简述云和云计算的基本概念范例6篇

简述云和云计算的基本概念

简述云和云计算的基本概念范文1

利用云变换得到的仅是相关的原子概念,因未能关注原子云模型间存在的相应关系,由此也导致了两个云之间易发生一些真空地带,或模型间的距离过近,所以需要对原子概念采取概念提升,以便能获得较粗粒度的概念,以避免所提取的定性概念无法可靠地对原始数据进行准确的描述。文中选择距离最近的两个正态云概念,然后将其合并成更高层次的正态云概念,最终达到概念个数能满足指定个数的目的。研究中为了产生不合理的合并,引入了距离阈值,从而生成了一种新定性概念提升算法,即MAQC算法,具体情况如下所示:输入。用CLOUDS来表示云变换生成的原子概念集合,利用σ来表示距离阈值。

2实验分析

2.1概念提取安全事件的获取可为系统提供数据支撑,也是确保物联网安全属性概念提取的基本前提。为了对上述提取方法的有效性进行验证,本文进行了相关实验。实验数据选择DARPA的入侵检测数据集来实施试验网络的训练,对于安全事件及日志信息的采集方面,综合运用了多种方法,如文件方式、Syslog及SNMPTrap等。此外,还综合应用了系统运行日志及数据库等,在Matlab程序设计实现方面则选择了数据的概念划分算法。在概念提取方面选择了属性CPU利用率作为案例,其中涵盖了系统运行48过程中产生的2880条数据。图1为CPU利用率频率分布情况,从图中可看出,大多数时间系统的CPU利用率相对较低,但当CPU利用率达到60%以上时,随着CPU利用率的逐渐升高,数据分布也表现出了越来越稀疏的状态,数据分布情况和系统实际运行情况之间保持一致。借助EAQC算法对系统中CPU利用率情况采取概念提取的方式进行评估,为尽可能简化计算,研究中假定梯形云的左右半云熵及超熵相同,借助云变换算法所得到的对应数字特征情况如表1所示。

2.2概念合并根据MAQC算法,对上述9个不确定性概念实施了合并,假设σ=2.5,则再通过两次合并后,就可获得5个不确定性概念,而这几个概念所对应数字特征的具体情况如表2所示。可以看出,在最终得到的5个定性概念能够相对准确地表现出CPU利用率的具体分布情况。同时,这些合并后的概念云中涵盖了原子概念云的取值区间,即使在进行概念提升后的云模型概念集合无法完全客观表现出原始数据的具体分布情况,但这些合并后的云模型概念集合相对更符合人的思维,因此可被接受并加以有效应用。其中属性值借助逆向云发生器的作用,就能有效判断其对概念的隶属度,只需根据极大判别法便可得到属性值所属的概念,在此基础上完成对物联网安全要素数值型数据的有效软化分。

3结束语

简述云和云计算的基本概念范文2

购买推荐

图书分析师庞敏丽认为该书云计算研发人员和爱好者的学习和参考资料。通过对生意宝旗下比购宝(Boogle.cn)——“网络购物第一站”收录的博库书城、淘宝网、京东商城、卓越亚马逊、当当网、拍拍网、文轩网、中国互动出版网、99网上书城等众多含图书销售的网站,价格搜索显示,目前,京东商城该书为最低价,推荐购买。

目 录

第1章 绪论

1.1 云计算的概念

1.2 云计算发展现状

1.3 云计算实现机制

1.4 网格计算与云计算

1.5 云计算的发展环境

1.5.1 云计算与3G

1.5.2 云计算与物联网

1.5.3 云计算与移动互联网

1.5.4 云计算与三网融合

1.6 云计算压倒性的成本优势

习题

参考文献

第2章 Google云计算原理与应用

2.1 Google文件系统GFS

2.1.1 系统架构

2.1.2 容错机制

2.1.3 系统管理技术

2.2 分布式数据处理MapReduce

2.2.1 产生背景

2.2.2 编程模型

2.2.3 实现机制

2.2.4 案例分析

2.3 分布式锁服务Chubby

2.3.1 Paxos算法

2.3.2 Chubby系统设计

2.3.3 Chubby中的Paxos

2.3.4 Chubby文件系统

2.3.5 通信协议

2.3.6 正确性与性能

2.4 分布式结构化数据表Bigtable

2.4.1 设计动机与目标

2.4.2 数据模型

2.4.3 系统架构

2.4.4 主服务器

2.4.5 子表服务器

2.4.6 性能优化

2.5 分布式存储系统Megastore

2.5.1 设计目标及方案选择

2.5.2 Megastore数据模型

2.5.3 Megastore中的事务及并发控制

2.5.4 Megastore基本架构

2.5.5 核心技术——复制

2.5.6 产品性能及控制措施

2.6 大规模分布式系统的监控基础架构Dapper

2.6.1 基本设计目标

2.6.2 Dapper监控系统简介

2.6.3 关键性技术

2.6.4 常用Dapper工具

2.6.5 Dapper使用经验

2.7 Google应用程序引擎

2.7.1 Google App Engine简介

2.7.2 应用程序环境

2.7.3 Google App Engine服务

2.7.4 Google App Engine编程实践

习题

参考文献

第3章 Amazon云计算AWS

3.1 Amazon平台基础存储架构:Dynamo

3.1.1 Dynamo在Amazon服务平台的地位

3.1.2 Dynamo架构的主要技术

3.2 弹性计算云EC2

3.2.1 EC2的主要特性

3.2.2 EC2基本架构及主要概念

3.2.3 EC2的关键技术

3.3.4 EC2安全及容错机制

3.3 简单存储服务S3

3.3.1 基本概念和操作

3.3.2 数据一致性模型

3.3.3 S3安全措施

3.4 简单队列服务SQS

3.4.1 SQS基本模型

3.4.2 两个重要概念

3.4.3 消息

3.4.4 身份认证

3.5 简单数据库服务Simple DB

3.5.1 重要概念

3.5.2 存在的问题及解决办法

3.5.3 Simple DB和其他AWS的结合使用

3.6 关系数据库服务RDS

3.6.1 SQL和NoSQL数据库的对比

3.6.2 RDS数据库原理

3.6.3 RDS的使用

3.7 内容推送服务CloudFront

3.7.1 内容推送网络CDN

3.7.2 云内容推送CloudFront

3.8 其他Amazon云计算服务

3.8.1 快速应用部署Elastic Beanstalk和服务模板CloudFormation

3.8.2 云中的DNS服务 Router

3.8.3 虚拟私有云VPC

3.8.4 简单通知服务SNS和简单邮件服务SES

3.8.5 弹性MapReduce服务

3.8.6 电子商务服务DevPay、FPS和Simple Pay

3.8.7 Amazon执行网络服务

3.8.8 土耳其机器人

3.8.9 Alexa Web服务

3.9 AWS应用实例

3.9.1 在线照片存储共享网站SmugMug

3.9.2 在线视频制作网站Animoto

3.10 小结

习题

参考文献

第4章 微软云计算Windows Azure

4.1 微软云计算平台

4.2 微软云操作系统Windows Azure

4.2.1 Windows Azure概述

4.2.2 Windows Azure计算服务

4.2.3 Windows Azure存储服务

4.2.4 Windows Azure Connect

4.2.5 Windows Azure CDN

4.2.6 Fabric控制器

4.2.7 Windows Azure应用场景

4.3 微软云关系数据库SQL Azure

4.3.1 SQL Azure概述

4.3.2 SQL Azure关键技术

4.3.3 SQL Azure应用场景

4.3.4 SQL Azure和SQL Server对比

4.4 Windows Azure AppFabric

4.4.1 AppFabric概述

4.4.2 AppFabric关键技术

4.5 Windows Azure Marketplace

4.6 微软云计算编程实践

4.6.1 利用Visual Studio2010开发简单的云应用程序

4.6.2 向Windows Azure平台应用程序

习题

参考文献

第5章 VMware云计算

5.1 VMware云产品简介

5.1.1 VMware云战略三层架构

5.1.2 VMware vSphere架构

5.1.3 云操作系统vSphere

5.1.4 底层架构服务vCloud Service Director

5.1.5 虚拟桌面产品VMware View

5.2 云管理平台 vCenter

5.2.1 虚拟机迁移工具

5.2.2 虚拟机数据备份恢复工具

5.2.3 虚拟机安全工具

5.2.4 可靠性组件FT和HA

5.3 云架构服务提供平台vCloud Service Director

5.3.1 创建虚拟数据中心和组织

5.3.2 网络的设计

5.3.3 目录管理

5.3.4 计费功能

5.4 VMware的网络和存储虚拟化

5.4.1 网络虚拟化

5.4.2 存储虚拟化

习题

参考文献

第6章 Hadoop:Google云计算的开源实现

6.1 Hadoop简介

6.2 Hadoop分布式文件系统HDFS

6.2.1 设计前提与目标

6.2.2 体系结构

6.2.3 保障可靠性的措施

6.2.4 提升性能的措施

6.2.5 访问接口

6.3 分布式数据处理MapReduce

6.3.1 逻辑模型

6.3.2 实现机制

6.4 分布式结构化数据表HBase

6.4.1 逻辑模型

6.4.2 物理模型

6.4.3 子表服务器

6.4.4 主服务器

6.4.5 元数据表

6.5 Hadoop安装

6.5.1 在Linux系统中安装Hadoop

6.5.2 在Windows系统中安装Hadoop

6.6 HDFS使用

6.6.1 HDFS 常用命令

6.6.2 HDFS 基准测试

6.7 HBase安装使用

6.7.1 HBase的安装配置

6.7.2 HBase的执行

6.7.3 Hbase编程实例

6.8 MapReduce编程

6.8.1 矩阵相乘算法设计

6.8.2 编程实现

习题

参考文献

第7章 Eucalyptus:Amazon云计算的开源实现

7.1 Eucalyptus简介

7.2 Eucalyptus技术实现

7.2.1 体系结构

7.2.2 主要构件

7.2.3 访问接口

7.2.4 服务等级协议

7.2.5 虚拟组网

7.3 Eucalyptus安装与使用

7.3.1 在Linux系统中安装Eucalyptus

7.3.2 Eucalyptus配置和管理

7.3.3 Eucalyptus常用命令的示例和说明

习题

参考文献

第8章 其他开源云计算系统

8.1 简介

8.1.1 Cassandra

8.1.2 Hive

8.1.3 VoltDB

8.1.4 Enomaly ECP

8.1.5 Nimbus

8.1.6 Sector and Sphere

8.1.7 abiquo

8.1.8 MongoDB

8.2 Cassandra

8.2.1 体系结构

8.2.2 数据模型

8.2.3 存储机制

8.2.4 读/写删过程

8.3 Hive

8.3.1 整体构架

8.3.2 数据模型

8.3.3 HQL语言

8.3.4 环境搭建

8.4 VoltDB

8.4.1 整体架构

8.4.2 自动数据分片技术

习题

参考文献

第9章 云计算仿真器CloudSim

9.1 CloudSim简介

9.2 CloudSim体系结构

9.2.1 CloudSim核心模拟引擎

9.2.2 CloudSim层

9.2.3 用户代码层

9.3 CloudSim技术实现

9.4 CloudSim的使用方法

9.4.1 环境配置

9.4.2 运行样例程序

9.5 CloudSim的扩展

9.5.1 调度策略的扩展

9.5.2 仿真核心代码

9.5.3 平台重编译

习题

参考文献

第10章 云计算研究热点

10.1 云计算体系结构研究

10.1.1 Youseff划分方法

10.1.2 Lenk划分方法

10.2 云计算关键技术研究

10.2.1 虚拟化技术

10.2.2 数据存储技术

10.2.3 资源管理技术

10.2.4 能耗管理技术

10.2.5 云监测技术

10.3 编程模型研究

10.3.1 All-Pairs编程模型

10.3.2 GridBatch编程模型

10.3.3 其他编程模型

10.4 支撑平台研究

10.4.1 Cumulus:数据中心科学云

10.4.2 CARMEN:e-Science云计算

10.4.3 RESERVOIR:云服务融合平台

10.4.4 TPlatform:Hadoop的变种

10.4.5 P2P环境的MapReduce

10.4.6 Yahoo云计算平台

10.4.7 微软的Dryad框架

10.4.8 Neptune框架

10.5 应用研究

10.5.1 语义分析应用

10.5.2 生物学应用

10.5.3 数据库应用

10.5.4 地理信息应用

10.5.5 商业应用

10.5.6 医学应用

10.5.7 社会智能应用

10.6 云安全研究

10.6.1 Anti-Spam Grid:反垃圾邮件网格

10.6.2 CloudAV:终端恶意软件检测

10.6.3 AMSDS:恶意软件签名自动检测

10.6.4 CloudSEC:协作安全服务体系结构

习题

参考文献

第11章 总结与展望

11.1 主流商业云计算解决方案比较

11.1.1 应用场景

11.1.2 使用流程

11.1.3 体系结构

11.1.4 实现技术

11.1.5 核心业务

11.2 主流开源云计算系统比较

11.2.1 开发目的

11.2.2 体系结构

11.2.3 实现技术

11.2.4 核心服务

11.3 国内代表性云计算平台比较

11.3.1 中国移动“大云”

11.3.2 阿里巴巴“阿里云”

11.3.3 “大云”与“阿里云”的比较

11.4 云计算的历史坐标与发展方向

11.4.1 互联网发展的阶段划分

11.4.2 云格(Gloud)——云计算的未来

简述云和云计算的基本概念范文3

关键词:云计算;应用;研究

对于目前的广大云计算用户来说,云计算服务功能主要表现在生活中方便快捷的信息储存功能,但对于云计算具体的发展历程、研发机构、网盘分类和应用领域,则了解甚少,然而云计算的信息储存功能在整体的发展浪潮中,只是一个插曲,云计算在变革中发展,未来的应用前景更是不可估量。

一、云计算基本概念综述

在互联网背景下,提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。这种特性经常被称为像水电一样使用IT基础设施。有这样一个比喻:以前的服务器模式就是一个中央超级计算机(服务器)然后连接着大家的个人机,只要将中央超级计算机换成Internet就可以了。的确,在Internet上有多少个“中央超级计算机”这是无法想象的,却是十分令人憧憬的,现已成为甲骨文旗下的Sun公司说了一句很形象的话:网络就是计算机。

在概念对比上,云计算和对等计算是比较容易的区别的,对等计算的概念提出较早,这个概念所包括的范围也是很小的,它甚至只是小到一个局域网。而云计算和网络计算的概念必须加以区分;网络计算仅仅是使用了网络上的空闲的计算机共同参与。网络计算的规模、速度、扩展速度、成本以及智能化都比云计算整整低了一个层次。但是云计算是在“网路计算”的基础上发展而来。它们是不能仅仅简单的分立比较的。

云计算通过互联网提供软件与服务,并由网络浏览器界面来实现。用户加入云计算不需要安装服务器或任何客户端软件,可在任何时间、任何地点、任何设备(前提是接入互联网)上通过浏览器随时随意访问,云计算的典型服务模式有三类:“软件即服务(SoftwareasaService,SaaS)”,平台即服务(PlatformasaService,PaaS)”和“基础设施即服务(InfrastructureasaService,IaaS)”。所谓SaaS是指用户通过标准的Web浏览器来使用Internet上的软件。从用户角度来说,这意味着他们前期无需在服务器或软件许可证授权上进行投资;从供应商角度来看,与常规的软件服务模式相比,维护一个应用软件的成本要相对低廉。SaaS供应商通常是按照客户所租用的软件模块来进行收费的,因此用户可以根据需求按需订购软件应用服务,而且SaaS的供应商会负责系统的部署、升级和维护。SaaS在人力资源管理软件上的应用较为普遍。以销售和管理SaaS而闻名,是企业应用软件领域中最为知名的供应商。

云计算是有如下几个特点的,这些可以作为定义区分这个概念的方法:首先云计算是不可能在单机上进行,它必须联网并有适合的规模投入;其次云计算是可以扩展的,意思就是可以根据计算的峰值需求快速的进行硬件、服务器的伸缩性投入;接着,云计算的服务必须是廉价的,一项技术的普及必须考虑到成本投入;最后,可操作性和虚拟性强,之所以选择云计算则必须很方便的使用它。人们可以随时、随地方便的使用和共同修改,通过这些就可以享受到强大、神奇的“云计算”。

二、云计算服务于社会领域的案例分析

云计算因为网络云的概念而节省了实体企业大量的人工和机械成本,广泛应用于教育、通信和实体公司的信息服务领域。比如通信公司方面,中国移动公司的董事长兼CEO王建宙先生在2009年达沃斯世界经济论坛上明确提出云计算是互联网发展的重要趋势之一。作为具有云计算需求巨大潜力的电信运营商,中国移动希望在未来利用云计算对每年产生大量的客户数据和为客户所准备的服务数据进行深度挖掘,从而大大提高计算速度,为企业深入了解用户特点并有针对性地开展快速和深度营销提供强有力的支持。运营商本身就是一个很巨大的信息制造者和信息处理者。中国移动是最早开展云计算研究的国内电信运营商,中国移动研究院是其主要的承担单位。中国移动研究院从2007年上半年开始跟踪云计算,并提出基于开源技术,积极建造开放性云计算平台并命名为“BigCloud”(大云)计划,重点研究HyperDFS、MapReduce、HugeTable、CloudMaster等云计算平台关键技术。2009年初,中国移动研究院自主搭建了由1000个CPU组成的,具有256个节点规模的云计算试验平台,通过开展系统评估与优化,构建了基于云计算技术的移动互联网业务海量数据存储和处理试验平台,开展了一系列的云计算应用研发和试验,如搜索引擎等,取得了重要的进展。中国移动研究院刚刚了大云的1.5版本,是基于稳定的Hadoop版本Hadoop分布式文件系统(HDFS)是一种可以运行在各种通用硬件上的分布式文件系统HDFS拥有高度的容错性,同时能满足高吞吐量的数据访问,可以在廉价的机器上运行,非常适合在大规模数据集上的云计算应用。为了应用于互联网行业,HDFS增加了多名字结点,还进行了一些数据挖掘和搜索的开发。目前的Hadoop系统有256个结点,共有1024个CPU,主要作为一个研究性系统使用,明年有望建立更大的用于生产的集群。当然,云计算服务于其他领域的道理跟通信是一样的,篇幅所限,在此就不一一赘述了。

云计算在未来的发展和应用应该是紧跟着互联网的步伐,尤其是移动互联网的渗透和交叉。从互联网商业模式的演变来看,互联网企业不断追寻着用户的“足迹”,通过搜集和挖掘用户在应用过程中的行为,互联网将更为准确的理解用户,从而引导和创造客户需求以源源不断地获得收益。由于移动终端与客户的绑定,移动应用具有随身性、可鉴权、可身份识别等独特优势,可运营、可管理的用户群是移动通信业同时也是移动互联网发展拥有的基础资源。移动互联网在向着可运营、可管理的发展过程中,将不断开辟新的发展空间。这就需要通过“云”来追踪用户的足迹,分析用户的行为,从而将用户的选择反作用与服务提供者,促使服务提供更具针对性,同时也更有效率,更能激发出新的市场机会。

三、结语

对还没有接触或者使用云计算的互联网用户来说,一方面可能是自身的信息储存需求较小,不需要采用云存储,另一方面可能目前还没有接触和信赖云计算服务,不管是哪种情况,云计算与移动互联网的发展正在逐步深入每一个网络用户,提前使用云计算服务能够让我们自身更贴近互联网发展的潮流。

参考文献:

[1]刘树超. 云计算的研究与探讨[J]. 煤炭技术. 2010(09).

[2]王笑梅,贾晓强. 云计算对高校教育的影响分析[J]. 科技信息. 2010(10).

简述云和云计算的基本概念范文4

关键词:数据挖掘;云模型;隶属度;模糊概念;特征因子;定性与定量转换

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2013)04-0870-03

The Research and Application of Fuzzy Data Mining Based on Cloud Model

DANG Hui, WANG Zhi-he, PAN Li-na

(College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China)

Abstract: Currently, in many fields, data is complicated; the boundary of concept is fuzzy; the demand is uncertain. Then a method of fuzzy data mining based on cloud model is proposed in this paper. This method adopt a uncertain transforming model between qualitative concepts and quantitative expressions, and provide an effective tool for data processing analysis combining quality with quantity. The content include: fuzzy identification of concepts and characteristic on the data; the establishment of membership cloud model and the depiction of digital characteristics; getting classified information based on actual demand by statistics, calculating and analysis. The results of experiment show that the valuable information can be mined in the large and complex data space by this analysis method with practical significance.

Key words: data mining; cloud model; membership degree; fuzzy concept; characteristic factor; transformation between quality and quantity

1 概述

随着科学技术的进步,数据的采集涉及的领域越来越广(如经济、军事、物流、金融、电信等),现实中的数据通常是复杂或混合、结构化或非结构化、不完整、特征描述非精确的,而这些模糊复杂的数据集,单纯的距离测度已不能衡量样本间的相似性,不能提取其重要特征,无法完成数据的挖掘分析。

现在的研究状况显示,许多研究者在确定性的数据挖掘技术方面已经取得的丰硕的成果,提出了许多有效地算法,并满足了各种不同的实际应用,但是对模糊复杂的数据挖掘技术研究还处在不成熟的阶段,仍存在大量的问题有待解决。目前,越来越多的领域涉及到模糊概念的处理和表达,传统的模糊数学已经不能满足模糊研究的需要,而云模型[1]作为知识表示的基础,能把数据的模糊性和随机性完全集成到一起,构成定性和定量相互间的映射,可以解决一些模糊概念下数据挖掘的实际问题。因此,利用云模型及相关理论从模糊、不确定性数据集中挖掘出有价值的知识有一定的研究意义。

2 模糊概念

“模糊”是人类感知万物、获取知识、思维推理、决策实施的重要特征。“模糊”比“清晰”所包含的信息容量更大,内涵更丰富,更符合客观世界。在人类的思维中,有许多模糊的概念,如大小,冷热等,这些概念没有明确的内涵和外延,也就无法用传统的精确数学加以描述。

模糊集理论[2]最早由zadeh(1965)提出,用来描述人的认识中关于事物自身在纵横两方面差异的中间过渡所呈现的类属和形态界限的不确定性,是“亦此即彼”界限的不确定性,其概念具有内涵分明、外延不明确的特性。由于模糊理论的核心概念一隶属函数固有的不彻底性,基于模糊理论建立的定性定量的转换模型就存在先天固有的局限性。在传统的模糊集合理论和统计理论的基础上的云模型汲取了自然语言的优点为实现定性概念与定量数据间的相互转换提供了新的有力工具。

3 云模型及相关理论

3.1基本概念[1]

云模型是李德毅院士于1996年在传统模糊数学和概率统计的基础上提出的定性定量互换模型,它把概念的模糊性(边界的亦此亦彼性)和随机性(发生的概率)有机的综合在一起。设[U]是一个论域,[U={x}],[T]为[U]上的一个概念,[U]中的元素[x]对于[T]所表达的定性概念的隶属度[CT(x)](或称[x]与[T]的相容度)是一个具有稳定倾向的随机数,隶属度在论域上的分布称为隶属云,简称云。[CT(x)]在[[0,1]]取值,云是从论域[U]到区间[[0,1]]的映射,即[x∈U,xCT(x).]

3.2云的数字特征、正态云模型及云发生器

云的数字特征用期望值[Ex](Expected Value)、熵[En](Entropy)、超熵[He](Hyper Entropy)三个变量表征。其中[Ex]可以认为是所有云滴在数域中的重心位置, 反映了最能够代表这个定性概念在数域的坐标,即[Ex]隶属于这个定性概念的程度是100%;[En]是定性概念亦此亦彼性的度量, 反映了在数域中可被语言值接受的数域范围, 即模糊度,[En]越大,概念接受的数值范围越大,概念越模糊;[He]是熵[En]的离散程度, 即熵的熵, 反映了每个数值代表这个语言值确定度的凝聚性, 也反映云滴的凝聚程度,[He]越大,云滴离散度越大,隶属度的随机性越大,云的厚度也越大。

在实际应用中,社会和自然科学的各个分支都证明了正态分布的普适性,正态云[3]成为了最常见和常用的云模型。云模型除了完整的形态外,还有半升云和半降云两种半云形态。半云用来表达具有单侧特征的定性概念。例如用半升云表示“远”或“重”;半降云表示“近”或“轻”。由一个半升云、一个半降云和一个均匀分布,可以生成梯形云,表达裕度大的概念。例如“大约二、三十米”。

云发生器[4]有正向云发生器和逆向云发生器。正向云发生器输入为表示定型概念[A]的三个数字特征值[Ex]、[En]、[He]和云滴数[N],输出为[N]个云滴的定量值以及每个云滴代表概念[A]的确定度。逆向云发生器输入为[N]个云滴的定量值及每个云滴代表概念的确定度[(x,y)]。输出为这[N]个云滴表示的定性概念[A]的期望值[Ex],熵[En]和超熵[He]。以上是一维云模型发生器,多维云模型发生器可参见有关文献[5]。

4 基于云模型的模糊数据挖掘分析

用云模型进行知识的挖掘[6],一般来说首先找出挖掘对象的几个定性概念,对每个定性概念进行模糊地程度划分例如学习成绩可以分优、良、中、差,这四种程度,然后对概念构建云模型,确定隶属云的数字特征,最后综合每个概念,根据综合的模糊集及相关指标即可挖掘出有价值的信息。

4.1概念类型及特征的识别

1) 根据特定领域的理论和实际情况可把概念或知识分为[m]种类型[(a1,a2,…,am)],每种类型代表一种有价值的分类。

2) 抽取[n]个特征因子[(x1,x2,…,xn)],每一个特征因子有对应的实际含义(可以包含多种模糊划分),每一种含义对应一个数值(可以是一个数值区间)。

4.2正态云模型的构建

1) 根据之前提取的特征因子,视实际问题的需要定义与特征因子相对应的归属类型模糊集[{A1,A2,…,An}]。

2) 建立隶属云模型

确定[n]个模糊集[{A1,A2,…,An}]的隶属云,即确定[n]个模糊集的隶属云的三个数字特征值[(Ex,En,He)],根据统计分析和计算可以确知[n]个模糊集的隶属云的三个数字特征分别为:[A1(Ex1,En1,He1),A2(Ex2,En2,He2),…,An(Exn,Enn,Hen)]。根据三个数字特征利用正向云发生器算法计算各特征因子相对于模糊集合的隶属度[μAi(x) (i=1,2,…n)]。

4.3知识表示

令[f(x)=(x1,x2,…,xn)],即[f(x)]表示知识具有的特定的定位模式,再令综合模糊集

[H=A1A2…An]表示一个综合的水平指标,并定义为:

[μH(x)=1 μAi(x)=1 , i=1,2,…,ni=1n?iμAi(x) μAi(x)≠1 , i=1,2,…,n ]

其中,[?i(i=1,2,…,n)]为权重,可以根据模拟数据和具体情况而定,且[i=1n?i=1,(i=1,2,…,n)]。

4.4知识的挖掘归类

根据4.1中定义的概念或知识的类别将挖掘到的信息进行分类:[a1]类([μH(x)≥λ1]),[a2]类([λ2 ≤μH(x)

通过云模型在某个定性概念与其定量表示之间的不确定性转换模型将复杂的数据、模糊的概念转换成对应其概念的隶属云模型和数字特征,并经过分析、计算最后得到的有价值的分类信息,这些信息将指导各领域进行决策、分析、预测等。

5实验分析

文章以某大学依据学生对课程设置的满意程度进行课程分类为实例进行验证,为了保证方法的正确性和有效性,实验数据是通过对某大学大二学生进行抽样调查,以调查问卷进行统计得到的。

首先,根据经验可以把学生对某一门课程的满意程度分为满意,较满意,一般,较不满意,不满意五种类型,即(m=5):[a1]=“满意”; [a2]=“较满意”; [a3]=“一般”; [a4]=“较不满意”; [a5]=“不满意”。

其次,抽取了五个特征因子[(x1,x2,x3,x4,x5)]分别代表:课程人数比例(全年级选修这门课程的人数占全年级总人数的比例);课程对我的帮助;任课教师及其授课方式;课程安排(包括考核方式);课程内容 ( 注:比例取值(0.1~1.0),对剩余四项实行评分制,分为五个档次:很好(9.0~10);较好(8.0~8.9);一般(7.0~7.9);较差(6.0~6.9);差(0~5.9) )。经统计以五门有特色的课程为例进行说明,统计该大学课程根据学生满意度分类的特征因子的情况。然后,运用云模型及相关理论可以确定课程的五个特征因子对应的五个模糊集的三个数字特征,并通过计算可以得到这些课程特征因子的隶属度云团,且每一个特征因子对应多个隶属度,体现了隶属度的模糊性。以每个特征因子数值所对应的多个隶属度的平均值作为该特征因子的隶属度,分别表示为[μA1],[μA2],[μA3],[μA4],[μA5]。然后根据经验分析设定权重系数[?i]([?1]=0.3,[?2]=0.15,[?3]=0.15,[?4]=0.2,[?5]=0.2)和比对参数[λi]([λ1]=0.8;[λ2]=0.7;[λ3]=0.5;[λ4]=0.4)。

最后,通过4.3的计算可以得到[μH(x)],再根据分类原则可以得到最终结果如表1所示(具体计算及比较过程略)。

由于“满意”属于一个模糊的概念,根据“满意”或“不满意”很难进行分类,本实验通过云模型中的隶属云的计算和建模[7]完成了根据学生对课程满意度(即学生对课程的满意度量隶属于“满意”这个概念的程度)来对课程进行分类以指导今后对课程进行改革或帮助学生完成选课等。

6 结束语

由于概念、属性中存在着大量的模糊性和不确定性,该文利用云模型自身处理模糊和随机性的优势将定性分析和定量计算结合起来,得到了模糊概念多属性的隶属云团,并建立了一种基于云的分类方法。通过一个某大学依据学生对课程设置的满意程度进行课程分类的实例进行实验验证,证明了其分类方法的有效性和基于云模型的模糊数据挖掘研究的应用价值。

参考文献:

[1] 邸凯昌,李德毅,李德仁.云理论及其在空间数据发掘和知识发现中的应用[J].中国图像图形学报,1999,4( 11) : 930- 935.

[2] 张振良.模糊集理论和方法[M].武汉:武汉大学出版社,2010.

[3] 李德毅,刘常昱.论正态云模型的普适性 [J].中国工程科学.2004,6(8):30-32.

[4] 李德毅,孟海军,史雪梅.隶属云和隶属云发生器[ J].计算机研究与发展,1995, 2( 6): 16- 21.

[5] 杨朝辉,李德毅.二维云模型及其在预测中的应用[ J].计算机学报,1998, 21( 11) : 962- 968.

简述云和云计算的基本概念范文5

本期记者走访的是北京友友天宇系统技术有限公司,作为国内企业中为数不多的掌握了云计算平台核心技术的初创公司,友友系统正在产业链中定位自己的方向。

云计算是IT产业的一次大潮。在潮起潮落中,现有的IT厂商都会面临新的洗礼——淘汰者被大潮冲走,一批新的创业者也会涌现。位于北京云基地的北京友友天宇系统技术有限公司(以下简称“友友系统”),就是在云计算大潮下出现的一个新面孔,它随着云计算大潮而生,正经受着云计算市场的严峻考验。

作为云计算产业链条中的一环,特别是位于云计算软件中的最底层——云计算平台,友友系统的产品显得过于专业,也不为人所熟知,但其产品却是构建云计算平台的核心,用友友系统员工自己的话说,就是通往云计算世界的一部梯子。作为国内为数不多的掌握云计算平台核心技术的国产厂商,友友系统周围强手环伺。友友系统如何定位自己在云计算世界中的角色,其产品又怎样应对市场需求?日前,本报记者就相关问题独家专访了友友系统的创始人之一、友友系统CEO姚宏宇博士。

发现云计算技术本质

关于云计算的定义几乎每个人都有自己的理解。姚宏宇认为这并不奇怪,因为新的技术变革必需经历这一过程,就像之前的分布式计算、网格计算甚至互联网一样,假以时日,人们的意见必然会趋同。

“云计算是一种商业模式,也是一种技术进步。”他说,对云计算的理解可以分为两个层面:从商业模式的角度看,云计算是互联网模式的延伸和发展,它把互联网的服务从原来的信息服务延伸到硬件资源、软件资源以及所有跟IT相关的东西。“我把云计算叫做Internet 2.0。从服务模式来讲,云计算与互联网的本质一样,都是通过互联网交付服务,只是云计算把这个范围扩展得更大。而从技术角度来看,云计算无非是把很多不同种类的、分布在各地通过网络联接起来的资源结合起来,这个结合体叫做‘云’。”

集群计算、分布式计算、并行计算、网格计算是一些技术人员谈到云计算时总会提到的概念。姚宏宇认为,这些概念相互之间存在着密切关系,并行计算和分布式计算等很多概念都是从最早的集群技术演化而来的。

在计算机科学的发展过程中,大规模计算有两种不同的发展理念,一个叫“Share everything(一切皆共享)”,一个叫“Share nothing(一切皆独享)”。第一个理念的代表是并行计算,其具体实现就是超级计算机,超级计算机的存储、内存和CPU都是共享的,比如CPU可能有几千个,但从操作系统层面看就是一个CPU。这一技术路线下的产品商业应用范围较窄,主要应用在特定领域,对社会和商业影响较小;第二个理念的代表是分布式计算,这种系统中每个节点都是一个独立单位,每一个小单元完全可以自己做计算,能完成所有计算机该做的操作,目前的计算机应用系统基本都是这一体系下的产物。

不过,上述这些理念和发展方向最终都能通向云计算。云计算的本质就是能够通过分布式计算、集群计算、网格计算等技术把各种资源有机地结合起来,让外面看到“云”,而不是看到很多小的计算机节点。同时,无论“云”里发生什么事情,上面的业务系统都不会受到影响。这就意味着这个云要足够大、足够有弹性。“而友友系统的核心技术就是实现资源整合,特别是数据资源的整合,并且屏蔽掉过程中的技术复杂性。”姚宏宇说。

打造云计算操作系统

创立之初,友友系统给自己的定位是基础软件的技术提供商,后来又进一步明确为云计算平台技术供应商。“尽管不敢说是IBM和Oracle的竞争对手,但是友友系统与它们的产品的确处于一个层面,而和国内绝大多数IT公司不一样。”姚宏宇坦言,由于技术的专业性,要想跟普通大众描述清楚他们是做什么的,并非易事。

姚宏宇把自己的产品归为云计算操作系统。他说,从传统的IT架构来说,友友系统的产品属于中间件,位于操作系统之上、应用系统之下,因此叫云计算中间件比较合适。但中间件这个名字对中国人而言含义并不明确,而命名为云计算操作系统是因为其产品之于云计算整体架构的确如同传统计算机系统中操作系统的作用一样。“当然,我们提出云计算操作系统概念不是从传统IT架构的角度出发,更多的是考虑到面向未来。”

姚宏宇解释说,一台计算机包括一个CPU、一个内存、一个磁盘外加一个外壳,这就是冯·诺依曼计算机的典型结构。如果设想这个计算单元分布在1万台机器的CPU上,是由几十个计算节点组成的一个整体,用各种友友系统的软件对这个“超级计算机(云)”进行管理,那么这个软件就是云计算操作系统。因为业务系统是架在友友系统的软件之上的,下面则面对单机的操作系统和硬件,对业务系统来说其下的整套东西就相当于一个虚拟的计算机。从这个角度说,友友系统的产品和普通计算机上的操作系统所做的工作是类似的。

不过,云计算操作系统毕竟不是我们常见的操作系统,而今称为云计算操作系统的也并不多,主流的包括VMware的vSphere和浪潮的云海OS等。那么,同为云计算操作系统的友友系统CloudWare到底有何不同?

在姚宏宇看来,大家的方向基本一致,但与VMware和浪潮的云计算操作系统侧重于虚拟化和对虚拟化环境的管理不同,友友系统的云计算操作系统更侧重于资源的集中和整合。“我觉得云计算最终目的是,前台无数端,后台一片云。”姚宏宇说,云计算操作系统的作用就是能够把这一片云管理起来,让端都认为后台真的是一片“云”,前台需要的东西后台通过统一标准的接口可以提供。从技术上说就是,这个云计算操作系统能为前台提供一套SDK或者API。它能够把后台所有的分布资源管理起来,让前端认为后面就是一台机器,这个管理体系就叫做云计算操作系统,虚拟机的管理只是其中的一部分。

研发五大核心产品

友友系统的云计算操作系统并不是一款单独的软件,而是由友友系统的一系列核心产品构成的。姚宏宇把这些产品分为两个层次:位于核心底层的Bitsflow、NetVM、DataCell;在其之上的平台产品智存、智维,它们都具有自主知识产权和核心技术。其中,Bitsflow主要负责大规模分布式系统之间的通信和协作,是一个高容错、高性能的数据交换和应用协作平台;DataCell是一个用于海量数据的分布式存储系统,也叫云存储;NetVM是一个分布式管理系统及分布式计算开发框架,相当于三个产品中的总调度。

“这三个产品相当于三个引擎,就如同Linux内核一样,用于支撑之上的两大平台级产品,分别是智存和智维。”姚宏宇介绍说,智存主要针对对象和文件存储,类似文件系统;智维用于进行大规模系统的运维和管控。”姚宏宇说。

值得一提的是,所有这些产品中负责网络通信的Bitsflow是基础,也是友友系统区别其他云计算公司最大的核心竞争力。姚宏宇把云计算的技术路线分为三类,一类是以存储为核心,以Google为代表;第二类是以虚拟化为核心,以VMware为代表;第三类是以亚马逊为代表的混合体。而友友系统选择的技术路线区别于以上三者,友友系统是以网络通信为核心,这也是姚宏宇看重Bitsflow的原因所在。

“以网络通信为核心,这是基于我们多年来一直专注大型分布式系统研究的结果。”姚宏宇解释说,“所谓分布式系统是基于网络有延迟这个前提的,如果网络无限快,它就不是分布式系统了,而是一台超级计算机了。我们的工作就是努力管理好网络层,这就相当于缩短了分布式系统中各个模块之间的距离,这是我们公司整个技术的理论基础。”姚宏宇说,正是由于选择了这样一种技术理念,才使友友系统解决了分布式系统的协同和数据交换问题,大大简化了其它后续产品研发上的技术挑战。

姚宏宇坦言,由于产品的专业性,特别是专注在云计算的底层,而且解决方法又有别于传统技术,使得他们的产品在推广上遇到的第一个难题就是如何向客户说清楚他们的技术究竟是什么。不过,他遇到的最大挑战还是市场不成熟。比如在解决海量数据的整合时,人们更倾向于传统的基于数据库的各种集成技术,而没有想到或者还不太认同友友系统提出的解决方案,尽管友友系统的方案实现成本更低、上线更快。

“好在技术和成本优势明显,口碑正在逐步建立,这几年项目也渐渐开展起来,尤其在金融、电信、电力、政府、互联网、教育等领域,我们每年的进步都非常明显。”姚宏宇表示,未来友友系统的重点是继续培育市场,同时完善自己的产品。他说最大的愿望是有朝一日用户能像认可关系型数据库一样认可友友系统的技术。

创业者档案

姚宏宇,1988年考入中国科技大学少年班,1993年赴美留学,先后获威斯康辛大学麦迪逊分校计算机和材料系的硕士及博士学位。自2000年起在硅谷从事大规模企业软件和互联网技术的研究、开发和管理工作。曾任美国雅虎研究院高级研究员、美国SideStep公司资深管理人员及架构师等。2007年在北京创立友友系统, 并担任公司总经理。

记者观察

自信源于对技术的准确把握

采访姚宏宇后,有几个印象深刻。第一是他的技术背景,第二是他对市场的把握,第三则是友友系统的商业模式。

外界一提起姚宏宇,往往要说他在科大少年班求学、美国攻读技术专业、随后在雅虎工作。涉及到姚宏宇技术背景的部分,往往语焉不详。姚宏宇说,正是由于在雅虎的一段经历,才让他真正了解到互联网的魅力和最新技术发展趋势。所以,在采访中,他一再把云计算和互联网相比较,坚信云计算是“IT行业真正的一次新技术变革,将产生无法想像的影响力”。他也坚信,“产品叫不叫云计算都无所谓,我们做的就是与大数据、大系统有关的事情,只不过现在赶上了云计算热潮。”

他的这种自信源于技术,而非概念炒作。

由于重视技术,友友系统成立几年后,一直在做研发,并没有将精力放在市场推广上。“现在大多数情况是用户提出需求后,其他公司做不了,才找到我们。”姚宏宇说,一是技术满足用户需求,二是大幅度节约用户投资,最多能为用户减少60%的投资。所以从供需关系看,潜在市场较大。但用户也有担心,因为技术太新,现有产品解决不了的情况下,只能抱着试一试的态度采纳友友系统的方案。这让姚宏宇不得不一次次给用户阐述技术。

简述云和云计算的基本概念范文6

什么是云计算

IBM公司于2007年年底宣布云计算计划,云计算的概念仿佛在一夜间就出现在大众的面前,对于云计算的各方解读也众说纷纭。

在展开对云计算的具体实现技术的讨论之前,先让我们看一下云计算的一些基本概念。首先需要回答什么是云计算。

在IBM的技术白皮书“Cloud Computing”中,我们可以看到如下的定义: “云计算”一词同时用来描述一个系统平台或者一种类型的应用程序。一个云计算的平台可按需进行动态的供给(provision)、配置(configuration)、重新配置(reconfigure)以及取消服务(deprovision)等。在云计算平台中的服务器可以是物理的服务器或者虚拟的服务器。高级的计算云通常包含一些其他的计算资源,例如存储区域网络(SANs)、网络设备、防火墙以及其他的安全设备等。

云计算的本质

在应用方面,云计算描述了一种可以通过互联网进行访问的可扩展的应用程序。“云应用”使用大规模的数据中心以及功能强劲的服务器来运行网络应用程序与网络服务。任何一个用户通过合适的互联网接入设备以及一个标准的浏览器都能够访问一个云计算应用程序。

从IBM的定义中我们看到,云计算的含义有两个方面。它一方面描述了一种方便的基础设施,用来构造应用程序,其地位相当于PC机上的操作系统; 另外一方面则描述了建立在这种基础设施之上的云计算应用。一个计算云是虚拟化的计算资源池,用来容纳各种不同的工作模式,并且这些工作模式可以通过快速部署的方式部署到物理设施上。由于使用了分布式的计算技术,云计算能够将计算扩展到更多的计算资源,以及使用冗余的资源进行容错处理。

在IBM的白皮书中我们还可以看到,云计算能够通过快速提供物理以及虚拟服务器来支持网格应用的运行。网格程序能够将一个大的任务分解成很多小的任务并行地运行在不同的集群以及服务器上。我们可以把云计算看做是一个具有更广泛含义的计算平台,除了能够支持网格的应用之外,云计算还能够支持非网格的应用,例如在网络服务程序中的网络服务器、应用服务器和数据库服务器三层应用程序架构模式。特别值得注意的是云计算模型支持当前Web 2.0模式的网络应用程序。云计算是能够提供动态资源池、虚拟化和高可用性的下一代计算平台。

几种典型云计算平台

当前,工业界已经有很多公司聚集在云计算这样一个新型计算概念下面,分别提出了自己针对云计算的理解,用不同的技术来实现上述目标,主要包括下面重要的云计算实现系统。

亚马逊的弹性计算云。事实上,网络零售商亚马逊公司是最早也是一个非常重要的云计算实践者之一。亚马逊公司在构建自身零售平台的时候,也使用了云计算的方法,将自己的购物平台构建在其基础之上。亚马逊公司将自己的云计算平台开放给外部开发人员使用,建立了弹性计算云(Elastic Compute Cloud,EC2),使得独立的开发人员也能够使用亚马逊公司内部的计算资源来建立自己的网络应用程序。

Google的云计算平台及其云计算网络应用程序。主要包括Google针对云计算提出的大规模分布式计算的基础架构以及Google在此基础之上构造的云计算应用服务程序。Google将自己的整个基础计算平台以及相应的应用称为云计算,并且成为云计算最大的实践者。

IBM公司在与Google的合作过程中,提出了自己对于云计算的理解以及相应的技术解决方案。IBM公司于2007年11月15日在上海宣布了蓝云“Blue Cloud”计划,使得公司内部的数据中心能够按照互联网应用服务程序的形式进行组织,将计算能力分配到分布式全局可以访问的资源组织中,而不是局限于本地的一些服务节点或者固定远端的服务器机群中。IBM在云计算的白皮书中也提出了蓝云计划的基础设施结构,这些基础设施结构构建在IBM本身的x服务器之上。在蓝云中采用了Xen的系统级虚拟化方法,同时提供虚拟化的服务器以及物理服务器的计算资源。在IBM的云计算架构中也采用了类似于Google进行大规模数据处理的基础设施,在其蓝云计算环境中部署了Goolge File System 以及MapReduce用以实现Hadoop。Hadoop是Apache旗下的一款有关大规模数据的开源软件,Yahoo在其中做出了不少贡献。

未来展望

当前已经有很多公司参与到云计算的研究与发展当中。

Yahoo公司就参与了云计算平台Hadoop的开发,雇佣了Hadoop软件的创始人员,并且为此软件贡献了很多代码。同时为了测试与部署Hadoop系统,在Yahoo公司内部也使用了Hadoop软件,建立了世界上最大的Hadoop集群系统,这个集群系统包含了1万个Linux节点,规模还是很大的。现在,Yahoo公司的很多应用程序都构建在云计算平台之上。而上述的最大Hadoop平台则用来计算网络搜索的页面连接图,处理海量的数据。

微软自然也不甘落后,与Google类似,微软重构了自己的搜索引擎平台。除此之外,微软也构建了自己的云计算平台,并在此平台之上推出了云计算的应用。与Google类似,微软的云计算平台只是为自己的网络应用程序服务,现在还没有看到相应的云计算软件模块公开出来以帮助其他开发商构建云计算平台。微软的网络平台服务Windows Live就可以看成是云计算应用的一个典型,它是一个Web 2.0应用程序形式的云计算用户平台。用户在这个应用平台上可以进行照片的共享,文件的存储以及运行其他的应用程序。这些应用都建立在新型的云计算平台之上,也是微软针对网络实施的重大战略之一。在Live平台上,用户可以访问自己的电子邮件,可以使用SkyDrive来存储数据以及构建自己的网络平台等。

另外,硬件公司Dell提供了DCS(Dell Cloud Computing Solution)解决方案,帮助用户构建云计算平台,该解决方案能够降低数据中心的运维成本,提升计算速度、简化数据中心管理,具有良好的可扩展性。软件公司RedHat则与亚马逊公司合作,在亚马逊公司的弹性计算云中部署了RedHat Enterprise Linux,并通过虚拟化的方式部署整个弹性计算云平台。

在云计算研究方面,在Google与IBM的支持下,美国的多所大学参与到云计算中来,包括6所非常著名的大学: 卡内基•梅隆大学、麻省理工学院、斯坦福大学、加州大学伯克利分校、马里兰大学和华盛顿大学。