常相似的公式:

(3)

(4)

上式(3)和(4),从外形来看,非常相似,且学生在学习过程中,也容易忽视其细微差别。从数学角度来看,在教学过程中应对其进行区分。式(3)为焓的微分计算表达式,dh为焓的微变量值;式(4)为焓的改变量计算表达式,h为焓的变化量,即式(4)是通过对式(3)进行积分后得到的。这些细微概念上的差别,带来完全不同的热力学分析。通过上述的详细讲解和区别,可以加深学生对热力学中相关公式和计算过程的理解。

3.卡诺循环与极限的概念

卡诺循环解决了在一定的高温热源T1和低温热源T2间,热功转换最大效率的问题。由于卡诺循环是典型的可逆循环,在整个热力转换过程中,没有熵产,即没有不可逆因素所引起的做功能力的损失,因此,该循环热效率ηtc=1-T2/T1成为两热源T1、T2之间工作热机的最大循环热效率。

在课堂讲解中,联系实际工业生产和生活中的热力机械,指出实际热力机械的热功转换效率都低于卡诺循环热效率ηtc,原因在于卡诺循环作为可逆循环,是一理想热力循环,其热效率为实际生产、生活中热力循环效率的极限。[3]因此,实际生产和生活中的热力循环效率只能小于卡诺循环的热效率,不可能大于卡诺循环的热效率。这样从数学极限的角度也解释了为什么卡诺循环效率是一定高、低温热源间工作热机的最大效率的问题,使学生更加容易理解卡诺循环这节的相关概念和理论。

4.音速

研究流体在管道内流动时,我们提出了音速α,并且对定熵流动中音速用下面的公式进行计算:

(5)

在得到音速与温度之间的函数关系时,指出理想气体定熵过程方程式:

(6)

对式(6)进行变形,得到 (7)

在将式(7)代入式(5)时,遇到与是否等效的问题,从形式看,一为偏微分关系,另一为全微分关系。但从变量与因变量的角度来看,同样反映出变量与因变量间的函数变化关系,在课堂教学过程中,需要对这一细微差别进行讲解,以促进学生对物理过程以及数学关系的理解,不可一带而过,从而造成学生概念以及数学关系理解上的断层和缺失。

二、构筑基础数理知识与“工程热力学”课程有机结合的教学方法

“工程热力学”课程的一个重要特点是基本理论多,基本概念抽象。为此,在课堂教学中针对基本理论部分,把讲解重点放在基本理论和基本概念的深入理解上,如状态参数、可逆过程、热功转换、热力学第一、二定律、卡诺循环、卡诺定律、熵等,这些一定要详细讲解、分析透彻。特别是热力学第二定律的课堂教学中,因为该部分内容概念抽象、原理费解,又不能用实验来演示,所以学生学习非常困难,但热力学第二定律作为“工程热力学”课程的核心内容之一,非常重要。凡此种种,笔者作为“工程热力学”课程的讲授教师,在教学活动中,认为通过将基础数理知识与“工程热力学”课程有机结合的教学方法,可以提高和改善课堂教学效果,促进学生对“工程热力学”课程内容的掌握和理解。教学活动中可以采取以下的方法,以实现将基础数理知识与“工程热力学”课程结合的教学:

1.课程准备阶段

在“工程热力学”课程的备课阶段,先将本章节内容难以理解的概念、定理以及公式推导过程摘出来,同时考虑这些部分与哪些基础数学、物理知识相关,并将这部分数理知识作为课堂讲授内容的铺垫部分准备到“工程热力学”课程的课堂教学活动中,即将这部分基础数理知识写入课堂讲义、PPT教学幻灯片中。

2.课堂讲授阶段

在“工程热力学”课程的课堂讲授过程中,将热力学基本概念、原理和公式的推导与基础数理知识结合起来,在讲授过程中,实现热力学本身内容与基础数学、物理知识的互动讲解,从而达到改善教学效果、使学生易于理解和掌握的教学目的,实现学生对复杂、难懂内容的系统把握和理解。

3.课后反馈阶段

课后可以与学生围绕课程教学内容进行沟通,对课堂教学不足之处进行查漏补缺,一方面可以掌握学生的掌握情况,另一方面可以对教学方法不断改进,起到再次升华的作用。

三、结论

“工程热力学”作为能源、机械和化工等众多学科领域方面的一门基础专业课,其重要性不言而喻。如何改进已有的教学方法,改善和提高现有的课堂教学效果,成为各高校“工程热力学”课程教师所共同关注的关键问题之一。本文从笔者自身的教学体会出发,根据“工程热力学”课程内容的特点,提出将基础数理知识融入到“工程热力学”的教学活动中,并给出了实现将基础数理知识与“工程热力学”课程结合的教学方法和途径,为“工程热力学”课程的讲授提供了新的思路和方法,对其他课程的教学改革也有一定的借鉴意义。

参考文献:

[1]欧阳琴,寇广孝.建筑环境与设备工程专业“工程热力学”课程改革探索[J].教育教学研究,2011,(12):191-192.

工程热物理论文范文5

关键词:热声制冷技术;热声理论;驻波;物理知识;热穿透深度;临界温度梯度 文献标识码:A

中图分类号:TB61 文章编号:1009-2374(2017)08-0085-04 DOI:10.13535/ki.11-4406/n.2017.08.041

热声制冷技术就是利用热声效应将高强度的声能向热能方向转变的一种技术。热声制冷技术的起源要追溯到1777年Byron Higgins在实验中的一次意外发现:在做实验的时候,他一不小心让燃烧着的氢气接触到了两端开口的大管子,结果管子里发出像吹风琴一样的声音。当时他把这种现象形象地称为“歌焰”。后来,Sondhauss和Rijke分别对一段开口和两端都开口的管子做了热声效应的研究,形成了后来以Sondhauss管为雏形的驻波热声发动机和以Rijke管为雏形的行波热声发动机。如今,热声技术已经成为一个热门话题,其具有环保、长寿命、高效节能、简单轻便等明显的优势,其在制冷领域有着巨大潜力,备受关注。

1 工作原理

热声制冷机最主要的部件是热声堆,热声堆主要起热交换的作用。一定频率下,空气分子在热声堆中沿着热声堆的纵向在各叠层之间做往复来回运动。如图1所示:

空气分子在状态2中升温放出热量,在状态5中降温,吸收热量。

设起初时气团处在状态1,温度为T。当声压增加时,气团向上动并且被绝热压缩,温度上升为T++到达状态2。此时气团的温度要高于其附近热声堆的温度,就会把热量输给热声堆,温度降为T+到达状态3。在声压降低的状态下,处在状态3的气团向下振动并且发生绝热膨胀,温度降低为T-到达状态4。随着声压继续降低,气团继续向下振动并且继续发生绝热膨胀,温度降低为T---到达状态5。对于状态5来说,此时气团温度就比其附近的热声堆的温度低,热量就会被输送给气团,温度升高为T--到达状态6。状态6声压增强,气团向上运动并且被绝热压缩,温度上升为T到达状态1,这就是气团的一个运动周期。在每一个振动周期中,气团都会从热声堆的下端吸收热量,在热声堆上端释放热量,完成垒热过程,这就是我们在实验室中所观察到的热声效应的基本原理。接下来,从理工科基础课程知识出发介绍其物理理论内涵。

2 Rayleigh准则

关于热声效应的理论研究最早是从1868年开始的。1868年,Kirchhoff发现在等温固体管壁和维持声波的气体之间的振荡传热存在能量衰减,并对系统的衰减量进行了定量计算。1896年,Rayleigh指出:如果系统中的流体介质的声振动与回热器的热交换之间处在合适的相位角,就可以维持系统的热声振荡。当流体介质在做声振动时,如果对流体介质最稠密处进行加热,而对流体介质最稀疏处进行降温,声振动就会得到加强。反之,如果对最稠密处进行降温,而对最稀疏处进行加热,声振动就会衰减。为了维持系统中的声振动,外界就必须对流体工质持续做功,这一解释被后人称为Rayleigh准则。这是人们第一次从理论的角度对热声现象进行探讨。直到今天,人们也一直把Rayleigh准则看作是热声现象的一个最好的合理解释。Rayleigh准则理论推导比较复杂,但是我们发现可以从声波的波动方程出发推导Rayleigh准则。

上述内容讲述了温度和声波驱动频率之间的关系,但仍遗留一个问题,如何确定?它决定了温度变化的最大量。下面我们着重解决确定的问题。为了突出研究重点、简化模型,在这里我们只考虑一维传导情况,认为气体沿着固体表面在y方向上的热传导,忽略在x方向和z方向上的热传导。设声波是沿着x轴方向传播的,在其传播方向上取一小段长度,将热声堆的固体表面置于平行于xz的平面上。设在热声堆的固体表面上的温度梯度为。在此模型上,我们选取热声堆的空间中体积为的任一微元,利用热量衡算来计算温度振荡的最大振幅。我们将从三个依据上去寻找的表达形式。

这一临界温度梯度可以看作是原动机与致冷的分水岭。于是可以得到结论,当是发动机,当则为制冷机。

3 热声制冷的物理理论发展

以上阐述了热声致冷的理论原理,分析了影响了热声致冷热声基本因素。制冷的定量分析要得益于瑞士苏黎士联邦技术研究所的Rott教授,他在热声制冷的物理机理上做了很深刻的研究,为热声理论奠定了基础。发展至今,热声制冷理论可分为线性理论和非线性理论。1988年,Swift等人系统地阐述了线性热声理论。1997年,John Hopkins大学Karpov和Prosperetti等人建立起非线性数学模型。

式中:为工质的温度;表示压力振幅;表示速度振幅;为黏滞函数;为热函数;为流道的流通面积;为角频率;为工质的平均密度;为工质的定压比热容;为工质的比热比;为工质的热导率;为总能流;为Prandtl数;为构成流道的固体的横截面积;为构成流道的固体的热导率;为虚数符号;上标表示的是其共轭复数。

线性热声理论有很多优点:首先,它是利用数学的分离变量法,将原来的写成的形式,然后再代入线性化的动量方程、流体的连续性方程和流体和固体能量方程中进行化简。这样做可以将原来复杂的偏微分方程转化成相对简单点的常微分方程;其次,线性热声理论的动量方程、连续性方程和能量方程式(19)、式(20)、式(21)是一个通用表达式,既可适用于研究热声堆的研究,也可用于换热器、谐振管等热声部件的探讨。后来在Rott的研究工作基础上,Swift等人对线性热声理论进行了发展和完善。其主要工作是对多孔介质板叠式回热器(即热声堆)的模拟,流道截面变化引起的局部损失等做了初步研究。但是线性热声理论也有不足之处,尤其是针对现在实验中出现的振幅饱和、频率跳变等非线性效应,它都不能给出合理的解释,这就催生了非线性热声理论的发展。

非线性热声理论是最近几十年才开始发展起来的,最开始主要解决的问题就是热声发动机和热声制冷机中的非线性问题,比如频率跳变、振幅饱和等现象。1997年,美国John Hopkins大学Karpov和Prosperetti等人便开始研究热声效应中的非线性问题。利用他们的非线性模型,他们成功地解释了微小压力波是如何通过初始的线性增长进入非线性区,最终达到饱和振幅,并且非线性模型还能够对频率跳变现象(即产生高次谐波)给出定量理论解释。

在国内,浙江大学制冷与低温研究中心的包锐、陈邦国分别对圆直型和锥形型的谐振管做了对比研究。他们发现锥形型的谐振管可以对系统中的频率跳变现象起抑制作用,使得热声系统在基频下工作。南京大学声学研究所的葛欢、范理等人对热声制冷机板叠的非线性阻抗做了系统的研究。他们的研究可以优化声源和带板叠的热声谐振管之间的非线性声耦合,提高热声制冷机的功率和效率。他们还发现扬声器振动部件的非线性会影响制冷系统的谐振频率,从而导致热声制冷系统的转换效率的降低。

初步发展起来的非线性热声理论虽然可以对振幅饱和、频率跳变等非线性效应给出理论解释,但现有的非线性热声模型还不完善,问题主要表现在求解非线性数学模型上。而且限于对传热过程物理机制的有限理解,还有很多因素需被考虑,有待进一步完善。

4 验证性工作

针对热声制冷技术,我们设计了热声制冷实验,测量了其制冷效果。其关系如图3所示:

从图3可以看出,该制冷机在室温环境下,可以产生最大13.3℃左右的温差,相比于室温有9.2℃的降温。在持续的做功下,实现了声制冷,较好地符合了Rayleigh准则。热声堆上下两端的温度随着时间的推移都趋于饱和。这是因为在泵热的过程中,热声堆上端的温度不嗌高,当热声堆上端的温度高于或等于高温气团的温度时,便不再发生传热。我们还发现在110s以后,热声堆下端的温度有上升,这是因为热声堆上端为高温区,下端为低温区,从而产生温度梯度,发生纵向导热,这对制冷是不利的。所以在选择合适的热声堆的材料时,热声堆的材料的横向导热系数要大,纵向导热系数要小。

5 展望和总结

热声制冷技术最近几十年得到了快速的发展,尤其是共振型驻波制冷机和热声驱动的脉管制冷机,它们在低温领域都得到了很好的应用。在理论方面,线性热声效应理论的发展已趋于成熟。对于系统中频率跳变、振幅饱和等非线性效应问题,人们已给出理论解释,但非线性热声理论还有待进一步完善。热声制冷相比于传统的利用氟利昂来制冷的方法,具有环保、长寿命、高效节能、简单轻便等明显的优势,这使得热声制冷无疑会成为下一代制冷设备的首选。一旦热声制冷开始商业化,进入寻常家庭,它将会为整个制冷工业带来翻天覆地的变化。

本文介绍了热声制冷技术的工作原理和其蕴藏的物理知识,阐释了其复杂的技术中所基于的简单物理原理,介绍了其发展所面临的问题,并对理论模型得到的结论在实验上予以了验证,希望这项工作能够让更多的人了解热声制冷技术。

参考文献

[1] 吴锋,李青,郭方中,等.热声理论的研究进展[J].

武汉工程学报,2012,34(1).

[2] 包锐.驻波型热声制冷机性能及其驱动脉管制冷特性

研究[D].浙江大学,2007.

[3] 马彬,陈润,王飞,等.热声效应及其实验[J].声学

技术,2005,4(1).

[4] 陈国邦,汤珂,金滔.热声发动机及其驱动脉管制冷

机研究进展[J].科学通报,2004,49(9).

[5] 周远,罗二仓.热声热机技术的研究进展[J].机械工

程学报,2009,45(3).

[6] 肖勇.热声发动机输出特性研究[D].浙江大学,2007.

[7] 包锐,陈国邦,贾正中,等.锥形谐振管对热声发动

机非线性效应抑制作用的研究[D].浙江大学,2006.

[8] 葛欢,范理,张淑仪,等.热声制冷机板叠的非线性

阻抗的研究[D].南京大学,2014.

工程热物理论文范文6

关键词:围护结构 热工性能 传热系数 稳态

1、围护结构的导热形态

同一物体的内部或者物体之间存在温度差时,将产生热量传递,这种现场叫导热。当物体的温度随时间发生变化时,叫非稳态温度场(瞬态温度场),这种热量传递方式对应的导热问题就叫做非稳态导热。建筑围护结构的导热过程就是非稳态导热。对建筑围护结构的导热进行分析时,可以添加边界条件,人为的把环境温度变成稳定值,这样在建筑导热过程就变成了稳态传热的过程,建筑物所在区的月、季、年度的最大、最小值是温度值取值。这种方法进行研究建筑节能设计、检验和建筑的传热系数,实践证明具有绝对的可靠性和可行性。

2、传热方式

传热方式的分为三种:即导热、对流[1]和热辐射[2]。两个物体之间或物体内部之间发生热能转移的现象称为传热。只要一个物体内部的各个部分或者两个物体之间存在着温差,就会发生热能转移和传递的现象。一般建筑结构中的热量转移并非单一的方式,通常有两种或两种以上的综合作用。为了满足工程设计的要求,计算方法应该以基本原理为基础进行一些变化,使计算得以简化同时又保证必要的精确度。

3、围护结构稳态传热理论

建筑的围护结构就是建筑物各面房间的围挡系统。当围护结构受到恒定的温度作用时,其内部温度分布的传热量和通过围护结构的传热量,是不随时间而改变的稳定传热状态,这种情况称为稳态传热[3]。

3.1 围护结构传热过程

稳态传热是最基本也是最简单的传热过程 [4]。在建筑热工学中,大部分围护结构都为平壁,如:地板、墙体、平屋顶、拱顶、曲率半径很大的穹顶等结构都称为“平壁”。在“平壁”结构中,当室内外存在温度之差时,会从围护结构的高温一侧向低温一侧传递,为传热现象。假设有一个均质材料的平壁,平壁的长和宽尺寸都远远大于厚度,则通过平壁的传热认为只沿厚度一个方向传递,假定室内空气温度为 ,高于室外空气温度 ,室内温度高于室外温度,当平壁的内、外表面温度保持稳定时,其传热过程为一维稳态传热。系统整个的传热过程可分为三个步骤:第一步壁体内表面的吸热、第二步壁体材料层导热、第三步壁体外表面散热。

3.2 围护结构的传热阻计算

内表面换热阻 、壁体传热阻 以及外表面换热阻 之和,为围护结构传热阻。内表面换热阻 为内表面换热系数 的倒数;围护结构热阻 的计算按照围护结构构造和组成材料的不同,可以分为单一材料层、多层匀质材料层、组合材料层及封闭空气间层等类型;外表面换热阻 为外表面换热系数 的倒数,

(1)单一材料层的热阻

由一种材料做成的构造层垂直于热流方向,单一材料层如:钢筋混凝土层、砂浆层、砖砌体层、装修层等,其热阻 为:材料层的厚度 除以材料的导热系数 。

(2)多层匀质材料层的热阻

当由多层匀质材料做成的构造层垂直于热流方向时,如内、外粉饰的墙体、夹芯墙体、外保温节能墙体等,其热阻 为各单一材料热阻之和。

(3)非匀质材料的热阻

当垂直于热流方向上非匀质材料,如:围护结构内部有些材料层由两种以上材料组合而成,如钢筋混凝土空心板。计算结构层的热阻时,可在平行于热流方向沿着组合材料中不同材料的界面,可以划分成若干部分。非匀质材料的平均热阻计算公式如下:

(4)封闭空气间层的热阻

在围护结构中,为满足某些特别需要而设有封闭空气间层时,按构成间层的材料、间层厚度、位置以及热流方向等因素,最后计入围护结构总热阻之中。围护结构总热阻值应按下式计算: ( 从《民用建筑热工设计规范》中相关数据取值 ) 。

3.3 围护结构的传热系数计算

传热阻是表征围护结构阻抗传热能力的物理量,也是围护结构保温隔热性能优劣的特征指标。传热阻值的多少反应了围护结构保温隔热效果的好坏,但是在实际工程中对围护结构传热阻值的测量不够直观、便捷,通常在围护结构节能计算中,采用传热系数K值进行评价围护结构的节能设计是否符合要求。

建筑围护结构的稳态传热是一种较为理想化的模式。将建筑围护结构的传热过程简化成稳态传热,虽然不能客观反映围护结构传热的基本特性,但这种方法有操作方便、计算简单等优点,大量工程实践证明:用稳态传热法对建筑围护结构的热工性能进行研究,计算出的结果能够反映建筑围护结构具体的能耗状况和节能标准。稳态传热法研究围护结构的热工性能,有利于我国建筑节能设计工作的开展。

4、小结

本文通过介绍,得出以下结论:通过对建筑围护结构的传热方式和热工性能的研究,为以后建筑围护结构热工性能研究提供一定理论依据。壁体总传热阻和总传热系数是衡量围护结构在稳定传热状态下重要的热工性能指标。稳态传热法研究建筑围护结构的热工性能具有简捷性、易操作性和可行性。

参考文献

[1] 郭未娜.混凝土砌块复合承重墙体抗震性能试验研究[D].硕士学位论文.北京工业大学.2006.

[2] 郑群圣.夏热冬冷地区夹芯保温墙体系及其抗压性能研究[D].硕士学位论文.长沙理工大学.2009.

[3] 柳孝图.建筑物理[M].中国建筑工业出版社.2007.

[4] 陶文.传热学[M].西北工业大学出版社.2006

基金项目:国家科技计划项目课题(2008-27)