垃圾渗滤液主要来源范例6篇

垃圾渗滤液主要来源

垃圾渗滤液主要来源范文1

【关键词】 两级A/O生物处理技术 垃圾渗滤液 应用

1 垃圾渗滤液的来源和特点

1.1 垃圾渗滤液的来源

垃圾渗滤液是城市生活垃圾在填埋场堆放过程中,由于受到雨水的淋洗以及地下水和地表水的长期浸泡将会产生垃圾渗滤液,这是垃圾自身产生的水分经过枯枝落叶层和土壤将会形成的高浓度的有机废水[1]。垃圾渗滤液的主要来源包括以下几种方式:

(1)降雨的渗入:其中包括雨雪,这是产生渗滤液的主要来源,这种方式具有时间短、浓度高和可重复性,这也是工程设计中需要重点考虑的依据;

(2)外部地表水流入:包括地表径流和地面灌溉两种方式;

(3)地下潜水的反渗:在垃圾填埋场渗滤液水位比场外的水位要低的情况下,如果没有采取渗流控制措施,地下水将会渗透垃圾填埋场当中。垃圾渗滤液的产生量也会受到地下水的影响;

(4)垃圾自身的水分:这包括垃圾本身携带的水分和从空气中吸附的水分;

(5)垃圾降解过程的水分:垃圾中的有机组分在垃圾填埋场内分解时将会产生水分,其生产的量和垃圾的成分、pH值、温度和压力存在很大的关系[2]。

1.2 垃圾填埋场渗滤液的水质特点

垃圾渗滤液中含有大量的有机物、氨氮、寄生虫和有毒有害的重金属成分,其中的成分非常复杂,水质和水量的变化也很大,如表1所示。

目前,我国已经建立成千上万个大型的和小型的垃圾填埋场,并且还在不断的建设中。这样就会产生大量的垃圾卫生填埋场渗滤液,如果不能够得到适当的处理,这肯定会对地下水造成了严重的影响,这样将会威胁到人们的公共卫生[3]。垃圾渗滤液污染控制的重要内容就是需要分析渗滤液的特点,从而合理地选择垃圾渗滤液处理工艺。

2 垃圾渗滤液的处理研究现状

目前,国内外处理垃圾渗滤液的方法可分为场外处理和场内处理。在国外,垃圾渗滤液的产生量较小时,可以考虑与城市污水联合处理,即场外处理。有研究表明,城市污水总量比垃圾渗滤液的量大于200,渗滤液增加的负荷小于10%时,场外处理方法可行,且效果较好。若控制不好比例,则会对城市生活污水处理厂造成冲击负荷,渗滤液中的有毒有害物质也会对污水的生物处理产生副作用,严重时可破坏整个污水处理厂的正常运行[4]。而场内处理,通常指在垃圾填埋场内的循环喷洒处理,又或者靠近垃圾场单独建立渗滤液污水处理厂。目前,国内大部分城市都选择独立的场内处理工艺,寻求高效的处理方法也在不断的研究尝试当中。最常采用的有生物处理法、物化处理法和土地处理等方法。

3 两级A / O生物处理技术

A/O是Anoxic/Oxic的缩写,两级A/O是硝化反硝化的处理工艺,分别用A1、O1、A2、O2来表示。在传统的二级生物处理的基础上,废水的生物脱氮通过硝化细菌及反硝化细菌的作用,将氨氮转化为亚硝态氮和硝态氮并最终转化为氮气,从而达到脱氮的目的。除此之外,该处理工艺不需要额外添加碳源,因为废水中的有机污染物可作为反硝化反应的碳源,可见反硝化反应是最为经济的节能型降解过程。

3.1 工艺的可行性分析

渗滤液中有高浓度的有机污染物,它们中的大多数都是很难完全生物降解的腐殖类、灰黄霉酸物质,而垃圾渗滤液处理的核心内容,是力求出水指标中的CODcr、BOD5、NH3-N和TN去除率满足出水水质标准。在诸多处理方法当中,生物处理方法的成本是最低的,由于其消耗的化学物质是最低的,同时还能够除去大多数的NH3-N。为了能取得良好且稳定的处理效果,以生物处理方法为主,辅以适当的后续处理方法,成为近年来国内外常用的综合处理工艺。

3.2 处理工艺流程

垃圾渗滤液由污水泵提升到调节池,接着泵入进水过滤器,在这里大颗粒杂质得以去除,下一步进入两级A/O生物处理系统,进行两级硝化和反硝化作用,在厌氧段厌氧菌将污水中的纤维、淀粉、碳水化合物等可溶性有机物和悬浮污染物水解为有机酸,使大分子有机物分解为小分子有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性。为了实现泥水分离,提高微生物的浓度,接下来通过外置式的膜系统,进一步提高反应的去除率。同时剩余污泥排入污泥储池,最终制成泥饼填埋。渗滤液污水后续处理流程为纳滤和反渗透。当纳滤出水达到排放标准以后,合格的出水将会排放到产水池;如果水质不合格时,超滤膜系统将会自动控制进入到反渗透系统,使有机污染物和氨氮去除达标,出水将会排到池中。拟以日处理100吨原料水为处理对象,其过程如图1所示。

4 结语

在进行垃圾渗滤液处理时,整个过程的实施效率成为关键所在,为了使其出水能够达到相关排放标准,对传统A/O工艺进行优化,采用两级A/O生物处理技术及后续膜处理技术,其在垃圾渗滤液处理的过程中具有很好的应用效果,能耗也很低,其还具有运行稳定和管理简单的优势。

参考文献:

[1]代晋国,宋乾武,张h,秦琦.新标准下我国垃圾渗滤液处理技术的发展方向[J].环境工程技术学报,2011,03:270-274.

[2]Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills[J].Journal of Environmental Sciences,2011,11:1770-1777.

垃圾渗滤液主要来源范文2

关键词:垃圾焚烧飞灰 渗滤液 浓缩液 固化

随着经济的快速发展以及居民生活水平的急剧提高,城镇生活垃圾的量也在飞速发展,据调查,目前广州市的生活垃圾产量每天超过一万吨。由于土地资源的稀缺,垃圾填埋已经渐渐被淘汰,垃圾焚烧以其减量化、无害化以及资源化的优势,渐渐成为生活垃圾处理的主要方式。然而生活垃圾焚烧产生的飞灰因含有大量的重金属以及其它有害物质,越来越受到环保部门的高度关注和重视。而对于现存的垃圾填埋场来说,处理垃圾渗滤液后产生的浓缩液处理成为了新的技术难点。

一、垃圾焚烧飞灰及渗滤液浓缩液的的主要成分分析

以广州某垃圾焚烧厂的垃圾焚烧飞灰为例,主要重金属成分:汞

生活垃圾填埋场产生的渗滤液浓缩液,以广州某垃圾填埋场为例,COD大于3500mg/L,总氮浓度大于500 mg/L,其中硝酸盐氮大于300 mg/L。高的COD和氨氮浓度加剧了渗滤液浓缩液处理的困难度。

二、垃圾焚烧飞灰及渗滤液浓缩液的处理方式

1.垃圾焚烧飞灰的主要处理方式

目前,垃圾焚烧飞灰主要的处理处置方式有作为危废,进入危废填埋专区进行填埋;稳定化处理后,作为普通废弃物进行填埋等。

1.1作为危险废弃物进行填埋:作为危废填埋处理的成本高,且对环境的潜在威胁大,与固废处理的减量化、无害化和资源化原则相违背。

1.2稳定化处理后,作为普通废弃物进行填埋:稳定化后填埋是目前普遍采用的处理方法,主要采用水泥固化、特殊固化剂固化以及螯合-固化等稳定化处理过程。寻找高效、价格低廉的固化剂是目前主要的研究方向。

2.垃圾渗滤液浓缩液的主要处理方式

由于渗滤液浓缩液含有高浓度的氨氮以及氯离子等盐分,加剧了其处理的成本和处理的难度。普通的生物法、物化法等都无法进行有效处理,目前主要采用的处理方法是回灌法,而回灌法对环境也存在巨大的潜在威胁,会造成盐分的富集,从而使土壤板结或造成其它的环境危害。

三、垃圾焚烧飞灰与渗滤液浓缩液综合处理试验研究

1.主要工艺流程

该处理方法主要是将垃圾焚烧飞灰与固化剂按一定量的比例混合搅拌均匀后,用渗滤液浓缩液取代传统的固化反应添加水,作为固化剂与焚烧飞灰固化反应的介质,进一步混合搅拌,养护14天后,进入填埋场作为普通废弃物进行填埋。垃圾焚烧飞灰取自广州某垃圾焚烧厂,固化剂为武汉大学环境学院自行研制的HAS固化剂,渗滤液浓缩液取自广州某生活垃圾填埋场。主要工艺流程如图1所示。

2.主要试验参数

该试验固定掺入50%的渗滤液浓缩液,固化剂添加量分别为5%,10%,15%,20%,进行多组试验,分别在常温下进行14天的稳定化养护后,测其Pb、Cd的浓度。选取最佳的固化剂添加量。

3.试验结果及结果分析

根据表2的分析结果可以看出,浓缩液添加量为50%时,最佳的固化剂添加量为15%,固化后的垃圾焚烧飞灰重金属浸出浓度即可达标,具有良好的固化效果。

垃圾渗滤液主要来源范文3

关键词:城市生活垃圾;渗滤液;减量化

垃圾渗滤液是城市垃圾在其运输、处理、处置过程中,因其自身所含水分,并受外部水文因素综合作用而产生的性质复杂、处理难度大的高浓度有害污水。垃圾在填埋后的厌氧发酵、地表水浸滤、地下水浸泡等作用都会促使渗滤液产生。填埋场在运行与封场后的很长时期内都会产生渗滤液。对于垃圾渗滤液的污染控制,包括其水质净化与水量消减,对于垃圾处理都具有积极的意义。本文主要对渗滤液的减量问题进行研究。

1 垃圾进入处理场之前的减量化

在生活垃圾进入垃圾处理厂或处置场之前,对垃圾渗滤液进行减量化控制,可以称为渗滤液的“源头减量”。

1.1 垃圾分类回收和预处理

生活垃圾的含水率主要是由其中的厨余等有机物造成的,另外纸张、棉絮等吸水性物质也会在进入填埋场之后对渗滤液的产量有影响,因此,在垃圾贮存、清运工作环节开展垃圾分类收集,同时注意给予完善的分类清运车辆配套,有利于垃圾渗滤液的源头减量。一般而言,厨余以及纸类物质含量高时,垃圾含水率也高。

通过垃圾源头管理,在垃圾集装点或回收中心,采用人工分选或机械分选工艺,对有机物和纸张进行分选、干燥,减少产生渗滤液的可能。另一方面,将城市垃圾中有害的部分,包括电池、药品、含汞器物等分离除去,可以降低渗滤液中重金属和其他有毒有害物质的浓度。

1.2 压缩转运中的渗滤液控制

压缩又称为“压实”,是一种普遍采用的固体废弃物预处理方法,是指用机械方法增加固体废物聚集程度,增大容重减少表观体积,对废物实行减容化。压缩对于垃圾处理具有预稳定的作用。

我国生活垃圾一般为混合固体,甚至有时是固液混合体。生活垃圾中的易腐垃圾的含水率较高(50% ~ 90%) ,当其接受压缩时,极易产生渗滤液。

垃圾转运站压缩过程产生的渗滤液、冲洗废水等排入城市污水管网或河道水体,容易造成城市污水处理厂负荷冲击。但从渗滤液减量的角度出发,转运站中的渗滤液排放,减少了进入垃圾填埋场的渗滤液总量。

目前,国内外广泛采用的生活垃圾压缩转运工艺可分为“水平压缩转运”和“垂直压缩转运”等几种。对于水平压缩转运站,装箱过程中产生的渗滤液会从箱体滴漏出来。压缩后,渗滤液被压滤渗出,出渗量大约占垃圾量的 5% ~ 15%,在夏季和雨季较多。此处的压滤液产量小,产生时间是间断的,污染物浓度变化幅度大。竖直压缩容器底部的密封结构使得渗滤液不会溢出,可运至处置场处理,但是对箱体会造成腐蚀。

2 垃圾填埋场内渗滤液的减量化

2.1 上游与周边地表水的控制

地表水入渗是垃圾场渗滤液的主要来源,对地表水入渗的有效控制是垃圾填埋场渗滤液减量的首要控制措施。

垃圾填埋场分为平原型、山谷型两大类。对于平原型垃圾填埋场,一般不存在严重的上游与周边地表水问题。对于山谷型填埋场,又可以分为山顶型、半山型两类,当填埋场的场顶标高与山谷顶部相接时,周边地表水侵入场内的可能性较小,只对上游汇集的洪水进行隔离、导排即可; 当厂址所在山谷的自然深度较大(深度大于 40 m) ,而所建设的填埋场场顶标高低于山谷总深度时,周围山坡上的降雨或地表径流能够汇入填埋场库区内,通常,这种场外汇水面积产生的雨水汇集量将大大多于填埋库区的顶口面积,此时必须设置足够的地表水排出构筑物。对垃圾场周边地表水的控制措施一般包括对降雨的阻隔,对暴雨的预防,对地表径流的引导排除,对上升泉等地表水的隔离。对场区周围地表水的控制就是避免区域地表径流进入场内,从而避免渗滤液产量的增加。为了控制地表水入渗,应该在垃圾填埋场建设之初就作好控制地表水的整体规划。

在整体规划之前,首先必须对垃圾填埋场的上游、支流、边坡等的流域情况进行详细调研。填埋场周围的地表水排水路线对填埋场的整体运行是至关重要的。当垃圾填埋场的地址位于河道地形内时,可能属于天然地表水的原有排水线路,必须设计对上游河道内洪水的拦截措施,防止上游洪水进入填埋区内。也可建造溢洪道、导流坝。与上游与周边地表水的控制相关的工程措施主要包括: 拦洪坝、泄洪暗管、洪水提升泵站、排水井、截洪沟等。在填埋场施工阶段,可采用分区施工、分期施工的方法减少工程面积,在垃圾填埋场投入生产运行之后,宜采用分区填埋、分区封场的工作方法,减少开放作业面的面积。这些措施都是以垃圾渗滤液的减量化为最终目的的。

2.2 场内雨污分流

垃圾填埋场内的雨污分流是近年来的热点话题。科学和严格地设计雨污分流系统,对垃圾填埋作业区内外的未受垃圾污染的雨水和渗滤液进行分别收集,一方面可以减少渗滤液的产生量,降低渗滤液处理成本; 另一方面,可以避免由于山沟、丘陵地带的垃圾填埋场内因暴雨形成的强大水流对填埋场造成冲刷。

填埋场内部雨污分流的基本原理是: 在垃圾填埋场内设置的阻止填埋区汇水面积内的雨水进入填埋垃圾体的方法和措施,以及对环场边坡汇水、上游洪水的排出。科学和严格地设计雨污分流系统,对垃圾填埋作业区内外的未受垃圾污染的雨水和渗滤液进行分别收集,具有重要的意义。在运行中应尽可能使渗滤液自由排出。雨污分流效果的优劣甚至会直接关系到垃圾填埋场运行的成败。

场内雨水阻截与排放系统又分为填埋场封场前与封场后两个部分。可以采用“以路分区”的做法,将一个大填埋区分割成为若干个小分区,利于对雨水的分块控制。“路堤结合”填埋工艺能较好地解决北方填埋场雨季填埋中存在的问题。要保证所收集的雨水不受污染。非作业区的覆盖土经过压实后能够形成一层防渗良好的致密层,能对雨水起到隔绝作用。可以利用“膜覆盖”协助雨污分流。在垃圾填埋过程中,膜覆盖可分为两大类: 中间覆盖、日覆盖。可以利用“堆体造型”协助雨污分流。

2.3 建设垃圾场排水构筑物时需注意的问题

拦洪坝是很常见的阻水构筑物,但需注意加固、防渗的问题。例如对拦洪坝上游侧的坡面需进行防渗处理,对拦洪坝上游坡脚必须进行加固处理,可采用粘土、HDPE 防渗膜、浆砌石等多层防渗措施。

泄洪暗管可以将拦洪坝上游积聚的洪水排出,但暗管的横断面积一定要足够大,以利于运行期的清理,暗管的拐角、连接一定要顺畅。暗管的进水口一定要设置充分的杂物拦截措施(格栅、沉砂池等构筑物) 。当自然地形不允许建造泄洪暗管时,可考虑在拦洪坝旁边建造洪水提升泵站。用大型水泵将汇集在拦洪坝前的积水提升至场外排水渠的高度。但是洪水提升泵站的建设有很多制约因素。例如: 易与场地边坡的防渗结构冲突,不易寻找到坚固的地质条件用于安放大型水泵,另外由于不同地区大气降水量是极不均匀的,大型水泵可能面临常年闲置的危险。排水井有时也被用于排出填埋场内的积水。杭州垃圾卫生填埋场在场内设有标高不同的多个排水井,用于排出中间层的垃圾堆体表面雨水。

环场截洪沟是大量用于垃圾场上游与周边地表水的主要排水构筑物,一般是指环绕在垃圾填埋场场顶周围 1 m ~ 3 m 远外侧的用于阻截上游与场顶外周边雨水(洪水) 的工程系统。即使是对于小型的村镇级的简易垃圾填埋场,环场截洪沟也是不可少的,对于大型垃圾填埋场,截洪沟更是多种多样,可采用分期设置截洪沟的方法。

3 结语

垃圾渗滤液减量化,有利于降低垃圾场的渗滤液处理成本,并对垃圾场起到保护作用。通过对生活垃圾在进入垃圾处理厂或处置场之前实施源头减量措施,包括垃圾分类回收和预处理、垃圾压缩转运中的渗滤液控制,可以实现垃圾进入处理场之前的减量化。通过在垃圾填埋场内实施工程措施,对上游与周边地表水进行有效控制,对库区内面积采取场内雨污分流措施,科学建设排水构筑物,可实现垃圾填埋场内渗滤液的减量化。

参考文献

[1]王宗平.垃圾渗沥液处理研究进展[J].环境科学进展,1999,7(3).

[2]周北海.垃圾填埋场构造对渗滤液成分的影响研究[J]. 环境科学研究,2000,13(3).

[3]张澄博.成都长安垃圾填埋场渗滤液水头预测J].地质灾害与环境保护,1998,9(2).

垃圾渗滤液主要来源范文4

关键词:填埋场渗滤液;组成;处理技术

中图分类号:U664.9+2文献标识码:A 文章编号:

随着我国城镇化水平的提高,城市垃圾的排放量不断增加,由此造成的资源紧张和污染愈加严重。作为城市垃圾中二次污染问题内容之一的渗滤液处理方法和技术的研究也日益得到重视。垃圾渗滤液的组成复杂,污染物浓度高,水质波动较大,处理难度较高。对于垃圾渗滤液的处理,一方面通过优化垃圾填埋场的构造,减少渗滤液的发生量,另一方面根据不同填埋场的具体情况及其它经济技术要求提出有针对性的处理方案和工艺。

1渗滤液的来源

垃圾渗滤液的产生主要包括生活垃圾本身含有的和填埋过程中发生厌氧生物反应生成的水份以及填埋场区的浅层地表渗流水及降水渗入。渗滤液产生量及渗滤液组成的影响因素很多,主要包括垃圾组成,气温及年平均降雨等气候条件,填埋区的水文地质条件。此外,随填埋时间及填埋垃圾降解阶段而有很大变化。

2 渗滤液的组成

2.1 有机组分构成城市生活垃圾填埋场早期渗滤液中COD值可达每升数万毫克,晚期渗滤液一般在每升数千毫克。从有机物在不同物理组分上看,基本为溶解态组分和胶体态组分,颗粒态组分含量较少。

渗滤液中主体有机物包括挥发性脂肪酸(分子量

此外,渗滤液中还存在芳类化合物、卤代烃、临苯二甲酸盐、酚类化合物、苯胺类化合物以及其它微量有机物质。浓度一般浓度在每升数毫克或更低。2.2无机离子和氨氮渗滤液中含有较高浓度的Na+、K+、Ca2+、Mg2+、Fe2+、Mn2+、Cl-、HCO3-、SO42-。它们浓度在每升几十至几千毫克之间波动。渗滤液中NH3-N的主要来源是填埋垃圾中蛋白质等含氮类物质的生物降解。浓度最高可达5000mg/L以上,一般浓度在500~2000mg/L之间,较高的氨氮浓度致使渗滤液C/N过低,营养比例失衡,此外氨氮浓度过高也会降低生物酶活性,造成渗滤液的可生化性较低。

2.3重金属离子填埋场含有一定量的镉、铜、铅、铬、砷、锡、锌、钼、钴、汞等重金属元素。重金属离子容易与无机离子及大分子有机物等发生离子交换、沉淀、吸附、络合(螯合)等作用,因此重金属存在的化学形态相当复杂,呈络合态的重金属离为主要存在形态。一般地,渗滤液中大多数重金属因在堆体内的吸附、沉淀等衰减而浓度很低,一般约在0.002~0.5mg/L之间,无需处理即可达标。锌由于是两性元素,溶解度较大,所以浓度较高,一般处于0.5~2mg/L之间,高时可达几十上百mg/L。

3 渗滤液的处理方式

目前主要的垃圾填埋场渗滤液处理方式有以下四种:

① 将未经处理的填埋场渗滤液运至城市污水处理厂予以合并处理;

② 将填埋场渗滤液进行预处理后运至城市污水处理厂予以合并处理,即预处理——合并处理;

③ 将渗滤液进行填埋场循环喷洒处理;

④ 在填埋场建设污水处理厂进行单独处理。

3.1合并处理

将渗滤液与城市污水处理厂合并处理是填埋场渗滤液最简单的处理方案,不仅节约了场内建设污水处理厂所需的大额支出,而且省掉了污水处理厂的运行费用,降低了处理成本。城市污水处理厂大量的城市污水对渗滤液产生稀释、缓冲作用,并且为渗滤液处理提供了必须的营养物质。尽管有以上优点,但合并处理并不是普遍适用的方案。一般来说垃圾填埋场往往距离城市污水处理厂较远,渗滤液的运输成本会比较高。此外,由于渗滤液特殊属性,过量的渗滤液会对城市污水处理厂造成冲击负荷,影响城市污水处理厂的正常运行,甚至导致崩溃。因此在考虑合并处理时,应考虑距离因素及渗滤液与城市污水的混合比。

目前,国内尚没有足够的经济条件在在所有垃圾填埋厂场内建设独立的污水处理厂,合并处理不失为一种经济的处理方案,但须根据实际情况及渗滤液的特性进行深入的可行性研究,找到可行的预处理方法和合理的渗滤液与城市污水混合比例,采用高效、稳定的合并处理工艺系统。

3.2预处理--合并处理

预处理-合并处理是基于减轻垃圾渗滤液含有的毒性物质对城市污水处理厂运行产生的危害而采取的一种场内联合处理方案。渗滤液首先通过场内预处理设施予以处理,一方面去除氨氮、重金属离子、SS、色度等污染物质,另一方面通过厌氧生化改善渗滤液可生化性,降低负荷,为后续的合并处理创造有利条件。

对于高浓度的氨氮的去除可采用吹脱等物化方法,此外可以结合生化工艺考虑采用具有脱氮功能的处理系统(A2/O或A/O)。对于重金属离子去除的预处理工艺多采用化学混凝沉淀等物化法。

3.3场内回喷

场内回喷是指渗滤液经收集后,通过回灌系统在场内实施循环喷洒处理。场内回喷是可作为有效的渗滤液处理方法。渗滤液经场内循环喷洒,可通过蒸发、植被吸收减少渗滤液的发生量,从而降低渗滤液处理成本;此外,通过场内回喷可增加填埋垃圾的的含水量,增强微生物活性,以利于污染物的降解。此方法的应用需要注意卫生安全等问题。

目前美国已有200多座垃圾填埋场采用了此项技术,该项技术在我国的应用较少。据资料介绍,唐山市垃圾卫生填埋场采用了循环喷洒处理方法处理渗沥液[2]。渗沥液经收集并经沉淀调节池处理后,喷灌回流至填埋场;沉淀调节池中的沉淀污泥与渗沥液一并回流至填埋场,避免了污泥的二次污染。

3.4单独处理

考虑到环境及成本问题,通常城市垃圾填埋厂被建设在远离城市的偏远地区。在采用合并处理造成运输成本过高时,建设场内独立污水处理厂便成为一种备选方案。在建设独立污水处理厂时,考虑到填埋场渗滤液有污染负荷高,有毒有害物质较多等特性,应采取多种处理方法有机整合的综合处理工艺。一般采取预处理—生物处理—后续处理的工艺流程。4 国内外垃圾渗滤液主要处理技术

垃圾渗滤液主要来源范文5

【关键词】垃圾渗滤液 垃圾危害 地下水污染

1.垃圾渗滤液的产生来源及危害

垃圾渗滤液是指垃圾在堆放和填埋过程中由于发酵和降水的淋滤、冲刷,以及地表水和地下水的浸泡而滤出来的有机污水。

渗滤液的来源主要是由以下几方面产生:①降水(包括降雨和降雪)直接落入填埋场;②地表水进入填埋场;③地下水进入填埋场;④填埋场垃圾废物中含有部分水。

渗滤液是一种高浓度毒性大的有机废水,由于其浓度高,流动缓慢,渗漏持续时间长,对周围地下水和地表水均会造成严重的污染。一个不合格的垃圾填埋场就是一个大的再生污染源,其污染延续时间可以长达数十年,甚至上百年。一旦地下水源和周围土壤被其污染,与地下水连通后向周围扩散,有的地区每年可达1km的速度向外扩散,10年后将有300km2的区域遭到污染。污染一旦产生,想用人工方法修复,技术上将十分困难,其费用也是极其昂贵。国内外有关垃圾渗滤液污染地下水和饮用水源的事故屡有发生,给人民生活生产带来了非常大的危害和损失。

2.垃圾渗滤液的产生量及渗漏量

垃圾填埋场渗滤液对地下水的影响,一般需要大量的资料外还需要通过复杂的数学模型进行分析计算。这里主要根据降雨入渗量和填埋场垃圾含水量估算渗滤液的产生量。从土壤的自净、吸附、弥散能力以及有机物自身降解能力等方面,定性和定量的预测填埋场渗滤液可能对地下水产生的影响。

(1)渗滤液的产生量受垃圾含水量、填埋场区降水情况以及填埋作业区大小的影响;同时也受到场区蒸发量、风力的影响和场地地面情况、种植情况等因素的影响。最简单的估算方法是假设整个填埋场的剖面含水率在所考虑的周期内等于或超过相应田间持水率,用水量平衡法进行计算:

Q=(Wp-R-E)Aa+QL

式中:Q―渗滤液的年产生量,m3/a;Wp―年降水量;R―年地表径流量,R=C×Wp;C―地表径流系数;E―年蒸发量;Aa―填埋场地表面积;QL―垃圾产水量。

(2)渗滤液渗漏量对于一般的废物堆放场、未设置衬层的填埋场,或者虽然底部为粘土层,渗透系数和厚度满足标准但无渗滤液收排系统的简单填埋场,渗滤液的产生量就是渗滤液通过包气带土层进入地下水的渗漏量。对于设有衬层、排水系统的填埋场,通过填埋场底部下渗的渗滤液渗漏量Q为:Q渗滤液=AKs

式中:Q渗滤液―通过填埋场底部下渗的渗滤液渗漏量,cm3/s;d―称层的厚度,cm;Ks―衬层的渗透系数,cm/s;A―填埋场底部衬层面积,cm2;hmax―填埋场底部最大积水深度,cm。

3.防治地下水污染的措施

人类对固体垃圾的处理最初是简单的堆放,认识到其对周围环境产生的危害后,采取了卫生填埋方法,这是垃圾最终处置且行之有效的方法之一。但卫生填埋中比较重要的一环是防止渗滤液对地下水的污染,其防渗措施和防渗材料是关键环节。目前填埋场的防渗措施主要有:底层收集和排泄系统、底部衬垫层、封顶覆盖层。最终处置的基本原则是合理地、最大限度地使其与自然和人类环境隔离,减少有毒有害物质释放进入地下水的速率和总量,将其在长期处置过程中对环境的影响减至最低程度。城市生活垃圾填埋场的安全处置期在30~40年。为了防止渗滤液对地下水造成污染,应从填埋场选址的天然环境地质条件和工程措施等方面考虑。

(1)工程防渗措施:填埋场衬层系统是防止垃圾填埋处置污染环境的关键工程屏障。根据渗滤液收集系统、防渗系统和保护层、过滤层的不同组合,填埋场的衬层系统有不同的结构,如单层衬层系统、复合衬层系统、双层衬层系统和多层衬层系统等。

底层收集和排泄系统是填埋场的底层设置收集和排出渗滤液的装置。一方面收集系统将收集的渗滤液稀释后送入污水处理厂处理或回灌进填埋场让其进行生物降解自净,另一方面排出系统使渗滤液按照设计路径可控制排出,对防止和减少渗滤液对地下水的污染起着重要的作用。排出管道一般采用耐腐蚀、抗老化、光滑阻力系数小的材料。底部衬垫层的作用是防止未及时排走的渗滤液的渗漏,这是防止渗滤液污染地下水的关键。顶部覆盖层的作用主要是防止大气降水或地表径流入渗,同时也可以阻止填埋场中有害气体的释放。要求的安全处置时间越长,所选用的衬层就应该越好。重点是填埋场所选用的衬层(类型、材料、结构)防渗性能及其在垃圾填埋需要的安全处置期内可靠性是否满足;把渗滤液封闭于填埋场中,使其进入渗滤液收集系统;防止地下水进入填埋场中,增加渗滤液的产生量。

渗滤液穿透衬层所需时间一般要求应大于30年。采用下述简单公式计算:t=

式中:d―衬层厚度,m;v―地下水运移速度,m/a。

(2)填埋场场址地质屏障措施:一般来说,在含水层中的强渗透性砂、砾、裂隙岩层等地质介质对有害物质具有一定的阻滞作用,但由于@些矿物质的表面吸附能力一再因吸附量的增大而减弱。此外,地下水径流量的变化,对有害物质的阻滞作用不可能长时间存在,因而含水层介质不能被看做是良好的地质屏障。

地质介质的屏障作用可分为三种类型:①隔断作用。在不透水的深地层岩石层内处置的废物,地质介质的屏障作用可以将所处置废物与环境隔断。②阻滞作用。对于在地质介质中只被吸附的污染物质,虽然其在此地质介质中的迁移速度小于地下水的运移速度,所需的迁移时间比地下水的运移时间长,但此地质介质层的作用仅是使该污染物进入环境的时间延长,所处置废物中的污染物质,最终会大量进入到环境中来。③去除作用。对于在地质介质中既被吸附又会发生衰变或降解的污染物质,只要该污染物在此地质介质层内有足够的停留时间,就可以使其穿透此介质后的浓度达到所要求的低浓度。

垃圾渗滤液主要来源范文6

[关键词] 垃圾渗滤液;陕北地区;DTRO

垃圾渗滤液是一种成分复杂的高浓度有机废水,主要来源于降水、生物降解水和垃圾本身的内含水,如果不能妥善处理,会严重污染生态环境和危害人体健康。垃圾渗滤液的成分与垃圾种类、填埋方式、填埋时间、气候等诸多因素有关,不仅水量变化大,而且变化无规律[1-2]。由于垃圾渗滤液水质、水量的时间和地域变化性,不仅采用单一的处理方法不能满足其处理要求,需要通过不同方法的优化组合与灵活应用才能进行有效地处理,而且适用于某一填埋场或某一地区填埋场渗滤液处理工艺方法往往不是普遍适用的技术,需要因地制宜采用不同的工艺[3]。

1 垃圾渗滤液水质特征[3-5]

1.1 水质复杂,危害性大

垃圾渗滤液中含有大量的有机物,含量较多的为烃类及其衍生物、酸酯类、酮醛类、醇酚类和酰胺类等。张兰英等人采用GC-MS-DS联用技术鉴定出垃圾渗滤液中有93种有机化合物,其中22种被列入我国和美国EPA环境优先控制污染物的黑名单中。此外,垃圾渗滤液中还含有10多种金属和植物营养素(氨氮等),水质成分十分复杂。

1.2 CODcr和BOD5浓度高

通常情况下,垃圾渗滤液中CODcr最高浓度达到90000mg/L,BOD5最高浓度达到38000mg/L,和城市污水相比浓度高。一般规律是,垃圾填埋初期渗滤液中BOD5/CODcr可达0.5以上,表现出良好的可生化性,随着填埋时间的推移,BOD5/CODcr也随之降低,可生化性变弱。

1.3 氨氮含量高

高浓度NH3-N是垃圾渗滤液重要水质特征之一,且随着填埋场年数的增加NH3-N浓度也随之增加,到最后封场时浓度可高达10000mg/L,C/N的比值失调且磷元素缺乏,严重影响到微生物活性,给生化处理带来一定的难度。

1.4 重金属含量高

垃圾渗滤液中含有10多种重金属离子,主要包括Fe、Zn、Pb、Cd、Cr、Hg、Mn、Ni等。其中铁的浓度可高达2050mg/L,铅的浓度可高达12.3mg/L,锌的浓度可高达130mg/L。重金属含量与当地工业废弃物掺入比例紧密相关。在微酸环境下,渗滤液中重金属溶出率偏高,一般在0.5%~5.0%。

2 垃圾渗滤液常用处理技术

2.1 土地处理[2-3, 6]

土地处理技术包括氧化塘、人工湿地及回灌。

⑴ 氧化塘技术是利用水塘天然自净能力处理生活污水的方法。通常垃圾渗滤液中污染物较高,且土地资源有限,很难满足氧化塘需要的大面积、低负荷的要求。

⑵ 人工湿地是近年来兴起的一种渗滤液土地处理技术,是人为创造一个适宜水生生物和湿生植物生长的环境,经预处理后的渗滤进入人工湿地系统处理。但该技术缺乏设计经验参数和规范,且处理负荷低,仅能起到辅助改善水质的作用。

⑶ 回灌技术是目前垃圾填埋场最常用的渗滤液处理方法,原理是通过土壤颗粒的过滤、离子交换、吸附和沉淀作用去除渗滤液中的悬浮固体颗粒和溶解成分,同时将填埋场垃圾层作为一个填料的厌氧生物反应器,利用其中的微生物达到降解有机物的目的。但受气候条件限制,一般只应用于干旱地区。

2.2 生物处理

生物处理技术多种多样,具有处理效果好、运行成本低等优点,是目前垃圾渗滤液处理中采用最多的方法,主要包括厌氧处理、好氧处理以及厌氧-好氧联合处理三种类型。尤其是厌氧-好氧联合处理工艺,可有效去除COD、BOD、氨氮等高浓度有机污染物。

例如北京阿苏卫垃圾卫生填埋场采用"厌氧+氧化沟"的方法处理垃圾渗滤液[7],杭州天子岭垃圾填埋场采用"缺氧+好氧两段活性污泥法"进行垃圾渗滤液的处理[8]。但根据调查,已建成的垃圾渗滤液污水处理普遍存在运行效果差的现象。主要是由于渗滤液废水复杂多变的特性使得微生物不能适应,渗滤液营养比例失调、重金属含量过高都将抑制微生物活性,导致污泥培养不起来或培养好的污泥难以维持。早期渗滤液可生化性高,可以依靠一系列的生物处理方法处理,但到了后期还得采用必要的化学-物理的处理方法来处理[3]。

2.3 物化处理

目前,渗滤液处理采用的物化法主要有混凝沉淀、化学氧化、吸附、吹脱及膜分离等方法。

⑴ 混凝沉淀:是通过投加化学混凝剂与废水中可溶性物质反应发生沉淀或混凝吸附细微悬浮物、胶体下沉,主要用于渗滤液中悬浮物、高分子有机物、重金属的去除。

⑵ 化学氧化:是通过添加强氧化剂使废水中的无机物及有机物氧化分解,从而降低了废水的COD和BOD,以达到净化目的。该法处理中老年垃圾渗滤液的去除效果良好,但成本较高。

⑶ 吸附法:主要用作除臭、去色、重金属以及难生物降解有机物的去除,尤其对直径在10-8~10-5cm或分子量在400以下的低分子溶解性有机物的吸附性较好。吸附法易受pH值、水温及接触时间等因素的影响。

⑷ 吹脱法:用于吹脱水中溶解气体和某些挥发性物质,针对中老年填埋场的渗滤液中营养比例失调,为调整C/N可对其进行氨吹脱预处理。目前氨吹脱主要形式有曝气池和吹脱塔,去除渗滤液中的氨氮效果明显,但处理产生的废气容易造成二次污染,且处理费用明显较高[9]。

⑸ 膜分离法:是指在一定压力差作用下,使高分子溶质流过膜表面时被截留,与溶剂分离,从而达到水质净化的目的。近几年膜处理技术在国内垃圾渗滤液处理方面发展较快,通常采用的膜技术包括微滤、超滤、纳滤和反渗透,其中以反渗透(RO)分离技术应用最为广泛。膜技术对渗滤液的水质处理效果明显,且不受渗滤液水质变化和气候因素的影响,系统运行灵活,自动化程度高[10]。

在实际工程应用中,单独采用一种技术不可能做到达标排放,因此在使用时往往采取组合工艺对渗滤液进行处理。垃圾渗滤液处理推荐采用"预处理+生物处理+深度处理"组合工艺,以达到较好的处理效果。

3 渗滤液处理工艺实例

针对陕北地区干燥、少雨的气候条件,选择榆林市神木县、府谷县和榆阳区3个生活垃圾填埋场为例,同时选择与陕北地区气候相近的内蒙古自治区鄂尔多斯市(东胜区)生活垃圾填埋场、宁夏回族自治区吴忠市生活垃圾填埋场作为参考对象。

3.1 填埋场实际运行情况

各垃圾填埋场基本情况见表1。

3.2 渗滤液处理工艺

垃圾填埋场渗滤液处理的主流工艺为预过滤(砂滤/芯滤)+反渗透(DTRO),具体工艺流程示意见图1。

垃圾渗滤液首先汇集在调节池,经水量、水质调节后再泵入原水罐,通过加酸调节pH以防止无机盐类结垢,经加压后再进入砂式过滤器和芯式过滤器过滤降低SS浓度。根据实际情况,在进入芯式过滤器前加入适量阻垢剂防止结垢现象的发生,芯式过滤器为膜柱提供最后一道保护屏障。预处理后的渗滤液进入第一级DTRO系统,在膜组件中进行反渗透,产生的透过液进入第二级DTRO系统,第一级DTRO浓缩液排入浓缩液储罐用于回灌填埋区;第二级DTRO系统透过液进入清水储罐,浓缩液则回流进入第一级DTRO的进水端进一步处理。膜组件的清洗由系统根据压差自动执行,只需要在两个清洗剂储罐中分别置入酸性清洗剂和碱性清洗剂即可[11]。

3.3 运行效果

垃圾填埋场渗滤液经二级DTRO工艺处理前后水质情况见表2。

根据垃圾填埋场渗滤液处理设施进、出口水质监测报告分析,对于不同填埋阶段的垃圾填埋场渗滤液水质,二级DTRO系统对CODcr、BOD5、NH3-N等污染物的去除均能达到理想效果,对CODcr的去除率为97.5%~99.8%,对BOD5的去除率为99.2%~99.6%,对NH3-N的去除率为97.6%~99.9%,出水水质满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2污染物排放浓度限值的要求。

3.4 工艺参数对比

DTRO反渗透处理工艺对污染物的去除率主要取决于膜的截留率,而与膜的截留率有关的系统运行参数主要有:进水电导率、悬浮物浓度、温度、pH、膜通量以及水回收率等[12-13]。通过对比各垃圾填埋场渗滤液DTRO反渗透系统的运行参数,便可找出影响渗滤液处理效果的原因所在,见表3。

从工艺参数对比分析,DTRO反渗透系统在实际运行过程中,进水水质悬浮物浓度超出设计要求的7.3倍,电导率和pH值也超出最佳运行工况范围,由此导致的结果是水回收率大幅降低,并且出现了膜阻塞、频繁更换膜组件等问题。

电导率是间接衡量渗滤液含盐量的指标,主要反映渗滤液中的重金属离子含量。进水水质电导率和悬浮物浓度偏高,导致第一级DTRO反渗透膜的运行负荷增大,直接影响反渗透膜的使用寿命,对于在实际运行操作中,针对高电导率的渗滤液,可以通过优化膜配置,调整第一级DTRO系统的膜通量、水回收率及膜柱数等参数以满足处理要求。

pH值的高低对膜系统性能也有很大影响,垃圾渗滤液在进入DTRO之前需将pH值调为酸性,一方面可防止难溶无机盐结垢,另一方面可使渗滤液中游离氨与酸形成二价铵盐,而DTRO对类似多价离子的截留率很高,可以提高氨的去除率。透过液的流量与pH值成反比,pH值越高,透过液流量越小,最终导致水回收率的下降。

3.5 DTRO处理工艺的可行性

陕北地区生活垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水水质良好,各项指标均能满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求,不受渗滤液可生化性、碳氮比变化的影响,在处理老龄垃圾填埋场渗滤液、北方寒冷干燥地区的渗滤液方面具有明显优势。同时,DTRO反渗透系统具备运行灵活,可连续或间歇运行,安装及维修简单等优点[14-15]。

陕北地区气候干燥,蒸发量远大于降雨量,适宜采用回灌的方式处理垃圾渗滤液浓缩液,DTRO反渗透系统产生的浓缩液回灌填埋场,利用垃圾层作为生物反应器可以实现有机物的消解,是渗滤液处理过程中一个经济可靠的环节。

4 结论

陕北地区垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水效果良好,各项指标均可达到《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求。结合渗滤液浓缩液回灌,可以解决陕北地区垃圾渗滤液处理的问题。

DTRO系统运行过程中,在预处理达不到设计效果或运行管理不规范的情况下,反渗透膜容易受到污染,导致设备故障率较高,处理能力下降,渗滤液处理效果与设备的运行管理密切相关。

参考文献:

[1] 杨秀敏,张桂梅.城市垃圾渗滤液对地下水的污染及防治对策[J].山西水利科技,2008 (1):39-40,54.

[2] 刘睿倩,高志永,王琪,等.生活垃圾填埋场渗滤液污染防治技术政策.中国环境科学研究院,2012,8.

[3] 陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理[J].工程与技术,2001,9:19-21.

[4] 胡蝶,陈文清,张奎,等.垃圾渗滤液处理工艺实例分析[J].水处理技术,2011,3:132-135.

[5] 韩静.应用反渗透技术处理垃圾填埋场渗滤液[J].中国环境管理干部学院学报,2012,4:52-54.

[6] 马超,郝桂媛.东北寒冷地区垃圾填埋场渗滤液的处理[J].黑龙江生态工程职业学院学报,2009,9.6-8.

[7] 金永麒.阿苏卫垃圾填埋场渗沥液处理中活性污泥的驯化与调试[J].环境科学与技术,2001,94(2):35-36.

[8] 胡勤海,金明亮,等.吹脱-SBR-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防治,2000,22(3):21-23.

[9] 王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,6:51-53.

[10] 何红根.UF+DTRO膜处理垃圾渗滤液的研究[D].武汉理工大学学位论文,2007.

[11] 刘飞.DTRO工艺处理垃圾渗滤液的研究[J].环境科技,2015,4:25-29.

[12] 蒋宝军,谢杰,王剑寒.碟管式反渗透垃圾渗滤液处理系统运行效能及分析[J].吉林建筑工程学院学报,2007,6:34-36.

[13] 邱端阳,张辉,柴晓利.两级管网式反渗透工艺处理垃圾填埋场渗滤液[J].中国给水排水,2013,6:15-17,21.

[14] 程峻峰,郑启萍,徐得潜.二级DTRO工艺在垃圾渗滤液处理中的应用[J].工业用水与废水,2014,8:63-65.