无线环境监测范例6篇

无线环境监测

无线环境监测范文1

摘 要:根据无线通信技术低功耗、低成本和动态性的优点,研究基于无线传感网的井场环境监测系统,对井场环境进行监测,防止井下事故的发生。系统的硬件由终端、路由器、协调器、上位机四部分组成,主要针对井场环境监控困难、环境复杂、事故易发的情况。该系统软件的基本思想是:先初始化系统,然后启动A/D转换,将采集到的数据送给CC2530进行存储、数据处理,最后利用CC2530的RF收发器对数据进行发送。该系统采用无线ZigBee技术作为传输方式,同时结合了虚拟仪器技术,对上位机界面进行了设计。系统测试过程稳定,结果可靠,同时抗干扰能力较强且可以应用于多种户外环境参数的采集与监测。

关键词:井场环境监测;无线通信技术;ZigBee;数据采集

项目资助:本研究受油气消防四川省重点实验室开放基金项目(No. YQXF201602),2016部级级大学生创新创业训练计划项目 (项目号:201610615030)资助。

1引言

随着能源危机的到来,对石油资源的长期、安全、高效开采,已成为大家研究的话题。井场环境条件恶劣,危险性高,需要监控参数多。由于对相关参数的控制不及时而造成的一些或大或小的事故,造成这些事故的原因除了所处地质的本身条件外,很多时候都是由于对采油参数的控制不及时而造成的。进入21世纪,他们不仅使用无线通信技术来对井场环境进行监测,而且在钻井技术方面也实现了自动化。但是在井场环境中有线方式在一些应用中存在一定局限性,如需经过强腐蚀地段等。因此无线通信技术得到高度重视。无线通信技术具有低功耗、低成本和动态性等优点[1]。它们能够很好的应用到环境无线监测,因此,研究基于无线传感网的井场环境监测系统具有十分重要的作用和意义。

2 井场环境无线监测系统的硬件设计

2.1 系统硬件的设计框架

本系统采用固定端采集模式,分为终端、路由器、协调器、上位机四部分。在网络中,传感器节点分布在井场内的各个地方,根据网络的覆盖性以及实际井场的面积,计算出总共需要多少个传感器节点。[2]这些传感器节点对井场环境的温湿度、光照强度以及各种有害气体进行实时采集。当协调器上电时,开始对网络进行建立,然后通过ZigBee的方式与传感器节点进行无线连接。系统组成如图1所示:

2.2 网络节点的硬件设计

2.2.1 网络节点整体设计

该设计针对的是井场环境参数的监测,井场环境一般较恶劣,需要采集的环境参数包括可燃气体(甲烷)、温湿度、光强、有毒气体硫化氢以及烟雾等等。在该设计中,整个网络的主控芯片采用CC2530,它能很好地适应井场环境的监测。除此之外,网络还应具有传感器模块、射频模块、电源模块、通信串口以及天线等来满足整个网络数据的无线通信功能[3]。传感器模块主要包括MQ-2型气体传感器、温湿度传感器SHT11、光电传感器和硫化氢传感器。传感器与CC2530芯片都集成在同一块PCB板子上。通信串口使用RS232。

2.2.2 传感器电路设计

本设计研究的井场环境无线监测系统,主要是对井场的环境参数进行采集、监测,需要对网络节点配置相应的传感器电路。传感器模块主要包括MQ-2型气体传感器、温湿度传感器SHT11、CH4传感器、光电传感器和硫化氢传感器。

2.2.3 串口通信电路

本设计的串口通信采用串行通信。这种通信方式可以节约通信成本,但是传输速度比并行慢。串口通信电路就是为了使协调器与上位机相连,通过上位机对数据进行显示。

2.2.4 其他电路

天线线路使通讯信号能从一节点通过无线方式发送至另一节点;电源转换电路使9V直流电压转换电路转换成5V直流电压与3.3V直流电压。

3 井场环境无线监测系统的软件设计

3.1 单片机端软件设计框架

单片机端软件的基本思想是:首先对整个系统上电复位初始化,然后启动A/D转换,该A/D转换器是利用CC2530的电路来实现的,利用相应的传感器对环境参数进行采集,将采集到的数据送给CC2530进行存储、数据处理,最后利用CC2530的RF收发器对数据进行发送,然后另外的CC2530进行接收。

3.2 上位机端软件设计框架

计算机端软件就是对数据进行无线接收,然后通过串口助手对其进行显示,再利用上位机对数据进行处理、保存、报警等功能。

3.3 上位机实现

在该设计中,利用的是LabVIEW来实现的,该界面包括用户登陆界面,串口配置界面,数据与波形显示界面,同时还具有数据保存功能。

4系统测试

4.1 模块测试

(1)数据采集模块测试

由于实验限制,本设计在测试的时候仅仅只选用了温湿度传感器SHT11和光电传感器。

(2)通信模块测试

利用两块CC2530模板,一个下载终端节点程序,一个下载协调器程序,并将协调器与上位机通过串口线连接。给协调器与终端节点上电,观察两个模块LED显示情况以及串口助手显示情况。通过模块测试,系统能够正常工作运行。

4.2 整体测试

此时点击文件路径处,选择文件保存的位置,当停止运行时,可以查看历史数据。该图显示每隔1秒采集一次参数,且节点1和节点2的参数能够很直观的显示,通^对历史参数的保存,就能对其进行数据分析,发现故障。

4.3环境实测

为了验证系统的可靠性,利用它在实验室外进行了测试。我们先完成终端、协调器与路由器的程序下载。之后,我们布置各终端节点、协调器、路由器。再对各节点进行供电,上位机采用电脑进行代替。随即,我们进行环境参数的采集。

测试结果表明,该系统能够对户外环境进行实时监测,当环境参数超过设定的值时,LabVIEW界面相应的位置就会进行报警。

5结论

本文介绍的基于ZigBee技术的井场环境无线监测系统。采用无线ZigBee技术作为传输方式,同时结合了虚拟仪器技术,对上位机界面进行了设计。经过现场实验表明,该套系统测试过程稳定,结果可靠,同时抗干扰能力较强。不仅如此,本系统还可以应用于多种户外环境参数的采集与监测。

参考文献

[1]陈方华.基于ZigBee的煤矿井下无线传感器网络的研究[D].安徽理工大学,2009.6:6-8.

无线环境监测范文2

关键词:无线环境监测 模拟装置 探讨

中图分类号:TP274 文献标识码:A 文章编号:1007-9416(2013)07-0192-01

1 方案设计与论证

1.1 无线收发模块

(1)方案比较:方案一:采用编解码集成电路PT2262/2272,其为CMOS工艺制造,具有低功耗、外部元器件少,工作电压范围宽:2.6~15v等特点,应用于车辆防盗系统、家庭防盗系统、遥控玩具、其他电器遥控等方面。方案二:采用XEMICS公司推出的CMOS超低功率传输器、单片无线收发芯片XE1209,其适用于小范围低频、音频资料传输系统,可以实现2次连续相位频率位移键控调制(FSK)。方案三:以MELEXIS公司的单片射频收发芯片TH7122作为主要芯片,其工作频率范围在27MHz~930MHz,具有很宽的调谐范围。可以工作在4种不同的状态下:待机状态、发送状态、接收状态和空闲状态。(2)方案确定:综合分析以上三种方案的优缺点,方案三具有更大的优越性、灵活性,因此我们采用方案三作为具体实施的方案。

1.2 处理器比较与选择

由于本系统中的两个探测点采用两节1.5V干电池供电,并要求尽量降低各探测节点的功耗,因此采用一般的C51单片机并不满足要求。而ARM微控制器STM32系列虽然具有丰富的资源、强大的功能与低功耗等特点,但是其性价比相对来说比较高,整机电路也比较复杂,故也不选取。因此在保证满足要求的前提下,我们选择了适合于许多要求高集成度、低成本的P89LPC922微控制器,其集成了许多系统级的功能,大大减少了元件的数目并降低系统的成本。

1.3 显示器比较与选择

(1)方案比较。方案一:采用DM-162液晶显示模块,具有低功耗、模块结构紧凑、轻巧、装配容易等特点,但是其界面比较小,不能达到比较好显示的效果。方案二:采用汉字图形点阵液晶显示模块RT12864M,可显示的内容非常丰富,但是其功耗相对高于NOKIA 5110。方案三:采用NOKIA5110手机液晶,其驱动采用低功耗的CMOS LCD控制驱动器PCD8544,所有的显示功能集成在一块芯片上,所需外部元件很少且功耗小。(2)方案确定。综合以上分析,从功耗与性价比的角度来考虑,我们选择方案三作为显示模块。(3)信道调制方式。由于无线收发芯片已经确定使用了单片射频收发芯片TH7122,其在发射模式下产生载波频率,可以采用FSK/ASK/FM三种调制方式,但是在本系统中我们固定了载波频率为27MHz,再综合这三种调制方式的特点,另外FSK对鉴频器的参数非常高,对调试不是很方便,因此在这里采用ASK调制方式作为具体实现的方案。(4)总体方案根据以上分析与论证,我们确定了总体设计方案:监测终端硬件以P89LPC922为主控制器,以液晶5110、无线收发模块为受控模块。探测点也以P89LPC922为主控制器,以无线收发模块、光电传感器与温度传感器为受控模块。(如图1)

2 系统测试及数据分析

2.1 测试仪器及设备

(1)UT30D数字万用表。(2)SS-7802 20M数字示波器。

2.2 测试方法及数据

(1)测试方法。1)分模块进行测试:对探测节点的光照检测进行测试,验证它是否能正常工作;对探测节点的温度检测进行测试,验证它是否能正常工作;对无线通信模块进行测试,验证是否能正常通信。2)保证各模块正常工作之后,再进行整机测试。(2)数据记录。直接对单个光敏电阻进行光照变化时的阻值测量,记录数据如下:(如表1)

2.3 数据分析

以上对光敏电阻阻值的测量,由于光敏电阻本身的特性与操作方法的原因,所记录的数据只是针对于某个特定情况之下,其实光敏电阻的阻值是随光照强度的变化而变化的。

3 结语

本系统主要由P89LPC922微控制器、单片射频收发芯片TH7122、低耗电数字温度传感器TMP102等构成,很好地实现了外部环境的监测:光照与温度,并且性能比较好。很有市场前途。

参考文献

[1]高吉祥,主编.高频电子线路设计.北京:电子工业出版社,2007年.

无线环境监测范文3

关键词:矿井监测 ZigBee Modbus RS-485 单片机

中图分类号:TN929 文献标识码:A 文章编号:1007-9416(2014)05-0049-02

1 引言

随着国家对煤矿安全生产日益重视,研究新型技术保证煤矿安全生产成为关注热点。矿井监测系统在采掘巷道采用有线传输方式存在的局限性一是采掘过程中巷道结构不断变化导致线缆同步延伸麻烦、成本高[1],二是对移动机械设备和一些特殊角落难以布置监测节点实现矿井全方位监测[2]。由于ZigBee无线通信技术具有低功耗、低成本、应用简单等特点,本文设计了基于ZigBee技术的矿井环境监测系统。

2 矿井监测系统总体设计

矿井监测系统的系统结构及在井下布置情况如(图1)所示,它分为井下部分和井上部分。

2.1 井下部分

主巷道采用RS-485总线。因为矿井主巷道服务年限长,环境较好,采用有线方式不易损坏且长期不用移动。

采掘巷道采用zigbee无线通信方式,Zigbee采用网型组网方式,里面有三种类型节点。

(1)协调节点。协调节点连接到主巷道的RS-485总线接口上,它负责上位机和ZigBee网络中未挂接到RS-485总线上的节点之间的数据转发。

(2)路由节点。路由节点必须依次在巷道里面较为固定位置布置从而保证巷道里面任何位置都有路由节点对无线信号进行路由中转。

(3)终端节点。终端节点可布置在移动机械设备上,或布置在一些会随时移动布置位置的特殊位置。

Zigbee节点间传输距离可达10-100m,如果增大发射功率后可达1-3km以上,由于zigbee网络采用网型结构可通过路由节点实现信息的多级跳转,因而能够达到采掘巷道一般网络传输距离不小于10km的要求。

根据现场实际需要,沿坑道每隔一定距离(50-500米)在坑道顶部设置一个ZigBee节点(采用电池或其他电源供电),环境条件比较好的地方可以距离放得远一点环境条件比较恶劣的地方可以距离放得近一点,同时在其他需要定位的地方也设置一个ZigBee节点,比如巷道拐弯处或者危险区域,巷道分支处应设置节点。注意保证每个节点在它前面和后面都至少能与两个以上的节点进行通信,这样当任意1个节点发生故障时,可跳过这个节点与下1个节点直接通信,即避免单线联系从而保证ZigBee网络通信的可靠性。

采掘巷道本身是一个回路,可以将zigbee网络的两端都连接到RS-485总线上形成一个环形结构,这样当采掘巷道内某个地方出现塌方等事故时后面的zigbee节点可从另一端将采集数据传输给RS-485总线。

2.2 井上部分

上位机通过RS-485/RS-232转换器挂接到RS-485总线上,采用LabView软件进行数据接收、存储和显示。

3 监测节点硬件设计

挂接在RS-485总线上的监测节点结构框图如(图2)所示,其它监测节点没有RS-485驱动器模块。

4 矿井监测系统软件设计

4.1 ZigBee模块设计

本系统所有节点网络类型都设为网状网,发送模式都设为主从模式,数据源址输出都设为不输出。

4.2 Modbus协议格式

由于矿井环境监测系统数据传输量较大,因而本系统通信协议采用Modbus协议的RTU模式。主机发送的查询指令、从机返回的正常响应数据帧和异常响应数据帧格式分别如(表1、2)和(表3)所示。

查询指令的功能代码为在用户定义区域中自定义的一个,这里设置为0x60,表示查询监测节点各端口的监测数据。数据指的是欲查询监测节点的地址。

正常响应数据帧的数据为5路监测数据。

异常响应数据帧的功能代码为在查询指令里的功能代码基础上,对其最高位置1,即将0x60的最高位置1后得0xe0。由于表示异常响应,因而不需要带监测数据。

4.3 系统通信实现过程

根据监测系统中各节点的功能实现过程可以把这些节点分为三类:第一类是通过RS-485/RS-232转换器挂接到RS-485总线上的上位机,作为主机;第二类是各采掘巷道ZigBee网络里挂接到RS-485总线上的节点,作为从机;第三类是各采掘巷道ZigBee网络里未挂接到RS-485总线上的节点,作为监测节点,监测节点包括路由节点和终端节点,路由节点在进行信息路由时是由ZigBee模块自动完成的,不需要STM32参与数据转发,因而这两种节点的STM32功能实现过程相同。下面是这三类节点的功能实现过程。

(1)主机。主机采用轮询的方式依次发送查询指令给各监测节点并接收、存储、显示监测数据(如图3)。

(2)从机。从机主要起两个功能,一个是转发主机的查询指令给对应地址的监测节点,另一个是转发监测节点的返回数据帧给主机。数据帧的起始和结束为3.5个字符时间,波特率设为9600,计算确定该时间可取5ms。从机设定一个变量值time_5ms为定时时间是否到标志,如果定时5ms到则置1,否则为0。当定时器定时5ms到了表示一个数据帧接收完成然后执行查询指令,基于中断处理要短的原则,在中断处理里将time_5ms置1并停止定时器定时,将接收数据帧数组指针指到最前面,将监测环境信息或转发查询指令标志置1,然后在主程序里循环判断标志位执行相应操作。

(3)监测节点。监测节点与从机通信不需进行Modbus协议CRC校验(ZigBee协议内部已经进行CRC校验了),但仍采用其数据帧格式使得从机转发时不需对数据帧处理(如图4、图5)。

5 实验测试

实验测试时,LabView显示界面如(图6)所示,能准确可靠显示监测节点的五路监测数据和历史变化曲线,证实了该方案可行。

参考文献

[1]张嘉怡,刘建文,伍川辉.ZigBee技术在煤矿安全监测中的应用[J].中国测试技术,2008.

[2]覃磊,张杰.基于ZigBee技术的煤矿瓦斯监测系统[J].计量与测试技术,2007.

[3]赵铁锤.煤矿井下安全避险“六大系统”建设指南[M]北京:煤炭工业出版社,2012.

[4]李树刚.安全监测监控技术[M].徐州:中国矿业大学出版社,2008.

无线环境监测范文4

关键词:无线传感器网络;汇聚节点;水环境;实时监测

中图分类号:TP393 文献标志:A 文章编号:2095-1302(2014)12-00-03

0 引 言

随着工业化的发展,水环境的状况越来越恶劣。实时监测水环境中的各项参数对水环境本身有着重要的意义。

目前针对水环境的数据采集有两种主要方式:一是建立观测站,其破坏性大、监测实时性不强、成本高、移植性差。二是人工取水样,采集至实验室分析,其劳动强度大、采集时间长、数据不准确且受天气、地域、时间等限制。本文提出采用无线传感器网络(Wireless Sensor Network ,WSN)实现实时监测水环境中各项参数。WSN具有成本低廉、移植性好、实时性强的特点。系统包括节点、汇聚节点、上位机三部分的设计。它采用ZigBee协议自动组网和将CC2530作为主控芯片对水环境参数监测的节点及汇聚节点的软硬件进行了设计,汇聚节点收集各个节点的采集数据,然后通过GSM/GPRS传送至上位机平台。上位机平台的软件对传感器节点采集的参数信息和节点本身信息作相应的数据分析与处理,实现实时监测水环境中的参数、污染物排放情况、水质情况以及水环境中突发状况。整个系统实现了无线传感器网络的远程水环境参数实时监测。

1 水环境中参数实时监测系统概述

本文提出的水环境中参数实时监测节点主要应用于建立河流水库等大范围、具有自组网络、动态拓扑、多跳传输和自修复功能的基于无线传感网络的ZigBee自动组网和GSM/GPRS实时传输的系统,如图1所示。

WSN系统包括了节点、汇聚节点、网关及处理平台。其中节点采用人工的方式均匀部署,WSN通过ZigBee协议自组织网络,节点采集数据传送给汇聚节点,汇聚节点再通过GSM/GPRS传输到远端的水质监控中心,之后将由监测管理计算机负责对数据进行数据整理、数据分析比较与数据存储工作。一旦数据出现异常,则提示操作人员注意对应区域的环境状况,从而实现远程实时监测[1]。

图1 WSN系统示意图

无线传感网络节点可根据水环境中参数实时监测要求,安装在河流、水库、工业废水排污口等地点并以野外无人值守方式工作,通过传感器采集监测水环境区域中的离子浓度、盐度、电导率、浓度等的参数。为了建成一个针对不同测试环境可任意组合的多功能实时监测无线传感网络节点平台,设计需求如下:

(1)多种指标监测:依据各行业废水参数主要在线监测指标可知,对于不同区域的水质,所需要测量的指标也不同。要求同时监测多种水质指标,并根据不同区域选择不同的传感器组合。

(2)节点电源模式:由于监测网络节点安装在户外,分布较散,只能采用电池电源供电。为延长网络的生命周期,在软件上优化或采用太阳能供电。

(3)多拓扑多节点无线通信:为实施对某片水域的水环境参数进行实时监测,需要在目标流域内部署无线传感网络节点,各节点将采集到的参数传送到中央控制系统,从而完成目标流域的数据采集。因处于不同的监测环境,节点的空间分布差异较大,例如对水库湖泊环境的监测,需要将大量监测节点在水域内均匀分布;对江河流域水质的监测,则需要将他沿着河岸分布,形成链状结构;若是监测排污口,则节点主要分布于排污口附近区域。因此要求监测网络节点可实现多种拓扑结构连接,并实现多节点接力通信的功能。

(4)设备成本:传感器无线网络需要大量节点,因此应考虑成本问题,尽可能精简设计,降低节点的总成本。

2 无线传感网络节点设计

2.1 系统结构

汇聚节点核心模块由主控MCU STC89C52和ZigBee通信模块CC2530组成,普通节点由CC2530连接若干种针对不同监测项目的传感器,通过这些传感器实现对不同测试环境可任意组合的无线传感网络监测系统,不同水环境可选择不同的传感器组; ZigBee网络管理和数据收发主要由CC2530模块负责,利用Z-Stack协议栈的API接口,模块实现了ZigBee无线网络的动态组网、网络自恢复、数据发送和数据接收等任务[2];传感器模块的接口按照标准的工业通信接口设计,保证了设计的标准化和平台化,具有良好的可扩展性和可移植性。系统流程图如图2所示。参数检测传感器所采集的数据通过信号调理电路,若为数字信号则直接送至CC2530单片机;若为模拟信号则需先经信号调理电路放大、滤波,再发送给CC2530的内置AD转换器。CC2530节点自动组网络通过RS 232接口与汇聚节点中的主接芯片STC89C52连接。汇聚节点接GSM模块,该模块通过GPRS将数据以无线方式发送至上位机,上位机再将数据存储并分析。

图2 数据流向图

2.2 传感器节点硬件设计

2.2.1 节点设计

ZigBee无线通信模块选用德州仪器(TI)ZigBee处理芯片CC2530,该芯片是专为ZigBee及IEEE 802.15.4应用设计的SoC芯片。CC2530适用于有低功耗工作需求的设备,具有多种低功耗操作模式,通过设置芯片内部的电源管理控制器可关闭芯片部分内部时钟和射频模块的电源,使芯片进入不同程度的低功耗模式,并且可以在各种低功耗模式间进行快速切换,进一步降低电流损耗。CC2530的8051内核通过芯片中设置的RF指令集处理数据收发、中断、DMA和FIFO等硬件抽象层的工作。CC2530在应用层到硬件抽象层之间加入了Basic RF层,对CC2530进行ZigBee数据传输的编程时,利用Basic RF层提供的通信API函数,可以极为便捷地实现用户的程序工作量,无需进行硬件抽象层的各种繁杂设置和状态处理[3]。

汇聚节点中主控MCU选择的是STC89C52和CC2530。STC89C52与CC2530均具有低功耗、高性能的特性,尤其适用于使用电池供电,要求长时间工作的场合。汇聚节点负责各个节点的数据接收、发送以及收发命令。

本设计方案将STC89C52与CC2530结合,通过UART接口与ZigBee模块通信把得到的数据通过GSM/GPRS传输到上位机,监测数据的无线发送与命令接收。

2.2.2 传感器模块

传感器模块是监测水环境参数的关键。用户可根据不同的水环境选择监测不同的参数。主要监测数据有离子浓度、盐度、电导率和温度。其中,离子浓度、盐度和温度传感器为购置传感器,电导率传感器为自制传感器,下文将详细介绍该传感器,其他传感器忽略。

电导率传感器是由一根铁棒和一根黄铜棒组成,根据相关化学知识可知,两个金属棒在水体中会发生阳离子和阴离子的移动,产生电流形成恒流源。若在两个金属棒上串联一个阻值合适的精密电阻,则可监测污染物排放后水体的导电性能。金属物含量多的废液的排放将会改变水的导电性能,该排放物浓度越高,水的导电性能越好。具体过程为,排放污染物越多,排放位置的一些酸碱性的离子就越多,产生的电流越大,导电性能就越好。再通过污染物扩散,传感器节点测得各点位置的导电率后可实时预估污染源的位置及污染程度。自制电导率传感器如图3所示。

图3 电导率传感器模块

2.2.3 电源模块

结合无线传感网络节点对电源系统要求的低功耗、长时间工作、低成本的特点,节点电源选择了锂亚硫酰氯电池ER34615(铅酸蓄电池能量小、重量大、对环境腐蚀性强、电解液需要定期维护,同时太阳能电池成本高、体积大,因此具有高性能、高可靠性、工作温度范围广等特点的锂亚硫酰氯电池是更好的选择)在本设计中,汇聚节点由STC89C52和CC2530组成。普通节点仅用CC2530。采用ZigBee低功耗设计,在节点采集、传输数据时进入工作模式,传输完成后进入节能模式,可大幅度降低系统的能量损耗,并且配合高能量密度的锂电池使用,可以满足长时间工作的要求,且有效降低节点的体积和重量[4]。

2.3 节点软件设计

基于无线传感网络的监测节点主要利用单片机STC89C52和ZigBee通信模块CC2530负责信息的采集控制与无线网络传输。CC2530负责采集节点上各个水环境中参数实时监测传感器的数据并对每个数据进行测量值到理化值的数据转换[5],然后再按一定格式打包,通过UART接口发送到STC89C52单片机,最后经过GSM/GPRS模块向远程上位机进行传输;ZigBee模块由主控单片机发送初始化自组网命令和自恢复命令,实现初始组网与自动检测恢复,负责网络组网与连接[6]。软件工作流程见图4。每个传感器节点具有简单的分布式处理数据的能力。如对监测数据的比较,可知是否有参数超标,若有则预警,若无则连接网络发送数据。同时也有优化软件,使其功耗最小化。

3 结 语

本文将无线传感网络与水环境参数监测相结合,利用ZigBee无线传感网络实现自组网与通信,而使得无线传感器节点可以大范围铺设,不受区域限制,可实现其对水环境中各类参数的实时采集。同时也可以作为工业农业生产中参数的实时监测。

图4 节点软件流程图

参考文献

[1]史兵, 赵德安, 刘星桥,等. 基于无线传感网络的规模化水产养殖智能监控系统[J].农业工程学报, 2011, 27(9) : 136-140.

[2]吴键, 袁慎芳. 无线传感器网络节点的设计和实现[J]. 仪器仪表学报, 2006,27(9):1120-1124.

[3]韩蓓, 盛戈, 江秀臣,等.基于ZigBee无线传感网络的导线接头在线测温系统[J]. 电力系统自动化, 2008, 32(16):72-77.

[4]赵刚, 侯立刚, 罗仁贵,等. 无线传感网络中低功耗处理器的设计和优化[J].半导体学报, 2006, 27(z1):370-373.

[5]胡爱娜. 基于能耗均衡的无线传感网络自适应数据存取算法[J]. 电子科技大学学报, 2014 (2): 235-240.

[6]张荣标,冯友兵. 基于IEEE802.15.4的温室无线监控系统的通信实现[J].农业机械学报,2008,39(8):119-122,127.

Wireless sensor network based remote real-time monitoring of parameters in water environment

LI Jin-sheng, ZHOU Yuan, CHENG Jie

(Information Science and Engineering College, Wuhan University of Science and Technology, Wuhan 430081, China)

无线环境监测范文5

关键词:物联网技术;GPRS数据传输;STM32;Web服务器;环境监测与管理

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)17-0032-03

Abstract: In order to carry out effective interior environment monitoring and management for the remote scenic hotels, this paper designed a remote wireless environment monitoring system in which GPRS data transmission technology was adopted based on the Internet of things technology. The system can transmit the data collected by sensors installed in the hotels and send to GPRS modules automatically through STM32 equipment, and then exchange the data to Web server through the internet and display the real monitoring results on the screen based on the CGI technology. The application of this system can guarantee the effective management and control for the shower equipment and interior environment air quality in the scenic hotels and improve the hotels’ service quality greatly for the customers. The system is of great benefit and significance of application.

Key words: the Internet of things technology; GPRS data transmission; STM32; Web sever; environment monitoring and management

1 概述

伴随信息技术的高速发展,物联网技术和产业异军突起,成为新一轮产业革命的重要发展方向和世界产业格局重构的重要推动力量。同时伴随着社会经济的高速发展,越来越多的人外出旅游,对景点酒店住宿环境也提出了更高的要求。当前,一方面国内很多酒店内部管理不是很科学,存在淋浴设施的水流量浪费现象,与国家推行的“节能减排,低碳经济”政策相悖;另一方面,又由于大多数景区处于地形复杂,远离市郊,采用有线通信管理方式投入成本高,难以实现高效的管理。根据调查,很多景区的酒店淋浴设施的水温条件以及室内的空气条件不达标[1],导致了服务质量的下降,影响了酒店的声誉,以致给景点旅游产业的发展带来不利影响。近年来,移动无线通讯技术的发展,为偏远景区酒店的环境监测管理提供了有效的途径。其中,在各种无线通信技术中,GPRS最受青睐。通过GPRS网络系统,采用Internet技术与服务器间的数据交换,能便利地实现酒店环境的远程无线监测与互联网的连接。基于这样的背景,本文依托物联网技术设计了景区酒店环境远程无线监测系统平台,可为酒店和当地景区管理部门提供有益的参考,具有很强的社会价值和实用意义。

2 系统总体设计

本设计以ST推出的STM32作为主控核心,加以用于数据采集的传感器,并结合嵌入式 Web服务器Boa完成系统构建。旨在实现将温度传感器DS18B20的采集水温数据,水流量传感器采集的水流量数据,DHT11采集的室内温湿度数据,MQ-135气体传感器采集的室内有害气体数据并通过 STM32芯片控制并发送到GSM模块SIM900A,利用SIM900A的GPRS数据网络将采集到的数据实时上传至Web服务器中[2],并利用CGI技术使得景区管理人员可以通过浏览器获取监测数据。其中Web服务器Boa主要完成创建套接字、接收和分析Web浏览器的请求、 调用后台CGI脚本程序以及向Web浏览器发送处理请求的结果。同时在进行酒店中淋浴设施的设计中,增加了利用VS1053模块播放音乐的功能,提高用户在淋浴时的舒适性。系统的功能结构图如图1所示:

3 系统硬件设计

3.1 STM32 核心模块

STM32处理器是ST(意法半导体)公司基ARM的Crotex-M4内核开发的一系列新型单片机。具有门数少,中断延迟少,调试容易等特点,而且具有丰富的GPIO引脚。STM32作为本模块的核心,可以很好地满足本系统对现场环境的数据采集。STM32通过与各种传感器连接构成数据采集模块。通过数据采集模块实时采集酒店环境参数等信号,交由STM32处理器进行处理。

3.2室内空气环境监测

3.2.1有害气体监测

系统采用气体传感器MQ135进行室内污染气体浓度的采集监测,MQ135的工作原理是当其处在有污染气体的地点时,其内部的气敏材料(SnO2)的电导率会随污染气体的浓度的增大而增大,随后通过相应的转换电路即可将电导率转换成与污染气体浓度对应的输出电压。此传感器可用于检测多种气体,例如氨气、芳族化合物、硫化物、苯系蒸汽、烟雾等气体,气敏元件测试浓度范围:10to1000ppm。MQ135输出是模拟信号,通过STM32的ADC接口进行模数转换成数字信号,完成对于室内有害气体浓度的采集[3]。

3.2.2室内温湿度采集

DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,具有超快响应、抗干扰能力强、性价比极高等优点[4]。系统采用DHT11温湿度传感器对室内的温度以及湿度数据进行采集。STM32与DHT11之间的通讯采用单总线数据格式,一次通讯时间4ms 左右,数据分小数部分和整数部分:一次完整的数据传输为 40bit,高位先出。数据格式:8bit湿度整数数据+8bit湿度小数数据+8bit温度整数数据+8bit温度小数数据+8bit校验和。

3.3淋浴设施监测

3.3.1水温采集

水温采集使用温度传感器DS18B20,与DHT11温湿度传感器一样具有独特的单总线接口方式,在与微处理器连接时仅需要一条口线即可实现与微处理器的双向通讯。测温范围为 -55℃至 +125℃[5]。DS18B20硬件连接如图2所示:

单总线上的所有通信都是以初始化序列开始,初始化过程包括复位过程和从机应答过程,按照DS18B20的时序图,相应的写0和写1并保持一定的时间,初始化之后,就可对DS18B20进行读写了,根据读写时序就可以对其进行一个字节的读取,读取到的数据是一个16位的带符号的二进制补码,对其进行相应的转换便能得到所需要的温度数据。

3.3.2水流量采集

水流量传感器是利用霍尔元件的霍尔效应来测量磁性物理量。在霍尔元件的正极串入负载电阻,同时通上5V的直流电压并使电流方向与磁场方向正交。由于霍尔元件的输出脉冲信号频率与磁性转子的转速成正比,转子的转速又与水流量成正比。

STM32拥有强大的定时器功能,通用定时器拥有捕获/比较寄存器,在对PWM脉冲输入进行分析的时候,将流量传感器的脉冲通过引脚输入到定时器的脉冲检测通道,通过相应的寄存器对捕获数据便进行计算可以得出输入脉冲的频率以及水流量的数据。

3.3.3音乐播放

VS1053是继VS1003后荷兰VLSI公司出品的又一款高性能解码芯片。该芯片可以实现对MP3/OGG/WMA 等音频格式的解码。主控通过对VS1053进行复位,相关寄存器的配置,发送音频数据即可进行音乐播放了。用户可以根据自身需要选择该功能。

3.4 GPRS数据传输

3.4.1 GPRS无线传输原理

基于GPRS的无线网络通信系统结构主要由位于数据采集现场的GPRS数据采集模块 、网络运营商提供GPRS网络与远程服务器三部分构成。数据采集模块位于景区酒店中,由于运营商的基站建设的普及,通信范围已覆盖我国的绝大部分地区,所以各数据采集模块可分散地使用在分布于各种不同地理环境的景区酒店中,从而避免了使用有线通信时线路铺设所带来的成本与施工难度问题,有利于推动了本系统的建设和布局。GPRS网络是现场数据采集系统与远程监控中心数据交换的桥梁[7]。GPRS网络机构如图3所示:

数据采集模块与位于酒店中的子系统主控STM32进行数据通信 , 将各传感器采集到的数据通过移动基站实时发送到GPRS网络服务商所提供的GGSN服务器,GGSN分配给GPRS数据采集终端相应的IP地址,从而实现了数据采集终端与Internet 的连接。

3.4.2 GPRS数据采集

系统使用SIM900A模块进行GPRS通信,SIM900A是通过AT指令进行控制的,通过AT指令可以对模块进行各种参数的设置,数据的查询和发送,将传感器采集到的数据进行实时的上传[8]。其中常用到的AT指令如下所示:

AT+CSQ 查询当前信号质量,AT+CGREG? 查询模块是否有注册网络,AT+CGATT? 查询模块是否附着GPRS 网络,AT+CIICR 激活移动场景,AT+CIFSR 获得本地IP地址,AT+CIPSTART="TCP","124.235.160.149",12345 建立TCP/IP连接,AT+CIPSEND 模块向服务器发送数据。SIM900A结构图如图4所示:

GPRS网络通信是以GSM网络为基础,GSM网络的语音通信优先级较高,在景区旅游的淡季时,可能会有有酒店接待游客较少的情况,由此会造成GPRS虽然在线但却没有数据流量传输, 由此造成数据业务的优先级会自动降低,GGSN服务器则会为了提高带宽利用效率而断开网络连接,此时对于GPRS模块来说,虽然IP地址还在,但已无法进行正常的数据传输。为了防止由此导致的网络中断 ,可在系统中设定每隔一段时间向服务器发送一个TCP数据包,以保证系统的网络连接不断线 。数据包发送的频率根据不同时间的需求做出调整,且不宜过高,免产生过高的额外流量带来的成本问题。

4 系统设计

4.1 主控移植UCOS操作系统

嵌入式操作系统在系统实时高效性、软件固态化、硬件的相关依赖性低以及应用的专用性等方面具有较为突出的特点。在位于酒店中的主控STM32中移植嵌入式UC0SIII操作系统,系统程序中采用时间轮偏转切换,每个任务具有相同的优先级,按顺序进行工作。该操作系统具有精简的内核,性能高、稳定,能提供很好的实时性[8]。

4.2 Web服务器与Boa移植

在远程监测系统中,为了使景区管理人员能够远程检测到酒店环境信息,需要在系统中移植一个支持CGI和脚本功能的Boa服务器,Boa服务器是一种单任务的服务器,支持CGI,而且源代码开放[10]。 Boa服务器的执行流程如图5所示。

Web服务器的初始化工作由Boa服务器来完成,当景区管理员在浏览器上做出数据请求时,Web服务器接受浏览器的请求后分析并解析出请求的方法、URL目标、可选的查询信息以及表单信息,Web服务器完成相应的处理后,向Web浏览器反馈相应信息,嵌入式Boa服务器为系统提供了网络接入和数据服务功能。系统基于TCP/IP协议、HTTP 协议,通过调用具有数据请求和控制功能的CGI程序,从而实现对远程端浏览器的请求处理,达到远程监控的目的。在服务器网页设计中,景区管理人员在浏览器中输入服务器的IP地址,得到登录界面,输入用户名和密码之后便可进入远程酒店环境监测界面。

5 结论

系统实现了酒店环境远程的功能,景区管理人员通过远程Web浏览器便可以对酒店环境进行实时监控,系统主要特点:1)温度传感器通过单总线与STM32进行通信;2)CGI控制界面动态刷新快,采用将文件保存到数组中的方式,数据处理和输出速度快,保证了对酒店环境的实时性监测;3)将酒店环境数据采集与Internet互联,是物联网技术在现代生活中的又一具有使用价值的应用;4)同时系统主控引脚众多,可以根据需要增加相应的传感器模块。本系统的设计旨在对景区酒店的服务质量进行监督,为旅客提供更好的住宿环境,对于景区旅游业的可持续发展以及拉动地方经济有着深远的影响,具有广泛的市场价值和社会价值。

参考文献:

[1] 姚蔚蔚.低碳旅游视角下酒店管理模式研究[J].生产力研究,2012(5):203-204.

[2] 李笑涛,李智.基于GPRS和Web远程管理系统的设备监控终端设计[J].计算机与数字工程,2012,40(8):136-138.

[3] 胡晓芳.基于AVR单片机的室内环境检测系统[J].自动化技术与应用,2014,33(7):117-119,123.

[4] 范治政,刘永春.基于ARM9的大棚远程温湿度监控系统设计[J].湖北农业科学,2015,54(3):705-708

[5] 向阳,曾超尘,熊瑛,等.基于GPRS网络的育苗温室远程监控系统研究[J].农机化研究,2015(10):228-231

[6] 宫鹏,宫h,王瑞宝,等.基于嵌入式系统的多媒体音乐播放器[J].现代电子技术,2011,34(12):100-103.

[7] Walke, B.H..The roots of GPRS: the first system for mobile packet-based global internet access[J].IEEE wireless communications,2013,20(5):12-23

[8] 李涛,马殷元,杨东,等.基于STM32的GPRS远程监测终端设计[J].电子世界,2012(11):126-127.

无线环境监测范文6

噪声与水、大气、固体废物污染并称为城市环境问题的四大公害。随着城市化进程的加快,城市规模和城市建设的不断发展,城市环境噪声问题也日益突出。如何有效地对城市环境噪声进行监测,更好地为环境管理服务,已成为环境热点问题[1]。目前常用的环境噪声监测方法有以下几种:人工实地监测、有线方式监测和无线方式监测。

1.1人工实地监测

人工实地监测指的是监测人员使用声级计等噪声测量仪器,前往待测地点进行噪声的实地监测,并记录噪声数据信息。这种方法不可能做到全天候监测,往往对突发性环境噪声没有监测力度,并且费时费力,实时性较差。

1.2有线方式监测

在区域的关键点安装噪声传感器,传感器通过预先铺设的电缆或光缆将采集到的环境噪声数据传送到监测中心,由专业人士分析并给出监测结果。但是由于监测点位往往分布范围广并且周边地形复杂,这为电缆或光缆的铺设带来困难,增加投资成本[2]。在实际应用中,往往会受到人为破坏等因素的影响,无法实时获得环境噪声信息,且系统灵活性较差。

1.3无线方式监测

随着无线通信技术的发展,使用GPRS或者3G网络作为环境噪声数据的传输载体,可以降低因铺设电缆或光缆带来的成本,并且抗干扰性较好,监测点布设灵活,可以有效提高噪声监测的工作效率和经济效益,是环境噪声监测未来发展的一个方向。

2环境噪声监测系统的设计

基于DSP与无线通信技术的环境噪声监测系统(以下简称“环境噪声监测系统”)是实现声电转换、噪声电信号采集、噪声事件监测和报告及噪声数据远程分析等功能于一体的综合噪声监测系统,具有无人值守、全天候户外稳定连续工作、多点组网测量和传输等特点[3],能够满足中国《声学环境噪声测量方法》(GB/T3222—94)中环境噪声长期连续监测的要求。

2.1环境噪声监测系统的组成结构

环境噪声监测系统主要由3部分组成:噪声检测终端、GPRS/3G网络传输系统和数据中心服务器。系统结构框图如图1所示。

噪声检测终端使用高性能数字信号处理器完成噪声的电信号转换、采集和分贝值计算等功能;GPRS/3G网络传输系统将与噪声相关的数据通过GPRS/3G网络经由Internet网络传输到远程数据中心服务器;数据中心服务器负责噪声数据的实时分析、存储和噪声事件报告等任务。在设计时,将GPRS/3G网络传输系统融合在噪声检测终端中,达到提高环境噪声监测系统稳定性的目的。

2.2噪声检测终端的设计

噪声检测终端由噪声检测单元和无线传输单元组成。为了达到噪声数据采集和分贝值计算的实时性要求,噪声检测终端使用德州仪器公司(TI)制造的高性能DSPTMS320C5416作为主控芯片,辅助测声传感器、模数转换模块、液晶显示模块、GPRS/3G模块和GPS全球定位模块,完成环境噪声的采集、分贝值计算和传输等功能。在实验中发现,同样的噪声分贝值计算算法,使用DSP芯片进行计算比使用普通的单片机在计算速度上提高了6.4倍,较好地满足了实时性的要求。噪声检测终端的结构框图如图2所示。

测声传感器将环境噪声的声信号转换成电信号,经过放大后,再通过模数转换模块将其转换成数字信号送入TMS320C5416。该芯片按照噪声分贝值的计算方法计算出环境噪声的分贝值,并在液晶显示器上实时显示环境噪声的分贝值,同时通过GPRS/3G模块将环境噪声分贝值传输到远程的数据中心服务器。为了能够在远程数据中心服务器中显示噪声检测终端的位置,该终端集成了GPS全球定位模块来向远程数据中心服务器上传相关的经纬度位置信息。

在设计时,主控芯片TMS320C5416使用高速串行外设接口(SPI)与GPRS/3G模块互连,使得数据传输的速度能够满足实时性的要求。在通过GPRS/3G模块进行噪声数据传输时,兼顾实时性和准确性的要求,采用计算量相对较小的异或求和校验方法,既可以提高无线传输的速度,也能在一定程度上保证数据传输的正确性。经过实验测得,GPRS/3G模块的无线传输丢包率在5%以内,基本满足了系统的设计要求。

2.3数据中心服务器软件的设计

数据中心服务器软件主要对各个噪声检测终端传送来的噪声数据进行实时分析、存储和报警等功能,达到全天候进行环境噪声监测的目的。数据中心服务器软件主要由4部分组成:多线程TCP/IP传输单元、人机界面单元、地理信息系统(GIS)单元和数据库单元。

多线程TCP/IP传输单元通过TCP/IP网络接收各个噪声检测终端发送的噪声数据,并保存在相应的内存区域中,以便后续的分析存档使用。由于噪声检测终端数量众多,在一段时间内可能有多个噪声检测终端的数据需要接收,如果采用单线程的TCP/IP传输可能会造成数据丢失进而影响数据的实时性和准确性,因此在设计时采用多线程的方式来进行TCP/IP传输,使得各个传输线程之间达到并发执行的效果,可以有效解决数据量较大的问题。

人机界面单元使用GUI技术,利用图表的方式实时显示各个噪声检测终端的噪声数据,并能够按照用户的要求完成对噪声数据的分析,给出噪声数据变化曲线等相关的统计汇总功能。当某个噪声检测终端的数据异常时,能够给出提示。

地理信息系统(GIS)单元可以在区域地图上实时显示各个噪声检测终端的位置,并显示出当前的噪声数据信息,方便用户查看区域内的环境噪声状况。数据库单元提供噪声数据的存档、查询和打印等功能。

3环境噪声监测系统的应用

通过在校园的关键地点安装噪声检测终端,可以验证环境噪声监测系统的实用性。图3为安装了8个噪声检测终端(图中黑点)的校园区域图,通过单击这8个噪声检测终端可以查看实时的噪声数据信息,为进一步研究校园的环境噪声分布提供了原始数据信息。

图4为校园8个噪声检测终端一天中平均噪声分贝值,从中可以看出校园环境噪声的主要来源是学校门口的交通噪声、学生宿舍区域和食堂附近的生活噪声。这为有效控制校园环境噪声提供了依据。

由图5可以看出,半夜12点到凌晨6点之间的噪声分贝值较小,中午12点左右、晚间6点到10点的噪声分贝值较大,由此可以判断出学生在宿舍区的生活规律。

通过上述应用,可以发现环境噪声监测系统在研究校园环境噪声的分布、学生的日常生活习惯等方面有很大的应用价值。