土壤重金属污染概念范例6篇

土壤重金属污染概念

土壤重金属污染概念范文1

关键词 土壤 重金属污染 植物修复

中图分类号:X53 文献标识码:A

0引言

造成我国土壤重金属污染的原因复杂多样,如生活废物、矿业废物的随意堆放,污水、废水灌溉,农药和化肥的不合理使用等。土壤污染具有普遍性,世界各国都有局部土壤存在不同程度的污染。全世界平均每年排放Hg约1.5万t、Cu约340万t、Pb约500万t、Mn约1500万t、Ni约100万t。数量巨大的重金属进入土壤对生态环境,给人类健康带来严重危害,特别是重金属污染土壤上种植的农作物产品,通过饮食进入人体,使重金属在体内逐渐富集,可能造成人体制畸制癌的风险。因而,人们对重金属污染的土壤采取了一系列修复措施。如易操作的客土、异位等物理修复方法,但其工程量大而且没有真正解决土壤的重金属污染;添加化学物质调节土壤理化性质或pH的化学修复方法,但费用高而且存在二次污染。相比较而言,利用超富集植物吸收土壤中重金属的特性,对重金属污染的土壤进行修复具有更好的应用前景。

1植物修复原理

植物修复这个概念的提出距今已有几十年的历史。它在20世纪80年代初发展起来,是一种利用自然生长或遗传培育植物修复重金属污染土壤的技术总称。植物在去除土壤中重金属的过程中发生了复杂的多相反应,其反应机理也十分复杂。学者们经过大量研究发现,植物修复的机理主要依靠植物的萃取作用、根系过滤作用、植物挥发作用和植物固定化作用。而植物修复作用途径有两个:一是改变土壤中重金属的化学状态,使其由有效态转变为固定态;二是通过植物吸收、代谢从而降低土壤中重金属含量。第一个途径通过固定土壤中的重金属从而降低了重金属进入农作物内进而危害人体的潜在风险。第二个途径通过降低土壤中重金属含量从而使其慢慢降低到土壤中重金属的本底值,进而减轻甚至消除其危害。

2 超富集植物

通常认为特定植物积累某种或多种重金属元素含量,如Cr、Co、Ni、Cu、Pb等含量达到1000mg/kg以上,积累的Mn、Zn含量在10000mg/kg以上,积累的Cd含量在100mg/kg以上,我们成称这样的植物为超富集植物。经过多年研究发现了有的植物只能富集一种重金属,而有的能富集两种或多种重金属,如Cd/Zn超富集的东南景天。然而,能够富集多种重金属的超富集植物很少,而土壤污染往往是多种重金属污染,其余重金属的存在会对植物的生长和富集带来不利影响。因此,发现或培育能够富集多种重金属且富集能力强、修复效率高的超富集植物成为了当前植物修复研究的热点。从超富集植物这个概念的提出到超富集植物的陆续发现,乃至进行盆栽试验和实验田的种植经历了漫长的时间,科研工作者做出来大量的努力,取得了一定的成果。然而,超富集植物往往只对一种重金属有吸收能力,且植物的生物量小、生长速度缓慢。此时,强化超富集植物的修复效率就具有必要性。

3植物修复强化

植物修复的缺陷使得它治理重金属污染土壤的修复效果往往并不理想。此时,通过添加外来物质提高其生物量或者吸收能力就显得十分必要。常用的措施有添加螯合剂、添加表面活性剂和调节pH。当螯合剂投加到土壤后,和土壤重金属发生螯合作用,能够形成水溶性的金属-螯合剂络合物,改变重金属在土壤中的赋存形态,提高重金属的生物有效性,进而可以强化植物对目标重金属的吸收。常用的人工合成螯合剂有EDTA,EDDS等,常用的天然螯合剂有小分子酸如柠檬酸等。表面活性剂具有亲水亲脂的特性,表面活性剂经土壤界面吸附和重金属缔合后,通过降低表面张力和增流作用, 解吸被吸附的重金属。从而增加植物对重金属的吸收,增大其吸收能力,提高其修复效率;重金属的溶解浓度与其所处环境的pH密切相关,同时所处环境的pH也会对植物生长带来重大影响。所以,通过人工调控控制其pH在一个适宜范围内亦可以增加其修复效率。除此之外,添加根际促生菌或者进行电动修复也是强化植物修复效果的方法,亦有很多学者做了大量研究并取得了一定成果。

4结论与展望

植物修复在治理重金属污染上具有的优势使得植物修复的研究日趋深入,克服其存在的缺点,具有广阔的应用前景。通过添加外来物质,克服超富集植物具有生物量小、生长慢等缺点。同时,考虑到成本和二次污染的问题,开发出高效价廉且环保的物质,应用于植物修复的过程,培育或者寻找能够富集多种重金属的超富集植物具有十分重要的意义。

参考文献

[1] 李法云,藏树良,罗义.污染土壤生物修复技术研究[J].生态学杂志,2003,22(1):35-39.

[2] SALTDE,BLAYLOCKM,NANDA-KUMARPBA,etal.Phytoremediation:A novel strategy for the removal of toxic metals from the environment using plants[J].Nature Biotechnology,1995(13):468-474.

[3] 陈武.环境中重金属污染土壤的植物修复研究进展[J].化学工程与装备,2009,8(8):191-192.

[4] 黄益宗,郝晓伟,雷鸣,铁柏清.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013(3):409-417.

[5] 徐良将,张明礼,杨浩,土壤重金属污染修复方法的研究进展[J].安徽农业科学,2011,39(6):3419-3422.

土壤重金属污染概念范文2

关键词:蔬菜基地;土壤;重金属;累积;来源;生态危害

中图分类号:X830;X820.4 文献标识码:A 文章编号:0439-8114(2013)09-2016-05

土壤是人类的衣食之源和生存之本,即便是经济技术高速发展的今天,土壤依然是最基本的生产要素和各种经济关系的物质载体。然而,随着现代工业和城镇化水平的不断提高,工业“三废”、生活废弃物的大量增加,化肥、农药、农膜等投入品大量使用,致使农业生态环境受到不同程度的污染[1]。重金属在农田土壤中的累积会引起复杂生物效应,一方面会制约作物生长发育,促进早衰,降低产量,并对营养元素的吸收起到颉颃作用从而降低农产品的品质;另一方面,土壤中的重金属可以通过根系进入植物体,再通过食物链的传递和富集,最终危害人体健康[2]。由于重金属元素化学性质稳定,其土壤污染过程具有隐蔽性、长期性和不可逆性等特点而受到全社会的广泛关注。

蔬菜在国民生活中占有重要的地位,是日常生活中必不可少的食物。目前,蔬菜基地已成为我国大中城市蔬菜的主要供应源。一般来讲,蔬菜基地蔬菜生产具有集约化程度高、农业投入品施用强度大、灌溉用水比旱作物多等特点,导致各种外源污染物进入农田土壤的几率也高,势必造成重金属元素在土壤中累积,直接影响蔬菜的质量安全。因此,对天门市蔬菜基地土壤重金属的累积状况与潜在生态危害进行评价有着重要意义。本研究通过对天门市5个主要蔬菜基地土壤进行采样监测,揭示土壤中重金属的累积动态,分析污染物来源,并评估其潜在生态危害程度,以期为蔬菜基地生态环境保护和农产品质量安全监管提供科学依据。

1 材料与方法

1.1 研究区概况

天门市位于鄂中,地处江汉平原北部,汉江下游左岸,跨东经112°35′-113°28′,北纬30°23′-30°54′,属于北亚热带季风气候区。多年日均气温16.4 ℃,年平均降雨量1 113.3 mm,日照时数1 872.4 h,无霜期249.6 d。天门市在菜蓝子工程建设中先后在河湖平原的多宝、张港、蒋场、黄潭、岳口、小板、杨林、沉湖及岗状平原的九真、皂市等乡镇建立了10个蔬菜基地,基地面积1.214万hm2,占天门市耕地总面积的11.21%。本研究区选择在河湖平原,该区土壤发育于江汉近代河流冲积物(Q4),基地土壤为灰潮土,土壤有较强的石灰性反应,主要土壤类型是灰油沙土和灰正土。

1.2 样品采集与制备

调查采样时,按照必须有重金属元素的污染源,采样点具有代表性和典型性,不同采样点应选在相同类型母质上以避免因母质不同而产生差异[3]的原则,选择河湖平原的多宝、张港、黄潭、小板、杨林等5个蔬菜基地为采样区,共布设21个采样点,每个采样点按梅花点法5点取样,用竹铲等量采集0~20 cm耕层土壤,混合均匀后用四分法留取1 kg混合土样。土样经自然风干,剔除样品中碎石、沙砾及植物残体,用木棍碾碎并用玛瑙研钵研磨,分别过20目和100目尼龙筛装袋备用。

1.3 分析方法

1.5 土壤重金属潜在生态危害指数评价方法

2 结果与分析

2.1 土壤重金属含量特征

天门市主要蔬菜基地土壤重金属含量的统计特征值及湖北省土壤背景值、国家土壤Ⅱ级标准值列于表3。由表3可知,天门市主要蔬菜基地土壤重金属Hg、Cd、As、Cr、Pb、Cu的总体平均含量分别为0.066、0.168、6.850、67.940、10.730和27.090 mg/kg。然而,由于人类干扰强度的不同,5个蔬菜基地土壤中6种重金属元素的浓度已呈现出较为明显的空间分布特征。差异显著性分析发现,Cd、Cr和Pb以杨林基地土壤含量最高,与多宝、张港、黄潭、小板4个基地土壤含量存在显著差异;Hg与Cu则以黄潭基地土壤含量最高,与多宝、张港、小板、杨林4个基地土壤含量也存在显著差异;而土壤中As含量黄潭、小板、杨林3个基地土壤含量差异不显著,但与多宝、张港2个基地土壤含量均有显著差异。

与湖北省土壤背景值[4]相比,5个蔬菜基地土壤重金属的平均含量除As、Pb外,黄潭和小板基地的Hg、杨林基地的Cd、多宝与杨林基地的Cr以及黄潭基地的Cu均高于相应元素的背景值,存在明显的累积现象;与保障农业生产,维护人体健康的国家土壤Ⅱ级标准值[6]相比,21个供试土样重金属Hg、Cd、As、Cr、Pb、Cu的含量均在标准限量内。由此可见,天门市主要蔬菜基地土壤中As、Pb处于本底状态,Hg、Cd、Cr、Cu在不同基地高于湖北土壤背景值,但低于国家土壤环境质量Ⅱ级标准值,土壤尚没被污染,只是受到外源污染物Hg、Cd、Cr、Cu的轻度玷污,其土地利用一般不受限制[7]。

2.2 土壤重金属累积特征

2.3 土壤重金属来源

农田土壤重金属来源于成土母质和人类活动,同一来源的重金属之间存在着相关性,因此可根据土壤中重金属全量相关性推测重金属来源。若不同重金属间有显著的相关性,说明有相同来源的可能性较大,否则来源不止一个。由表5可知,天门市主要蔬菜基地土壤中,Cr与Pb的相关系数最大,为0.709,达到极显著正相关水平;其次,Hg与Cu、As与Cu、Cd与Pb的相关系数分别为0.637、0.620、0.548,也均达到极显著正相关水平,表明Pb、Cu及Cr同源的概率较大。

根据实地调查及有关资料分析,天门市主要蔬菜基地土壤中外源重金属以4种来源为主。来源一为大气中重金属沉降。大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含有重金属的有害气体和粉尘等,大多数是经自然沉降和雨淋沉降而进入土壤[9]。来源二为施用含有重金属的化肥、农药等农业化学投入品。通常化肥中含有一定成分的重金属,一般磷肥、含磷复合肥含有较高的Hg、Cd、As和Pb等重金属元素,氮肥和钾肥中这些重金属元素含量较低,但氮肥中Pb的含量较高。天门市分别始于1951年、1954年和1972年在农业生产上施用氮肥、磷肥和复合肥。我国第一次农业污染源普查结果显示,天门市2007年度纯N施用量为788.85 kg/hm2,P2O5为345.45 kg/hm2,其单位面积施用量双双位居全省各地、市、州的第一名,分别是全省平均施用量的1.52倍和1.67倍。可见,天门市如此长时间、高强度地施用氮肥、磷肥和复合肥,必然会造成Hg、Cd、As、Pb等重金属元素在农田土壤中的累积。同时,天门市主要蔬菜基地一般由老棉田演变而来,曾于1971年前多年使用汞制剂农药氯化乙基汞(西力生)和醋酸苯汞(赛力散)、1962年起使用铜制剂农药硫酸铜和1972年起使用砷制剂农药甲基胂酸锌(稻脚青)防治棉花苗病,以及改种蔬菜后使用各种铜制剂农药防治蔬菜病害,导致Hg、Cu、As等重金属元素在农田的累积。来源三为施用含有重金属的畜禽粪便与生活垃圾。随着现代畜牧业发展,饲料中一般都含有一定量的Cu、As等重金属元素,这些重金属元素随粪便排出体外,施入农田后在土壤中累积。据估算[10],2006年度天门市仅猪粪、鸡粪中Cu、As的排放量全市耕地平均污染负荷量就达1.738和0.223 kg/hm2。而农村生活垃圾堆肥中往往重金属含量也比较高,如垃圾中电池、日光灯管、体温计等含Hg废弃物较多,施入农田其重金属也会在土壤中累积。来源四为地膜残留。天门市从1982年开始推广地膜覆盖技术,但因地膜强度低,易破碎,使用后难以捡拾回收,地膜残留量大,造成了土壤的白色污染,且覆盖年限越长,污染也越严重[11]。由于地膜在生产过程中加入了含有Cd、Pb的热稳定剂,残留地膜中的Cd、Pb向土壤中渗透、迁移,污染其土壤[12]。

2.4 土壤重金属潜在生态危害评价

3 结论

1)天门市主要蔬菜基地土壤重金属As、Pb处于本底状态,Hg、Cd、Cr、Cu在不同基地高于湖北土壤背景值,但低于国家土壤环境质量Ⅱ级标准值,土壤尚没被污染,只是受到外源污染物的轻度玷污,其土地利用一般不受限制。

2)土壤重金属累积性评价结果表明,Hg、Cd、Cr、Cu在不同蔬菜基地已形成轻度累积,5个基地土壤重金属综合累积水平为轻度累积。

3)大气中重金属沉降、施用含有重金属的化肥、农药、禽畜粪便和生活垃圾以及地膜残留是天门市主要蔬菜基地土壤中重金属来源的主要贡献者。

4)潜在生态危害指数法评价结果表明,5个蔬菜基地土壤重金属的潜在生态危害程度处于轻微生态危害状态,Hg与Cd为土壤中主要生态危害因子。

参考文献:

[1] 王 军,陈振楼,王 初,等.上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J].环境科学,2007,28(3):647-653.

[2] 陈迪云,谢文彪,宋 刚,等.福建沿海农田土壤重金属污染与潜生态风险研究[J].土壤通报,2010,41(1):194-199.

[3] 苏年华,张金彪,王玉默.福建省土壤重金属污染及其评价[J].福建农业大学学报(自然科学版),1994,23(4):434-439.

[4] 刘凤枝,马锦秋.土壤监测分析实用手册[M].北京:化学工业出版社,2012.

[5] HAKANSON L. An ecological risk index for aquatic pollution control-A sedimentological approach[J]. Water Research,1980, 14(8):975-1001.

[6] GB 15618-1995,土壤环境质量标准[S].北京:中国标准出版社,1995.

[7] 夏家淇,骆永明.关于土壤污染的概念和3种评价指标的探讨[J].生态与农村环境学报,2006,22(1):87-90.

[8] 徐宏林,祝莉玲,杨 军,等.嘉鱼蔬菜基地土壤重金属污染状况调查与评价[J]. 湖北农业科学,2011,50(7):1347-1349.

[9] 赵小虎,王富华,张 冲,等.南方菜地重金属污染状况及蔬菜安全生产调控措施[J].农业环境与发展,2007(3):91-94.

[10] 沈体忠,刘佑林,雷代英,等.武汉城市圈畜禽粪便资源量及养殖业对环境的潜在影响——以天门市为例[J].长江大学学报(自然科学版·农学卷),2009,6(3):70-74,78.

[11] 何文清,严昌荣,赵彩霞,等.我国地膜应用污染现状及其防治途径研究[J].农业环境科学学报,2009,28(3):533-538.

[12] 袁俊霞.农用残膜的污染与防治[J].农业环境与发展,2003(1):31-32.

土壤重金属污染概念范文3

环境材料又称生态材料或是环境功能材料,这个概念首次出现是在20世纪90年代,是日本东京大学山本良一教授提出的,环境材料包括新开发的环境材料和传统的现有材料两种,其概念是那些在加工、制造、使用和再生过程中的人类所需材料,其使用功能最大化但是环境负荷最低。环境材料的特点主要体现在以下三个方面,(1)先进性,就是指各自最主要的功能性;(2)环境的协调性,在材料的生产过程中,能够降低对资源以及能源的消耗,减少温室气体的排放,同时对废弃物的循环再利用起到了很大的作用,符合21世纪对于新材料性能方面的要求;(3)具有舒适性,即经济性,具有美观舒适的外形以及较强的经济实用性。循环再生材料、高分子材料、地环境复合材料等等都属于环境材料,目前在环保、农业生产和工业等领域都得到了广泛应用。

2在盐碱地的土壤改良中,环境材料的相关应用

2.1盐碱地的危害我国非常常见又十分严重的农业环境问题之一就是土壤盐碱化,在我国,盐碱地分布广泛、面积大,现有的盐碱化土地占耕地面积的比重约为20%,大多数位于西部的内陆干旱和半干旱地区,同时还有滨海地区。当土壤表层的易溶性盐分大于百分之零点六时就能称之为盐土,盐碱化了的土壤会因为盐分浓度过高而造成植物的吸水困难,或是植物在土壤中吸入的某种高浓度离子过多,在植物的体内大量积累使植物承受“单盐毒害”。另外,植物体内盐分过多会使其出现一系列的生理代谢失调状况,对光合作用造成不利影响,低盐浓度有助于呼吸而高盐浓度阻碍呼吸,加速了植物的蛋白质分解以及植物的死亡。

2.2环境材料与盐碱地的改良有很多方法可以改良盐碱地,比方说,物理措施、水利措施、化学措施以及生物措施等等,其中采用环境材料进行土壤改良是比较新的现代化化学措施,循环经济以及现代化工的发展推动了这种措施的广泛应用。目前,用于改良盐碱地的环境材料有两类,一类是起替换作用的加钙环境材料,例如石灰石、氧化钙、煤矸石和石膏等;另一类是起化学作用的加酸环境材料,例如硫磺、腐殖酸、硫酸铝以及酸性肥料等。

3在土壤重金属污染治理中,环境材料的相关应用

3.1土壤重金属污染的危害土壤重金属污染常常是由于工业与城市污染以及农业施肥和污水灌溉等引起的,城市化和工业化的加速使得土壤重金属污染更为严重。我国约有2500×104hm2的土地是受到重金属污染的,约占总农田面积的1/5。过量的重金属在土壤中会滞留在土壤耕作层,对植物生长有非常严重的影响,同时土壤中的重金属在土壤中会滞留很长时间,也不容易被微生物分解,时间久了,水以及种植在土壤中的植物就成为重金属危害传递的介质,给人类的健康带来不利的影响,然而治理与恢复难度也是十分大的。

3.2在土壤重金属污染治理中,环境材料的应用重金属污染土壤的修复技术分为四种,分别是生物措施、物理化学措施、化学改良措施和工程措施,其中包含微生物菌剂以及植物,以化学固化修复技术和生物修复技术应用最为广泛。从大的范围上来讲,化学固化修复是化学修复技术之一,往土壤里加重金属钝化剂和重金属固化剂,使土壤和土壤里的重金属的理化性质发生改变,这样土壤中的重金属的迁移能力和生物有效性会因为吸附和沉淀而降低。粘土矿物、磷酸盐、无机矿物、有机堆肥和微生物等都是常见的重金属稳定固化修复材料。其中有机材料和矿物材料可以对重金属发挥良好的稳定效应,这些有机质可以对土壤中的Cr6+进行还原,变为Cr3+从而降低其毒性,同时让重金属生成硫化物沉淀。而沸石、磷酸盐和含铁矿物等材料优点是便于获得、价格低廉并且高效,对重金属污染土壤的控制和修复作用明显。高分子保水材料是目前新发现的一种环境材料,对重金属有较好的固化作用,实验证明高分子化合物一方面可以让重金属对植物污染的作用降低,所以作物不会过多的吸收重金属;另一方面可以对土壤结构进行改良、转化养分并且直接给作物的根系提供水分。

4环境材料应用于农业抗旱节水中

农业的发展离不开水源,我国每年有约4×1011m3的水用于农业活动,约占总用水量的70%,而其中90%的水都用于农田灌溉。对于农业灌溉用水来说有三个问题最为显著,(1)水资源欠缺,干旱问题十分严重制约了农业灌溉的面积;(2)不能科学合理的利用那部分已被开发利用的水资源,出现了十分严重的浪费情况,例如宁夏回族自治区以及内蒙古自治区依旧运用农田漫灌的灌溉方式,灌溉水利用率仅有40%左右,而发达国家的利用率在90%左右;(3)水资源的污染情况非常严重。在农业抗旱节水中应用的环境材料主要有土壤保水剂与作物叶面抗蒸腾剂,这些都属于物理性材料的范畴。

5结语

土壤重金属污染概念范文4

蔬菜重金属污染现状

人类生存和健康与土壤、空气、水的质量息息相关。发达的工业国家环境污染已有上百年的历史,20世纪中叶开始意识到问题的严重性,提出了“环境保护”的概念。并在重金属污染与治理上开展深入的研究工作,发达国家十分重视重金属污染来源、污染状况以及风险评估研究工作。因环境污染而导致蔬菜等食品重金属污染进而危害人类身体健康的问题引起世界各国的高度关注。Singh等[3]通过调查新德里郊区的蔬菜重金属污染现状发现,菠菜中Cu、Zn、Pb、Cd等含量超标,超标率分别为13%、95%、78%和100%;George等[4]对4个农场46个采样点的蔬菜进行重金属含量检测,结果发现几乎所有采自Boolaroo地区的蔬菜中Pb、Cd含量都超过了澳大利亚食品标准中关于Pb、Cd的限量标准。近年来,蔬菜中的重金属污染问题在我国也受到了重视。比较早开展蔬菜重金属污染研究的是北京、广州等城市。北京等地监测分析指出[5];富含重金属的污水灌溉及垃圾会通过提高土壤中重金属含量进而显著提高蔬菜中重金属含量。目前,我国因重金属污染而造成每年粮食减产为1000×104t,每年被重金属污染的粮食多达1200×104t,合计经济损失至少200亿元[6]。在我国北部地区,中国科学院地理研究所的调查表明,北京市生产的蔬菜有30%重金属超标[7]。90年代中期王丽凤等[8]对沈阳市蔬菜重金属调查的结果表明,超标率较大的金属是Pb和Hg,其次是Zn和Cd,蔬菜综合超标率为36.1%,污染面积为3600hm2。而沈阳菜地土壤重金属与其背景值相比,Cd、Pb、Zn的平均值分别为背景值的7.06、3.96和3.87倍[9],表明了沈阳市菜地土壤和蔬菜已受到多种重金属的复合污染。天津市郊检测的36种蔬菜样品中,重金属检出率为100%,Cd已达到警戒线水平,单项污染指数最高值达19.22,总超标率为30.41%[10]。早在20世纪90年代对上海市蔬菜重金属污染状况的调查发现,蔬菜受Cd和Pb污染比较严重,超标率分别为13.29%和12.0%[11]。1996年对宁波市蔬菜重金属污染调查结果表明,Zn、Cd、Cr3种元素超标率都在60%以上[12]。张永志等[13]对温州市场19种蔬菜、水果123个样品中重金属Hg、As、Pb、Cd的含量调查,温州市场上果蔬重金属污染的程度依次是:Cd>Pb>Hg>As,其中菠菜、黄瓜、梨、猕猴桃、苹果中Cd的超标率分别为5.00%、16.7%、33.3%、16.7%和25.0%。长沙市主要蔬菜基地中,有13种蔬菜Pb和Cd超标率分别达60%和51%[14]。受调查的南宁市12个蔬菜样点中有11个样点Cd超标;10%以上样点Pb超标[15]。彭玉魁等[16]于1996—1997年对陕西省的西安、咸阳、宝鸡等6个城市郊区的14种蔬菜中的Hg、As、Pb、Cr、Cd等金属元素含量进行了调查,其中Pb和Cr在某些蔬菜中的超标现象严重。对成都地区的9种蔬菜的152个样品的分析结果表明,Pb和Cr是该地区的主要污染元素,它们的超标率分别为22%和29.4%,Hg和As的检出率为100%[17]。而重庆市近郊蔬菜基地土壤重金属Hg和Cd超标率分别为6.7%和36.7%,叶菜类蔬菜Cd、Hg、Pb等污染达到临界级,污染程度为Cd>Pb>Hg[18]。

菜地土壤重金属向植物链迁移与富集规律研究概况

随着人们对蔬菜需求量的增加,食入重金属超标的蔬菜会对人体健康造成更大的危害。因此,全面掌握蔬菜对重金属的吸收与富集规律,合理进行蔬菜的生产布局,对发展绿色食品和无公害蔬菜,保障人类健康具有重要意义。

不同种类蔬菜的重金属含量分析

同一植物种类对不同的重金属元素的吸收、富集能力不同,不同种类的植物对同一种重金属元素的吸收、富集能力也不同[19]。许多研究表明,不同种类蔬菜对重金属元素的吸收能力从大到小依次为叶菜类>根茎类>瓜果类>豆类[20]。杜应琼等[21]研究发现,在相同环境条件下,蕹菜、苋菜对Pb的富集能力很强,体内的Pb含量约为莴苣的4倍,芥菜的10倍。周根娣等[22]对上海市农畜产品的调查结果也表明,叶菜类较其他类别蔬菜污染严重。Zurera-cosano等[23]研究发现,蔬菜品种之间重金属含量呈显著差异(P<0.01﹚。Ghulam等[24]发现被测蔬菜中,菠菜叶中Cd、Mn的含量最高,随后依次为秋葵>苦瓜>荷兰薄荷。

蔬菜对生态环境中重金属的吸收

蔬菜对生态环境中重金属的吸收主要是通过根系吸收,其次为叶片[25]。Zheljazkov等对保加利亚某有色金属冶炼厂附近的薄荷调查发现,在薄荷中的Cd的含量为根>叶>根状茎>茎;Pb含量为根=叶>根状茎=茎;Cu含量为根>叶=根状茎=茎;Zn含量为叶>根>根状茎=茎。李学德等[27]研究发现,菠菜中Cd的积累量为叶片、根>茎,而Cd和Cu的积累量依次为叶片>根>茎杆,Pb的积累量则依次为根>茎>叶片;青菜叶片中的Cr、Cd、Pb、Cu等的含量均高于茎。郑路等[28]认为,生长在污染空气中的蔬菜,50%的Pb是通过叶片从大气中吸收的;叶面积大、叶面粗糙的蔬菜吸收Pb的能力较大;而叶细小、表面呈蜡质状的蔬菜Pb的吸收能力较小。汪雅谷等[29]研究发现,同一种蔬菜吸收不同重金属的能力不同,富集元素的规律是Cd>Zn、Cu>Pb、Hg、As、Cr。也有发现当Zn、Cd、Cu混施时,Cd的存在促进了大豆叶片中Zn的积累,而Cu的存在则使Zn和Cd的浓度降低[30]。同一种蔬菜的不同基因型对重金属的吸收积累也存在差异。王松良等[31]通过实验发现,小白菜13种基因型茎叶Cd、Pb、As含量差别很大。在相同Cd浓度下,不同小白菜品种间Cd含量差异最高相差413倍,差异显著,且外界Cd浓度越高,品种间差异越大[32]。

蔬菜中重金属含量与菜地土壤重金属含量的关系

蔬菜对重金属元素的吸收与积累取决于菜地土壤中重金属的含量、土壤条件及蔬菜的种类。汪雅谷等[33]对客良试验中土壤重金属含量进行相关分析表明,蔬菜中的Cd、Zn、Cu含量与土壤中的Cd、Zn、Cu含量相关显著。但是在大田条件下,由于蔬菜吸收土壤中的Cd受到多种因子的影响,其相关程度要比盆栽试验小得多[34]。冯恭衍等[35]的研究结果也表明,除Pb、Cr外,蔬菜中其他重金属元素的含量与土壤重金属含量有一定的相关性;各元素的富集系数(即蔬菜中某污染物含量占有土壤在中该污染物含量的百分率)以Cd最高,Zn、Cu次之,Pb、Cr居后。这与各重金属的迁移性强弱顺序相一致,Cd、Zn、Cu等元素较易为植物可吸收。但是,富集系数的大小取决于蔬菜种类和土壤环境条件、物理化学特性等很多影响因素,因而这些结果只能作为一种对大致趋势分析和判断。

研究方向与展望

目前,国内外很多城市,尤其是工业发达和人口密集的城市重金属污染问题更为突出。因此,要有效地控制蔬菜重金属含量,保证蔬菜质量安全。以下几方面将是我国菜地土壤和蔬菜重金属污染研究的重点。

系统和全面地开展粮食、菜地土壤重金属污染的调查研究及风险评估,研究土壤、菜地的区域土壤环境的空间变异与分布规律,开展土壤环境质量标准的研究和制定工作,加强无公害粮食、蔬菜生产基地建设,采取积极措施严格控制粮食、蔬菜的重金属污染。

加强蔬菜对重金属吸收积累的基因型差异研究,利用丰富的植物物种资源,研究其对重金属的吸收转运机制,以降低土壤中重金属的污染,同时筛选和培育低吸收、低富集重金属的蔬菜品种,减少重金属进入食物链,为跨越发达国家设立的绿色贸易壁垒提供技术保障。

土壤重金属污染概念范文5

愈演愈烈的镉大米危机,牵出了土地遭重金属污染的现实。中国水稻研究所与农业部稻米及制品质量监督检验测试中心2010年的《我国稻米质量安全现状及发展对策研究》称,我国1/5的耕地受到了重金属污染,其中镉污染的耕地涉及11个省25个地区。

土壤重金属污染如看不见的幽灵一般渗透进了我们的生活。这些幽灵隐藏在土壤里,它们不仅使作物减产,还沿着植物根系攀缘,侵袭进入大米、蔬菜等各种常见的农作物,最终到达人体内,如累积到了足以致病的剂量,则会对人类健康造成严重危害。它们分布范围广、隐蔽性强,消灭它们是一项费时费力成本高的工程。

经过近半个多世纪的摸索后,科学家们如今正在组建一个植物军团,用来抵挡重金属污染的攻击,它们是400多种超富集植物,善于从土壤中吸收各种重金属,对付不同类型的重金属污染时各有所长。配备了化学强化或者微生物强化的武器之后,它们的战斗力更加超群。

但是,矿山废水、工业废水等污染源头如果没有得到遏制,重金属污染的幽灵就不会从大地上撤退,这将是一场永不停歇的战争,而人类和植物这一方,将永难获胜。

方法不少,效果一般

植物修复技术是指利用植物的吸收、分解、挥发或固定土壤重金属作用,降低重金属在土壤中的含量和有效态含量,从而减小重金属的危害性。

中国科学院地理所研究院陈同斌曾在接受媒体采访时称,我国大多数城市近郊土壤受到了不同程度的污染,多地粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标或接近临界值。

以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。若它们潜藏在土壤中则更隐蔽,污染暴露的时滞更长,容易被人们忽视,比水污染和大气污染更危险。

华南理工大学副校长、工业聚集区污染控制与生态修复教育部重点实验室主任党志介绍,对受到重金属污染的土地,修复的方法有很多种,但主要可以分为物理、化学和生物的方法。而实践证明单纯采用物理和化学的方法并不实用。

物理的方法是指某个地方的土地污染了,就把这个地方的土地拿走,换上干净的土。这种方法工程量大、费用高昂,只对局部的企业用地污染有效,无法解决大面积的耕地污染问题。

化学的方法是通过改变土壤的物理化学性质,使得重金属不能被植物吸收。“只有能溶于水的离子态和络合态的重金属才会被植物吸收,我们可以通过加一些化学物质比如石灰来改变土壤的PH值,让它呈碱性。重金属和氢氧根离子就能形成沉淀,变得不溶于水,植物就不会吸收了。”党志说。但是,植物根部会不断分泌一些物质,这些分泌物大部分是酸性的,时间久了,加进土壤里面的碱就被中和掉,不能起作用。而且,也不能一直往土壤里面添加化学物质,会改变土壤的性质,作物也难以生长。“化学的方法最大的问题是,无论加什么东西,重金属仍然存在于土壤中,只是限制了它的活性,没有把它去除。”党志说。

用植物吃掉重金属

正因如此,植物修复技术在诸多修复被重金属污染土地的技术中脱颖而出,其中植物提取是目前研究最多并且最有前景的方法。

植物提取的核心是战斗力超强的超富集植物。超富集植物的根系从土壤中吸取重金属,并将其转移、贮存到植物的地上部分,然后收割地上部分,连续种植超积累植物即可将土壤中的重金属降到可接受水平。一般来说,它们在地上部分的重金属含量能够达到普通作物在同等条件下的100倍以上。

事实上,早在1848年科学家们就发现,在一种被命名为“贝托庭芥”的植物叶片里,镍的含量达到了7900mg/kg。不过直到1977年,生物学家布鲁克斯(Robert Richard Brooks)才首次提出了“超富集植物”的概念。

党志介绍,从上个世纪70年代以后,尤其是80年代,在美国,超级基金(super fund,污染场地管理与修复基金)开始通过这种生物的方法,对矿山污染、重金属污染和有机物污染的土壤进行修复,有了很多成功的案例。

目前,从事利用植物修复技术来进行土壤污染修复的研究已经在逐渐增多,它们都在寻找更经济更适宜的超富集植物,并探索植物——化学和植物——微生物联合修复技术。

组建超富集植物军团

研究人员发现的对重金属具有超积累能力的植物有45科约400多种,其中73%为镍的超积累植物。十字花科遏蓝菜属是一种锌和镉的超积累植物,是超富集植物军团中的“作战高手”。实验显示,遏蓝菜地上部分锌和镉含量可分别达36000mg/kg和1140mg/kg,且地上部分锌含量高达26000mg/kg时植物尚未表现中毒症状。在镉浓度为19mg/kg的工业污染土壤种植收割天然遏蓝菜6次,即可将土壤中的镉下降至3mg/kg。

不过,并不是善于吸收重金属就能够被实际应用在重金属土壤的修复工程中。什么样的植物能够获得认可加入“超富集植物军团”呢?科学家们有一套严格的筛选标准。

能用于污染土壤植物修复的超积累植物必须应具备以下几个特性:即使在污染物浓度较低时也有较高的积累效率;能在体内积累高浓度的污染物;能同时积累多种重金属;生长快、生物量大;抗虫抗病能力强等等。

党志介绍,目前有很多人都在从事利用植物修复技术来进行土壤污染修复的研究,寻找筛选更经济更适宜的超富集植物,并探索植物——化学和植物——微生物联合修复技术。植物种下去以后,只有离子态的和络合态的重金属被植物吸收了,但其他态体不被植物吸收,检测浓度仍然很高,研究者们采取了植物——化学强化联合修复技术,通过添加一些化学物质,使得土壤里其他态体的重金属转化为活性状态。有些微生物在生长过程中会分泌出一些生物表面活性剂,可以活化重金属。通过筛选出这样的微生物,或者从微生物中将产生的活性剂提取出来,投放到土壤里,就是植物——微生物联合修复技术。

2011年,由党志主持的一个名为“污染物在土壤中的环境化学行为与修复机理研究”的项目,获得了广东省科学技术奖自然科学类一等奖,其中一项研究就是通过种植玉米加上化学强化来修复镉污染的土壤。

“西方国家人少地多,所以他们主要采用超累积的草本植物对污染土地进行集中治理,但是这条道路在我国行不通。”党志说,我国人多地少,希望既能够治理污染,也能给农民带来收益。因此,他们把目光转向玉米、向日葵、烟叶等经济作物。

党志说,当时他们考虑了好几种植物,其中一种是向日葵,它吸收重金属能力也很强。还有一种是玉米,“我们找了几十种玉米,种玉米做实验,最后确定一种玉米,对重金属吸收能力很强,加上化学强化机制,在白云区的蔬菜基地做了实验,修复效果不错。”

遭遇战还是持久战?

土壤修复的课题大部分是在做已受污染土壤的修复,但是实际上如果没有在源头上断绝污染,只是在末端做修复,这项工作没有多大的意义。

虽然植物修复技术在治理重金属污染方面是一条经济有效的途径,但仍然面临着许多待解决的问题。比如说一种植物通常只能忍耐或吸收一种或两种重金属元素,对土壤中其他浓度较高的重金属则表现出某些中毒症状,从而限制了植物修复技术在重金属复合污染土壤治理中的应用。

而且植物是活的有机体,需要有适宜的生长条件,对土壤肥力、气候、水分、盐度、排水与灌溉系统等自然条件有一定的要求,植物受病虫害袭击时会影响其修复能力。另外,植物根系一般较浅,对浅层土壤污染的修复最为有效,对深层土壤污染修复能力较差。

还有一个问题也在困扰着党志这样的研究者,“土壤修复以后,这么多的植物怎么办呢?”党志说,这些含有大量重金属的植物必须把它处理掉。目前的处理方法只是烧掉,并将灰烬作为危险废弃物去填埋。但这显然并不是一个令人满意的处理方法。

党志认为,向重金属污染土壤开战,不仅仅是技术上的问题,更大程度上是社会管理的问题。“土壤修复和大气、污水等修复有区别,比如工厂污水将河流污染了,工厂有处理这些污水的义务,大气污染物电厂也可以自己处理。但是土壤不一样,因为被污染的土壤都是公共的地方。”

“如果耕地需要让农民出钱来修复,这绝对是不可能的。找不到谁对污染的土壤负责,最后只好政府买单。有时政府愿意,农民也不愿意,他们害怕影响生产。”党志表示,“在现实的国情下,不要说大面积的修复,连大面积的种植都不可能实现。”

治本还须从源头抓起

由于土壤污染的隐蔽性,一直以来国家对土壤重金属污染的投入远远赶不上对水污染和大气污染投入的力度。但党志说,近些年来,国家也已经加大了对土壤污染修复的投入力度,成立了很多土壤修复的课题,他也参与了好几个。

“这些课题大部分是在做现在被污染土壤的修复,但是实际上如果没有在源头上断绝污染,只是在末端做修复,没有多大的意义。”党志研究发现,土壤中的重金属最主要的来源还是矿山,进行源头的治理才是治本之道。

土壤重金属污染概念范文6

[关键词]土壤污染,农产品安全,管理现状

中图分类号:X53 文献标识码:A 文章编号:1009-914X(2017)05-0219-01

1 农田土壤|量现状

1.1 土壤污染的概念

土壤是经济社会可持续发展的物质基础,关系人民群众身体健康,关系美丽中国建设,保护好土壤环境是推进生态文明建设和维护国家生态安全的重要内容。

土壤污染物大致可分为无机污染物和有机污染物两大类。

无机污染物主要包括酸、碱、重金属,盐类、放射性元素铯、锶的化合物、含砷、硒、氟的化合物等。

有机污染物主要包括有机农药、酚类、氰化物、石油、合成洗涤剂、3,4-苯并芘以及由城市污水、污泥及厩肥带来的有害微生物等。

1.2 农田土壤污染现状

目前,我国土壤污染的总体形势严峻,部分地区土壤污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土壤重污染区和高风险区。土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土壤污染途径多,原因复杂,控制难度大。土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。由土壤污染引发的农产品质量安全问题和逐年增多,成为影响群众身体健康和社会稳定的重要因素。

我国农田土壤遭受有机物、重金属和化肥等污染物质的污染较为严重。据调查,我国农田受有机污染物(农药、多环芳烃等)污染的面积已达3600万hm2,其中农药污染面积约1600万hm2。农药是毒性高、环境释放率大、影响面广的有机污染物,在有效防治病虫草危害的同时也污染环境和农产品。农药在土壤环境中的行为归宿,主要是迁移、滞留、转化。化学农药施于农田后,约有40%-60%落入土壤中。

2 农产品质量安全现状

2.1 农产品的化学污染严重

近几年来我国蔬菜污染问题严重,其中化学农药、重金属、化肥和硝酸盐的污染最为突出。

2.1.1 化学农药污染

在蔬菜生产过程中,通过使用化学农药防治病虫害,保证蔬菜的高产和稳产。但与此同时,蔬菜产品遭受着严重的化学农药污染。目前,化学农药污染问题在我国受到广泛的关注和重视。

2.1.2 生活污水和工业废水污染

我国污水灌溉农田面积超过330万hm2。生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,有增产效果。未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有毒有害的物质,会将污水中有毒有害的物质带至农田,在灌溉渠系两侧形成污染带。

2.1.3 化肥与硝酸盐污染

化肥对蔬菜生产影响最大的是氮肥,氮肥施用过多造成蔬菜的品质和耐贮性下降。氮肥分解过程中产生的硝酸盐、亚硝酸盐等致病、致癌物质,在蔬菜中积累并通过食物链影响人体健康。由一些文献报道可知,我国大部分地区蔬菜中化肥与硝酸盐污染已相当严重。无论是沿海地区还是内陆,叶菜类和根菜类蔬菜中硝酸盐含量超标最严重,厦门、广东省6个典型地区、长沙、哈尔滨四地区叶菜类蔬菜中硝酸盐含量分别已达1019mg/kg、3180mg/kg、3130mg/kg、3432mg/kg,根菜类蔬菜中硝酸盐含量于厦门、长沙、哈尔滨三城市分别为669mg/kg、1682mg/kg、2107mg/kg。

2.2 农产品质量安全与管理现状分析

2.2.1 农产品质量安全法律依据

“民以食为天,食以安为先”。在国外发达国家,无公害农产品已成为最基本的要求和最低的限制性标准。我国国家农业部、省、市、自治区针对日益增多的食品中毒问题,制定了一系列蔬菜质量安全标准,对蔬菜安全生产起了积极作用。最近几年,通过对蔬菜安全生产的逐步重视,蔬菜质量标准得到了进一步的规范。

目前,国家农业部已颁布了13蔬菜产品标准,其中白菜类蔬菜、茄果类蔬菜和甘蓝类蔬菜,其余是单个蔬菜如韭菜、芹菜、黄瓜等标准。另外,还制定了无公害蔬菜产地环境质量标准及农药安全使用标准。我国各个省、市、自治区根据当地情况,在参照国家标准的基础上出台了一些标准,如浙江省和天津市制定的无公害蔬菜系列标准包括产地环境质量标准、生产技术规程和产品质量标准。不同行业也制定了自己的行业标准,一般而言, 先实行行业标准,其次是省、市、自治区标准,最后才考虑国家标准。

2.2.2 农产品质量安全现状分析

随着生活质量和健康意识的提高,消费者对食品安全问题的关注程度日益增强。为减轻农产品生产中可能遭受到的工业“三废”以及化肥、农药等化学投入品的污染,提高安全农产品的供给水平,中国于20世纪80年代中后期开始,在开展全国农畜产品药物残留调查的基础上,于1990年开始发展绿色食品产业,2001年启动“无公害食品行动计划”,2005年4月1日起实施有机食品的国家标准,稳步推进无公害、绿色和有机农产品产业发展。

截止到2007年底,中国认证无公害农产品28600个,认证面积达到2107万公顷;认证绿色农产品14339个,认证产地面积达到1000万公顷;认证有机农产品2647个,认证面积达到311万公顷(国务院新闻办公室,2007)。

3 建议与展望

3.1 建议

3.3.1 加强检测能力建设

农产品是人们饮食生活中不可缺少的食物,其质量安全问题已成为当今人们谈论的主要话题。因而必须采取科学的、现代化的检测手段,按照农产品质量安全标准对农产品质量进行检测。

首先,对农产品产地环境进行监测和检测,以保证种植地的环境达标,进而保证消费者食用的是健康安全农产品。其监测与检测项目具体包括:⑴环境空气质量,主要监测和检测空气中的有害成分,如二氧化硫、氟化物、一氧化碳等;⑵灌溉水质量,重点检测pH、氰化物、重金属;⑶土壤环境质量监测和检测,重点为重金属。

其次,监测和检测农业投入品,即要对化肥和农药种类进行控制,必须严格按照标准中规定的限量、种类进行控制。

除此之外,还要对农产品产品质量进行检测。其检测内容有农药残留、化肥残留、重金属、卫生指标等。

3.2 从源头防范

我国农田土壤和农产品污染日益严重,对这方面的相关研究报道较多。针对此种情况,建议今后应加强以下几方面的工作:

⑴结合农业土壤污染特点,采取科学、有效的防治治理措施以改善受污染的土壤。

(2) 积极选育、引进和推广新品种。产前要挑选遗传品质好、遗传性状稳定、适合本地环境的品种进行种植或饲养。 依照规定合理使用农业投入品。依照规定建立农产品生产记录。

⑶加快对长效肥、缓效肥等低污染、低消耗肥料的研究开发、加大在生物农药研究方面的科技投入。

⑷继续推广建立农产品安全质量追溯系统。

参考文献

[1] 徐月珍.防止土壤污染和地下水污染的措施[J].环境与可持续发展,1989(1):29-31

[2] 任旭喜.土壤重金属污染及防治对策研究[J].环境保护科学,1999,25(5):31-33