无人机光电探测技术范例6篇

无人机光电探测技术

无人机光电探测技术范文1

关键词:雷达探测技术 对抗分析 未来发展

中图分类号:TN974 文献标识码:A 文章编号:1007-9416(2016)06-0219-01

随着雷达技术日趋完善,其作用及功能也变得更加丰富,在军事中发挥着日益重要的作用。因此有必要了解雷达技术概况及其工作原理,本文中主要阐述雷达探测技术的对抗内容,并对技术发展进行展望。

1 雷达技术工作原理分析

雷达技术的本质就是检测时利用无线电波的技术,随着科技发展进步,雷达技术的任务也从原先单一的测量目标方位、距离等发展成为更为精确的检测,因此现代雷达技术有着更好的稳定及抗干扰性。雷达技术作为一种技术探测手段,被广泛应用在各个领域。实际中对雷达的分类方法较多,每种分类方法都有自己的依据,详细情况如表1所示。

目前雷达技术在军队中得到广泛应用,其中利用雷达探测技术可以对地方通信设施、指挥中心等地面目标进行严密监视,确保战争天平倾向我们一方。因此接下来本文中重点探讨雷达探测技术的对抗。

2 雷达探测技术的对抗分析

雷达探测技术的对抗将是未来战争中的敌我双方的一种较量,其结果直接影响到战争的胜败。具体到战争中来说,雷达探测技术的对抗主要包含以下方面的内容。

2.1 示敌以假

现代战争中可以利用雷达探测技术向敌人施放假的军事讯息,以干扰及迟缓地方的军事行动,通常情况下示假包括两方面的内容:目标示假及行动示假。目标示假就是为了迷惑敌人采用一些虚假的目标,但这些虚假目标却有着真目标的特征,比如常见的假机场、假港口等;后者就是为有效迷惑对方采取的虚假行为。当敌方卫星通过时,为掩盖敏感地区的真实情况,采用遮盖物或施放烟幕的方式隐蔽重要目标的相关信息。

2.2 反制探测

反制探测就是采取行动直接摧毁敌方的探测基地,包括动能及辐射摧毁两种。前者由导弹系统与控制系统组成;后者指的是一些高科技武器,比如激光武器等。通过这两种方式反制敌方的雷达探测技术。

2.3 干扰探测

干扰对方探测信号的方式也可以分为无源及有源两种。无源干扰指的是为确保目标安全采用无源干扰材料或器材改变其本身的电磁波反射特性,降低目标和背景的电磁波反射或辐射差异可以实施对光电侦察和光电精确制导武器系统的干扰;有源干扰就是阻止对方接收机接受信息采用噪声或类似干扰信号淹没或遮盖有用信号。实际中有缘干扰设备主要包括激光干扰机、红外干扰机等。

2.4 藏匿行踪

为确保战场目标的安全采用一些诸如迷彩、隐形等技术措施防止地方探测设备发现或识别就称为隐真,有效的隐真手段可以大幅度降低对方卫星的成像概率。比如在使用迷彩伪装时要根据目标地点背景进行选择。在一些背景单调诸如沙漠、草地等可以使用与背景相同的保护色彩。而在斑驳背景下则使用一些多色斑点图案的仿造迷彩。

3 以雷达技术发展规律分析探测技术对抗的发展趋势

通过实践分析发现雷达技术发展过程中具备一定的规律性,这些规律在雷达技术发展过程中发挥着重要作用。

3.1 雷达技术发展规律特点

(1)广泛占用频谱资源。雷达技术发展中有着较高的纵向定位分辨力,除此之外为让雷达横向定位有着更高的分辨精度,就需要占用大量的空间谱。从而确保雷达可以通过多种方式测量目标。

(2)由低到高维度特点。雷达系统的维度包括观测角度覆盖、探测器构型与信号空间维度。雷达设备的监测维度存在由少到多的纬度特点,在雷达装备系统发展的过程中按照相应的规律进行。因此目前这种规律是划分雷达发展阶段的一种比较重要的依据。

(3)受到众多因素影响。雷达技术发展过程中并不是一帆风顺的,会受到各种因素的影响,这些因素可以简单概括为三个方面:环境、目标以及任务因素。

3.2 雷达探测技术的对抗的发展

结合雷达技术的发展规律特点可以判断出探测技术的对抗将向着多元化、综合化等方面发展。现如今随着光电干扰技术的发展完善,很容易干扰单一波段的光电设备。比如现如今军队中的光电复合告警装备,就可以根据实际战术需要,在受到不同波段光电威胁时可以根据需要自主进行复合探测和数据融合处理;未来战争中,采用单一波段的光电对抗设备来对抗多波段光电探测和光电精确制导武器是难以奏效的,必须采用可探测干扰各主要波段光电威胁的光电探测干扰一体化、软硬杀伤一体化的综合光电对抗系统,来对抗多类型、多目标、多批次的光电精确制导武器;随着新能源、新材料和新技术的研究和应用,光电对抗手段更加丰富全面。新型光电探测技术使得光电侦察告警的精度和作用距离明显改善。各种抗干扰措施综合使用,将进一步提高武器装备的抗光电干扰效能;就现如今的情况来看,光电对抗设备的作战平台已经朝着多元化方向发展,从原先的陆海基向着空基与天基发展。世界各个国家都在争夺制空权,其中美俄等国家在发展卫星技术的基础上,正利用激光技术研发反导与反激光武器。

4 结语

总而言之,雷达探测技术在我国国民经济发展中发挥着重要作用,经过一段时间的技术沉淀其技术水平已达国际先进行列。因此我们有必要了解雷达探测技术的对抗内容及其未来发展趋势,确保国防安全。不管怎么说,相信在未来很长一段时间内雷达探测技术的对抗将是国与国战争的主要手段。

参考文献

无人机光电探测技术范文2

一、隐身技术是低可探测技术和反探测技术

从本质上说,隐身技术就是你苛探测技术(LowObservableTechnology)。所谓探测(Detection)是对目标进行观察和测量,对于不能直接观察的事物或现象借用仪器设备进行考察和测量。对于能直接观察的事物或现象,称之为可观察;对于不能直接观察的事物或现象,若能间接观察,即借用仪器设备进行考察和测量,称之为可探测;若借用仪器设备容易进行考察和测量,称之为易探测或高可探测;若借用仪器设备不易或难以进行考察和测量,称之为低可探测;若供暖和仪器设备也根本不可能进行考察和测量,称之为不可探测。一般而言,对于直接或间接观察的事物或现象,常统称为可探测或可观察(Observable)。用于探测间接观察的仪器设备称之为探测设备。探测技术是对目标进行观察和测量的一种技术,即根据目标辐射、反射、散射的电、光、声、磁能量而发现、识别目标的技术。主要包括雷达探测技术、光电探测技术、声探测技术等。低可探测技术是使目标成为低可探测的技术。

对于利用目标自身发出的电磁波、红外线或可见光对目标进行观察和测量的技术,称为无源探测技术(PassiveDetectionTechnology)或被动探测技术,反之,称为有源探测技术或主动探。则在米波至毫米波范围工作的各种雷达和激光雷达则属主动探测。通常的红外探测器、可见光探测器、声纳都属被动式探测。

隐身技术也是一种反探测技术。所谓反探测技术是一种对抗探测的技术,其目的是使目标不可探测或低可探测。由于一般很少存在不可探测的情况,因此低可探测技术就是反探测技术,从而隐身技术就是反探测技术。

显然,就技术层面而言,隐身技术与低可探测技术和反探测技术几乎是同一概念。

二、隐身技术是反侦察技术

从实际上看,隐身技术还是一种反侦察技术。相对而言,侦察是一种军事手段,探测是一种科学方法。所谓侦察(Reconnaissance)是为了获取军事斗争所需情报而采取的行动,即军事侦察。具体地说,是为了弄清敌情、地形及其他有关作战的情况而进行的活动,即军队为获取军事斗争特别是战争所需敌方或有关战区的情况(包括人员、武器装备、地形地物及作战结果等)而进行的活动、或采取的措施,是实施正确指挥、取得作战胜利的重要保障。

转贴于

侦察按活动空间,分为地面、水下、水上、空中、空间侦察;按方式手段,分为武装(武力)侦察、谋报(人员)侦察、技术侦察。这里,技术侦察是指主要使用技术装备进行的侦察,而侦察技术主要是指技术侦察中使用的技术,包括无线电通信、雷达、可见光、红外、声波侦察技术。现代侦察技术或称现代侦察监视技术就是指发现、识别、监视、跟踪目标并对目标进行定位所采用的技术。发现(Discover),即确定有无;识别(Recogniazation),即确定真假与区分类型;监视(Surveillence),即确定动向;跟踪(Track),即连续监视;定位(Position),即确定方位;导航(Navigation),即导引航行。

反侦察是对为防范、制止和破坏敌方的侦察而采取的措施和进行的相应活动的统称。包括反武装侦察、反谍报侦察、反技术侦察等。主要手段有:使用技术伪装,组织战役战术欺骗,进行电子干扰,摧毁敌方侦察设施,组织警戒、保密、防间谍等。对抗侦察手段或措施,或反侦察手段或措施包括伪装、隐蔽、隐身、保密、机动、佯动、干扰和摧毁。由此可见,隐身技术是一种反侦察技术。

隐身技术也是一种反预警技术。所谓预警(Earlywarning),是为实现早期报警目的,搜索、监视、发现、跟踪空中或海上目标,并可指挥引导己方武器装备遂行作战任务的行动和措施。而预警技术,是指采用红外探测、雷达探测和计算机处理等技术手段,远距离发现来袭的弹道导弹、飞机等目标,并迅速提供报警信息的技术。因此,从这个意义上讲,隐身技术乃是一种警戒技术。所谓警戒(Security),是指防敌袭击和侦察的警卫措施,目的是防止敌人侦察、破坏、突然袭击,掩护主力机动、展开、战斗或休整。

三、隐身技术是传统伪装技术的一种应用和延伸

在海湾战争中,伊拉克采用了大量的隐身、伪装措施,达到了推迟战争进程,保护己方实力的目的。所采用的主要隐身、伪装措施有:利用大量制式器材和就便器材制作的假目标部署在真目标可能设置的地方,利用制式器材和就便器材制作了与实物相仿的假弹药库、假导弹基地等大型设施;点然科威特的油井,向海湾排放并点燃石油,在城市点燃废旧轮船及可燃物,产生黑色浓烟干扰激光制导系统和多国部队飞行员的视线;使用伪装网遮蔽目标,对技术装备实施与地物背景近似的迷彩,对机场跑道用迷彩仿造弹坑,欺骗多国部队的飞行员,等等。

就广义而言,隐身技术就是伪装技术。所谓伪装(Camouflage),就是隐蔽自己和欺骗、迷惑对手的各种措施。目的是通过隐蔽真目标,设置假目标,实施佯动,散布情报和封锁消息等措施,降低敌方侦察器材(包括人员)的侦察效果,提高目标的生存能力,增强部队的战斗力,使敌方对己方军队的行动、配置、作战企图和各种目标的位置、状况等产生错觉,造成指挥失误,从而实现己方军队行动的自由,最大限度发挥兵力兵器的作战效能,取得战役、战斗的胜利,达到“假作真来真亦假”的效果,起到反探测、反跟踪、反识别的作用。

伪装技术的基本原理就是利用电子的、电磁的、光学的、热学的、声学等技术手段,减小目标与背景在光学、热红外、微波波段的反射或辐射能量差别,以隐蔽目标和降低目标的暴露征侯;模拟或扩大目标与背景的这些差别以构成假目标。

无人机光电探测技术范文3

关键词:光电技术;深空探测;深空探测器;月球探测;有效载荷 文献标识码:A

中图分类号:V476 文章编号:1009-2374(2015)29-0050-02 DOI:10.13535/ki.11-4406/n.2015.29.025

2004年初,我国开始“嫦娥一号”的工程,历时三年发射成功。对绕月探测的时间达到1年4个月之久,使我国深空探测的科学目标得以顺利完成,大量的科学数据也是通过这项工程获取来的。“嫦娥二号”工程是在“嫦娥一号”工程的基础上拓展的项目,其意义在于实现可控撞月。历时3年,“嫦娥二号”发射于2010年10月1日,在多项技术上能够完成突破,使预定的工程目标顺利完成,100km的全月球图像和15km的虹湾图像也是从这项技术中绘制的。无人月球探测工程的方针一共有三个步骤:绕、落、回。目前,“嫦娥三号”和“嫦娥四号”工程的研发正在致力于将月球软着陆。

1 金星和火星的首次探测

在深空探测领域发展中,我国是位居前几名的,由于金星和火星的探测符合科学的发展,所以我国更应该致力于研究火星和金星的首次探测,以促进我国航天探测领域的发展。

探月技术和“嫦娥”卫星技术是首次火星探测方案理论实践的基础,我国应坚持自己在航天领域的科学探测目标,对长时间飞行的自主管理技术和远大的监控通信技术以及自主导航与控制在深空条件下的技术等问题进行解决。环火探测是最主要的探测方式,为期10个月的探测器地火转移阶段,1个火星年是环火工作初步拟定的时间。火星探测的主要目的是判断人类是否能够在火星上顺利生存,所以探测的内容包括大气圈演化和火星气候的变化、火星上是否有生命生存过的迹象、火星是怎样进行演化的、火星的各项能源等方面。

地球和太阳之间是金星存在的位置,地球到火星的距离要大于地球到金星的距离。基于此,我们对金星探测要比火星探测更容易一些,包括在测控通信、飞行的动力、能源需求等方面。金星探测的问题主要是对于太阳近距离产生热的问题,我国在控制热的技术上有良好的手段,基于此,我国金星探测工程直接衔接火星探测工程。金星探测主要的任务是,通过探测器围绕金星大气层外飞行,继而对大气特征及其金星表面金星探测,从大气层内进入,做漂浮探测。符合中国发展的深空探测项目不仅包括首次金星和火星探测、无人月球探测,还包括对载人登月的工程项目和月球外天体的探测项目。实现载人登月是人类走出地球的必然趋势,迄今为止,人类唯一到达地球之外的天体就是月球,所以在未来的20年内,根据深空探测技术的蓬勃发展,我国载人登月的愿望一定可以实现。

2 光电技术在中国深空探测领域中的应用

深空探测器在轨道方面定义为:处于近地轨道对深空探测的一种飞行器,其对光电技术是有一定需求的。光电技术在中国深空领域能够起到确定的作用。探测器姿态敏感器主要能实现探测器的姿态测量。光学敏感器、陀螺仪、射频敏感器和磁敏感是姿态敏感器的主要部分。光学敏感器主要应用于太阳敏感器、星敏感器、红外地球敏感器、对月球和地球的紫外敏感器和图像敏感器等,应用是十分广泛的。飞行器本体坐标系与空间已知基准方向关系的确定需要通过光学敏感器实现。光电技术在中国深空领域能够起到导航的作用。探测器轨道参数是通过自主导航来确定的,对飞行和探测对象按照光学敏感器把其分为不同的阶段,这里的光学敏感器包括星跟踪器、红外地球敏感器、太阳敏感器、可见光CCD敏感器、空间六分仪、陆标敏感器和紫外敏感器等。探测器的运动参数是通过这些敏感器来测量的,运动参数包括速度、加速度和角速度等。深空探测巡视器的遥操作导航、自主导航、半自主导航都离不开光电技术。通过人工遥操作能够使巡视器进去自主或半自主的导航状态,这要求巡视器具备良好的执行任务和生存能力。其作用是对自身环境、位置和速度信息的获取。基于此,敏感器的多种结合技术能够赋予一定的航天导航功能。同时,光电技术在中国深空领域能够起到监视的作用。这能够真实地对关键部件的动作进行掌握,使地面随时接受图像。光电技术在中国深空领域的广泛应用是有效载荷的需要和空间飞行器交汇对接的需要。光电技术在中国深空领域能够起到测控通信的作用和满足探测器多方面需求的作用。

3 我国深空探测器利用光电技术的应用展望

目前,我国“嫦娥一号”和“嫦娥二号”卫星的成功发射都离不开光电技术的支持,光电技术未来的探测活动也是最基本的一项技术。“嫦娥一号”卫星在光电技术的利用上主要包括:CCD立体相机设备,扫推方式是干涉成像光谱仪器采取的主要方式,元的点光图谱是经过数学处理得到的,同时为二维重构光谱图像提供了条件,从而得到月球表面物质分布信息和类型数据。半导体泵浦固体激光器是激光高度计采用的主要仪器,它能够向月球表面发射大功率的窄脉冲激光,同时将月球表面后散射的激光信号心理接收,继而计算出卫星与月球表面距离,这是利用测量光往返延迟时间作为依据计算的。星敏感器的卫星相对于惯性空间的姿态是通过星图识别和恒星的观测来获取的。月球的紫外谱段探测主要通过采取紫外敏感器进行,它能够将环月飞行时,基于月球中心,卫星的方向进行有效识别,以对卫星相对轨道参考系的姿态信息数据进行获取。未来的光电技术在“嫦娥二号”卫星的主要应用包括对具有更高的分辨率的CCD立体相机的更新设备等的使用。光电技术在“嫦娥三号”卫星的主要应用包括在相机的运用上采取的是地形地貌、降落、极紫外和全景相机,望远镜采用的是月基光学望远镜和空外成像光谱仪。

4 光电技术在中国深空探测领域的发展方针

针对光电技术在深空探测领域中的广泛应用,本文阐述一些有效的发展方针。我国深空探测的今后发展需求和实践方面由于受到光电技术的影响,使探测器性能和功能上受到了一定的制约,所以提高光电技术就是我国深空探测领域有效发展的前提。提高光电技术首先要从器件入手,突破传统的结构部件,研发新型的、轻质的、高性能的光学部件;其次我国要进一步提高敏感器的设计水平和制造水平,在对GNC设计和探测器的总结设计中,要经过多种方案的权衡选择,对敏感器进行最合理的安排,增加系统性能,使器件不受到其他因素的影响。此外,对光电的有效电荷制造和设计水平一定要看作提高光电技术的重中之重,对一个设备的多种应用方法进行探索。“嫦娥二号”就是通过尝试紫外敏感器对敏感器功能和光学探测融为一体的方式,使其姿态确定功能的同时,又能够将月球紫外谱段图像进行绘制,除此之外,它还可以在导航中应用;最后在中国深空探测工作中还要对可能形成的项目预言工作建议进一步加强,这在一定程度可以使深空探测事业得到持续

发展。

5 结语

综上所述,中国深空探测的发展离不开光电技术的支持。从事光电技术研发的技术人员对我国深空探测事业的发展具有很大程度的贡献,只有从根本上落实对光电技术的发展,才能够找到深空技术发展领域的切入点,从根本上为我国深空探测事业技术水平做出一定

贡献。

参考文献

[1] 叶培建,饶炜.光电技术在中国深空探测中的应用[J].航天返回与遥感,2011,32(2).

[2] 罗建将,李洪祚,唐雁峰,等.深空探测激光通信技术发展研究[J].航天器工程,2013,22(2).

无人机光电探测技术范文4

【关键词】机载同步;激光测距机;可靠性设计;分析和探究

1 引言

新形势下,随着科学技术的蓬勃发展,机载同步激光测距机的开发和应用也日益受到人们的广泛关注和重视。机载同步激光测距机,主要通过发送和接收激光回波信号来判断被测目标的具置距离,被广泛应用于高压电网架设、石油开采、道路建设及军事部门等多个领域。通过对机载同步激光测距机可靠性设计的分析和探讨,解决机载同步激光测距机关键技术中存在的问题,能够进一步推动机载同步激光测距机的普及应用,并发挥出更为重要的作用。

2 机载同步激光测距机的可靠性设计

2.1 机载同步激光测距机的设计要求

根据火控总体的主要技术指标规定,机载同步激光测距机的工作波长应该保持在1.06um,测程在200m~10km,并在最大测程时,能见度必须达到15km,测距精度为±10m,重复的频率最好设定在1Hz左右。机载同步激光测距机的连续工作时间,要求每工作10s,间隔30s,总共循环5次。在通讯方式上,可以选用RS422,工作温度稳定在-30℃~﹢55℃之间,并保证重量在2.5kg左右,MTBF达500h。

2.2 机载同步激光测距机的组成、功能及设计特点

机载同步激光测距机的功能组成,主要有激光器件、激光发射电源、激光接收放大器、距离信息处理器和光学系统,以及低压电源等几个部分。且在系统结构上,具有结构一体化、分舱隔离的设计特点,在系统电路上,具有高低压、强弱信号和信号与电源彼此之间相互隔离的设计特点。

(1)激光器件

激光器件是产生1.06um激光辐射的核心器件,通过在性能指标、刚性和绝缘性,以及体积、重量上,对激光器件实行优化设计,要求激光器件通过自然冷却的方式,选择非金属材料作为聚光腔的设计材料,选择染料片作为调Q元件,避免调Q软件的干扰。

(2)激光发射电源

包括工作时序控制电路、主高压形成电路和氙灯触发电路,以及放电电路等在电路内的激光发射电源的主要功能,是为激光器件提供电源,保证激光器件正常工作,除此之外,激光发射电源还能够提供复位信号给信息处理器。

(3)激光接收放大器

在探测到激光回波信号时,激光接收放大器还能够将其进行放大和处理,从而发出关门信号,在距离信息处理器接收后,按要求完成操作。激光接收放大器在集成对数放大器技术的应用基础上,不但促使其体积仅为常用电路1/4,同时也促使激光接收放大器的可靠性和抗干扰能力得到有效提高。

(4)距离信息处理器

距离信息处理器包括光取样电路、门控电路、计数电路和晶振电路等电路在内,主要用于处理和发送距离信息。在AMD可编程逻辑技术的基础上,距离信息处理器的高集成性、抗干扰性有了进一步提高,而且在功耗方面,也有所降低。

(5)光学系统

光学系统,包括发射和接收光学系统两个部分。发射光学系统主要用于压窄激光器件发射激光脉冲的发散角,促使机载同步测距机的能量密度得到提高,而接收光学系统,则能够通过会聚的形式,将反射回来的光束聚集在雪崩光电探测器的光敏面上。

(6)低压电源

低压电源主要由两个部分组成,即变压器和±12V直流电压与±5V直流电压形成的电路共同组成。通过低压电源,能够将单相电源、交流115V电源转换为机载同步激光测距机所需要的电源,维持激光测距机正常工作。

2.3 机载同步激光测距机的工作原理

机载同步激光测距机的工作原理,主要包括发射光束、接收并转换光束、关门信号和开门信号等几个步骤,大概分析如下。

(1)发射光束

在激光发射电源的基础上,Nd:YAG固体激光器能够产生工作波长为1.06um单脉冲激光束,并接受发射光学系统对发散角进行压窄和扩展,由导向光学系统发射给目标。

(2)接收并转换光束

由接收光学系统接收反射回来的单脉冲激光束,并在通过滤波后,再将单脉冲激光束会聚到雪崩光电探测器上实现光回波脉冲向电脉冲的转换。

(3)关门信号

经由激光接收放大器放大、处理,将回波关门信号发送给距离信息处理器。

(4)开门信号

在距离信息处理器发射激光脉冲的同时,距离信息处理器会从光取样电路上接收到到开门信号,并通过激光发射电源获取同步复位信号,让数字电路处于等待执行状态。当开门信号被执行,电子门打开,计时器开始测量间隔脉冲,直到回波关门脉冲返回,电子门关闭,计时器同时停止工作。

2.4 机载同步激光测距机的设计及关键技术

(1)电磁兼容性

电磁兼容性,是机载同步激光测距机可靠性设计中的关键技术之一。在1Hz激光测距机中,触发干扰经常出现,给整机其他电子线路造成了很大的电磁干扰。通过采取屏蔽触发变压器,控制辐射干扰范围,或是采取触发回路与其他电路电隔离,预防传导干扰,或是在布局上进行分区隔离、在易受干扰的元件上加设滤波等几种方式,能够有效降低触发干扰的发生。

(2)热设计

机载同步激光测距机是通过自然冷却的形式散发元件工作时产生的热量的,为了保证机载同步激光测距机能够长时间工作,防止温度过高损坏元件,在激光器件的通道设计上,需要注重其传导散热的良好性能。

(3)降额设计

在脉冲激光测距机的日常工作中,很多元件往往需要在超负荷的状态下工作,长此以往,很容易降低元件使用寿命,对元件造成损坏。为此,在进行可靠性设计时,应该注重元件的耐压、功耗及变化率等方面的设计。

(4)可靠性设计

根据《航空机载设备可靠性维修性工程应用手册》来看,有源器件与平均故障间隔时间主要呈曲线关系变化,激光测距机的平均无故障时间MTBF大概在900h,在手册的可靠性等级之中。

(5)连续无故障时间(MTBF)

机载同步激光测距机的可靠性设计,要求MTBF值达到500h。根据不同的情况,需要考虑分析的差异也不同。

例如:某激光测距机主要由A、B、C、D四个构件构成,连续无故障时间T=480h如下所示,现为提高该激光测距机的可靠性,要求将X材料换掉,由Y材料代替,预计改进后的连续无故障时间能否达到可靠性要求?

A.1100h B.2000h C.2050h D.6000h

根据分析,激光测距机主要是材料发生变化,对于只需对X、Y材料做抗拉试验、弹性模量、系统刚度、强度和热膨胀系数、导热系数,以及材料密度、伸长率等进行分析,得出Y材料可使D的T提高20%。因此,

新T(D)=6000×(1+20%)=7200h

改进后的整体产品T=1/(1/1000+1/2000+1/2050+1/6000)=504h

3 结束语

通过对机载同步激光测距机的可靠性设计的研究,能够在加深人们对机载同步激光测距机的认识和了解的同时,帮助提高机载同步激光测距机的抗干扰能力,降低能耗,延长其使用寿命,从而进一步推动机载同步激光测距机的普及应用。

参考文献:

[1]魏炳鑫.机载激光测距机光学系统设计中的几个问题[J].机载火控,2004(01).

无人机光电探测技术范文5

关键词:肉类食品;品质检测;研究

随着经济的快速增长,国民生活的日益提高,我国肉类消费量也在快速增长,由肉类食品所引起的食物安全问题也不断增多,如“禽流感”、 “猪链球菌中毒”等.传统的检测技术费时费力,检测效率低,已经达不到现代检测所需的快速、准确、实时、无损等要求。 现代的肉品检测技术,注重实用性和精确性。仪器微型化、低耗能化、功能专用化、多维化、一体化、成像化;生物技术被大量应用;与计算机技术结合得越来越紧密;不断采用其它领域的新技术;生理学中的感觉器官生理变动规律和电生理学研究学方法等。

1 物理方法

1.1 计算机视觉技术

计算机视觉技术通过计算机模拟人的判别准则去理解和识别图像,用图像分析作出相应结论的实用技术,其中图像处理和图像分析是计算机视觉技术的核心。

计算机视觉技术可对其新鲜度作出判定;基于神经网络分类器的立体颜色直立图可用于分析鸡胴体全身缺陷。李刚等构建了由气体传感器阵列、数据采集单元、神经网络组成的智能检测辨识系统,通过猪肉样本的测试与分析表明,该方法可实时准确地识别肉类新鲜度,辨识准确率可达9 0 % 以上。Malone 等以图像处理方法和专家系统控制为基础,研发了一个分析系统,该系统可以根据图像分析的结果并参照数据库作出正确的判断,确定鱼片脊骨的位置,并操纵高压水切割器剔除鱼片中的脊骨。机器视觉系统也用于研究猪腰肉的品质波动和分级,如用400 ~700nm 的光纤反射测量系统可以检测出明显的PSE 猪腰肉,同时根据猪肉品质优劣进行分级。

1.2 超声波技术

超声波检测技术是利用肉品在超声波作用下的吸收特性、衰减系数、传播速度、本身的声阻抗和固有频率,测定肉品组成成分、肌肉厚度、脂肪厚度的快速无损在线检测、分级方法。

利用超声波可以测定肉品(活体或尸体) 的成分,如牛、羊、猪等的背膘厚度及脂肪含量。Benedito等应用超声波传播速度的变化检测发酵香肠的化学成分,发现在脂肪中温度每升高1 ℃超声波速减慢5.6m/s;在瘦肉中,超声波速随温度上升而上升。

Brondum 等使用超声波在线检测猪胴体的系统,该系统包括1 6 个超声波传感器,可以确定膘厚、肥瘦、产肉率(与胴体重量有关)、 主要切割点等指标,其在线检测速度可达1150 头/h ,能达到较高的准确率。目前较好的产品有丹麦S F KTechnology A/S 公司研制的在线检测产品。

用超声波图像检测脂肪厚度和腰部肌肉易受到操作人员、测量部位、超声波频率、被测物体的不规则性和肥瘦组织分布的不均匀性等因素的影响,而且实时超声波图像一般只能检测某部位的化学成分而不是全身成分。所以,超声波检测技术更多地应用在线自动快速无损检测,它具有适应性强、对人体无害、检测灵敏、使用灵活等特点。该技术在国外已逐渐进入肉品实际检测中,但我国在这方面的研究与应用尚未见报道。

1.3 电磁学检测技术

肉品的组织、成分、结构、状态等和其电磁特性有密切关系。如肉品从新鲜到腐败的过程中。其阻抗值就有一定的变化规律。

电磁扫描的原理是骨头和肌肉这些含水的物质比脂肪有更高的导电率,它和猪、羊的无脂肪瘦肉有较好的相关性。Higbie 等采用测量胴体全身电导率的方法来估计无脂瘦肉和全脂肪含量,通过对不同部位和条件下的猪胴体检测,发现可以用三或四变量公式预测无脂瘦肉重量,而且可以根据公式推算肉类各组分的含量,复相关系数R2>0.66。 测量猪酮体的电特性能有效确定猪肉不正常系水力及PSE 特性等早期衰变,因为系水力、pH 值、三磷酸腺苷(TP)的降低均与生物电阻抗以及相位变化有关。而电磁学检测的变化曲线与计算机视觉技术和超声波检验所得的变化曲线具有相似性。

2 仪器分析方法

2.1 高效液相色谱法

高效液相色谱法( H P L C ) 特别适用于高沸点、不能气化或热稳定性差的有机物的分离分析,在食品行业中常用于食品添加剂、农药残留和生物毒素的分析检测,具有灵敏度高、操作简便、结果准确可靠、重现性好且成本较低的优势。

检测抗生素的传统方法是微生物法,灵敏度较、低耗时较长,一次只能检测一种抗生素。反相HPLC 测定抗生素,简便快速,能同时监测多种抗生素,已成为肉品检测中的常用方法。汤丽芬等用反相HPLC 同时测定广州地区肉类4 种抗生素的残留量,结果表明;各抗生素的线性范围均为0.01~ 1.0 µg/ml,相关系数均为0.99 以上(n=5);回收率均为95.6% ~ 106.0%; 日内日间变异系数均在允许范围内(小于15%)。

2.2 毛细管电泳安培法

1991 年Jorgenson 和Monnig 首次提出了高速毛细管电泳技术(HSCE 或fast-CE),使分析时间缩短至几分钟内。毛细管电泳安培法具有灵敏度高、样品体积小的特点。但电泳时间多为5~30min,因此近年来芯片毛细管电泳技术是电泳的一大热点,芯片毛细管电泳技术实质上是将HSCE 的仪器微型化,采用窄内径且短的毛细管和提高分离场强的方式来提高分析速度,因此保持电泳高效的同时提高其分析速度是电泳技术的发展趋势。

杨冰仪等采用高速毛细管电泳安培法对市售肉类中的人工合成雌激素己烯雌酚(DES) 进行了测定,结果表明:参数优化后,DES 在60s 内可以得到较好的分离,检出限为1.0×10-8mol/L,DEC 浓度在1.48× 10-4~3.69 ×10-5mol/L,1.25×10-6~1.85×10-7mol/L 与峰面积分段呈良好的线性关系;迁移时间和峰面积的相对标准偏差分别为0.65%、2.2%。

2.3 近红外光谱分析技术

近红外技术NIR(nearinfrared)具有测量测信号数字化及分析过程绿色化的特点。在肉品检测中,它可以用来测定屠宰分割过程中和肉制品加工中原料肉和成品的水分、蛋白质、脂肪等指标;也能鉴别冷冻肉并测定其保水性、渗透性、肉汁损失率和干物质含量。

Ben-Gera 等采用红外透射技术,研究了肉制品乳浊液中脂肪和水分的含量。Lanza 利用近红外光谱分析研究了生猪肉和牛肉的水分、蛋白质、脂肪和卡路里含量,发现在波长为1100~ 2500nm 时,反射光谱与水分、脂肪和卡路里有较高的相关性(R0.987),与蛋白质的相关系数(R)为0.885。此外,有研究表明:近红外光通过光纤反射的透射特性与牛肉剪切力相关(R=0.798~0.826),与水分、蛋白质、脂肪等指标也有较好的相关性。Park 等通过分析近红外反射光谱以确定牛肉嫩度,采用主成分分析法(PCR,principal componen tregression)分析波长在1100~2498nm 处生肉的吸收光谱,发现其与测得的熟肉嫩度存在复相关系数R2=0.692,从而可以建立预测牛肉嫩度(口感)的分析模型。

但该方法成本较高且分析较复杂。目前丹麦、德国已开发出在线检测设备,而我国还没有类似的检测仪器。

2.4 核磁共振波谱分析技术

核磁共振波谱法是根据具有磁性质的原子核对射频磁场的吸收原理,以测定各种有机或无机成分的检测技术。它是一种无损检测技术,可以检测同一样品的不同原子核,以便从不同角度对样品进行观察;另外它还具有结构和动力学信息敏感性,可以观察样品的化学结构特征和分子迁移。31P 因其天然丰度高(100%),在细胞中的含量高(DNA、磷脂及ATP等);化学位移范围宽(约30),共振谱线简单容易识别;在生物体内普遍存在,且与生命过程息息相关,而使31PNMR 技术在生物样品检测中使用最多。

31PNMR可用于检测肉品中添加磷酸盐的水解过程。Rongrong Li 研究了鸡肉中不同磷酸盐的水解过程,经检测发现TSPP 和TKPP 的水解最快,大约1.25h 就可以完全水解为Pi。采用31PNMR 技术可以快速无损地区别和量化肌肉组织中的有机和无机磷酸盐,为进一步解释磷酸盐的作用机理提供了方法。

3 现代分子生物学技术

3.1 核酸探针检测技术

核酸分子杂交可以用于待测核酸样品中的特定基因序列。该技术不仅具有特异性、灵敏度高的优点,而且兼备组织化学染色的可见性和定位性。在肉品检测中,核酸探针技术主要用于致病性病原菌的检测。

目前我国肉品致病菌的检验普遍采用传统的细菌学检验方法和血清学方法,方法繁琐,灵敏度和准确性都不高。核酸探针技术可检测出10-12~10-9 的核酸,可广泛应用于进出口动物性食品的检验,包括沙门氏菌、弯杆菌、轮状病毒、狂犬病毒等多种病原体。

核酸探针技术在实际应用中仍存在一些问题,如放射性同位素标记的核酸探针半衰期短、对人体有危害等(生物素标记的核酸探针虽然对人体无害,但受紫外线照射易分解),所以作为常规诊断特别是食品实验室较不适用。

3.2 生物芯片检测技术

生物芯片使研究中不连续的分析过程都集成在芯片上完成,实现检测的连续化、集成化、微型化、信息化,单位面积内可以高密度排列大量的生物探针,每平方厘米可达5 10 万个, 一次实验就可检测多种疾病或分析多种生物样品,已经广泛用于食品安全检测、食品微生物检测、动物疫病检测、转基因动植物检测等方面。

张庆峰等以卵清白蛋白为载体蛋白合成了雌二醇的结合物,并采用Cy3 新型荧光染料标记结合物,作为雌二醇的竞争物,建立了以竞争法为基础的检测肉品中雌二醇的免疫芯片新方法。该技术用生物芯片点样仪在醛基化玻片表面点样制备免疫微阵列,对雌二醇进行了定性定量检测。结果表明荧光信号随待测物浓度的降低而增强,待测物浓度在0.001~0.4µg/ml 的范围内有较好的线性趋势,检测范围为1 0.001 g/ml。

4 微生物检测技术

当前,微生物电子学、微机技术滤光技术、生物传感器等多项领域的突破,使得微生物快速检测技术得到了改进,正朝着快速、准确、简便及自动化的方向发展。利用传统微生物检测原理,结合先进技术,设计了形式各异的微生物检测仪器设备,正逐步广泛应用于肉品微生物检测。如ATBExpression细菌鉴定智能系统、全自动微生物快速鉴定仪器VITEK、微生物总数快速测定仪、自动菌落计数系统、应用电阻抗技术的全自动微生物监测系统。

参考文献

[1] 陈福生高志贤王建华. 食品安全检测与现代生物技术[M].北京化学工业出版社2004.

[2] 赵杰文孙永海.现代食品检测技术[M].北京中国轻工业出版社2005.

[3] 陈纯.计算机图像处理技术与算法[M].北京清华大学出版社2003.

[4] 孙永海鲜于建川石晶.基于计算机视觉的冷却牛肉嫩度分析方法[J].农业机械学报2003 34(5) 102 105.

[5] 李刚曲世海郭培源张慧.基于神经网络的肉类新鲜度辨识技术[J].传感器技术2004 24(3) 15 17.

[6] 滕炯华袁朝辉王磊.基于气体传感器阵列的牛肉新鲜度识别方法研究[J].测控技术2002 21 (7) 1 2.

无人机光电探测技术范文6

关键词:公路;桥梁;检测;应用

随着经济的迅速发展,我国的公路桥梁检测技术现在已得到很大的发展,使国内交通运输状况有很大程度的改善,然而就目前的经济发展速度而言,仍然无法满足日益严峻的交通需要。近年来,公路桥梁负荷的重量在不断增加,导致大部分公路桥梁路面损伤情况日益加重,不断出现质量问题,因此,对公路桥梁的施工质量进行检测是保证质量的关键环节。

一、公路桥梁进行检测的必要性

进行公路桥梁检测主要是为了及时合理地对劣质公路桥梁工程进行处理,从而有效降低工程的养护管理成本,保证交通质量和运输畅通,避免出现不必要的财产损失和人员伤亡。但是在公路桥梁的施工和使用过程中,经常出现一些质量问题,引起了社会各界的广泛关注。公路桥梁出现缺陷或者质量问题的原因主要体现以下几个方面:一是公路桥梁在完成后质量与初始设计目标存在一定的差距,在施工过程中,没有严格按照施工方案图纸的设计要求进行建设;二是公路桥梁在使用和运行过程中会出现不可避免的安全隐患或者损害,这会对路桥的承载能力造成不利影响;三是随着交通行业的迅速发展,车辆越来越多,对公路桥梁的整体性能的要求也不断提高,在很大程度上就要不断提高公路桥梁建设施工的质量。因此要加强对公路桥梁的检测,保证万无一失。

二、公路桥梁检测技术

(一)公路桥梁机械检测技术

机械测试仪器一般有杠杆、齿轮、轴、弹簧、指针和度盘等部件构成,其传感机构的功能是直接感受被测量的构件变化,并把这种变化传到转换机构。在接触式机械量测仪器中,转换机构的功能是把传感机构传来的被量测构件的变化转化为长度的变化,并且把它放大或缩小,或者改变方向。

(二)公路桥梁射线检测技术

首先,对公路桥梁的检测就是当公路桥梁中有缝隙或损伤的时候,发出的红外线与周围的不一致,所以可以依靠红外线成像的原理来检测公路桥梁的损伤。简单的说红外热像检测技术就是依据物体的红外辐射、表面温度、材料特性三者间的内在关系,借助红外热像仪把来自目标的红外辐射转变为可见的热图像,红外热像仪检测技术,从而得以显现。其次,电磁波探器是利用超高频短脉冲电磁波探测地下介质分布的一种地球物理勘探方法。检测在公路桥梁无损中的典型应用,如混凝土中的钢筋和孔道的定位以及缺陷和疲劳探测等,电涡流的大小与分布受构件材料介质和表层缺陷的影响,根据所测电涡流的变化量,就可以判定材料表层的缺陷情况。对检测装置或设计的检测仪器的射线源一定要进行有效的防护,将射线对人体的影响控制在最低的程度。这是核子仪在设计时所必须考虑的关键问题。

三、公路桥梁检测技术应用

(一)光纤传感检测技术

这种应用的原理就是根据光纤对一些物体特定物理量的敏感度,将物理量转换成直接可以进行测量和丈量的光信号,因为光纤不仅可以作为传播媒介,还可以在光波穿过表征光波的特征参量受到外界条件的影响时发生不同程度的变化,这样就可以对各种物理量进行探测。在经过多年发展后,我国的光纤技术已经取得了巨大的成就,被广泛应用在军事、航空、工砍能源以及生物和制药等行业中。光纤传感检测技术在公路桥梁检测中的应用,主要表现对钢索的索力和预应力,混凝土梁内部的应力,公路桥梁应变特性的检测,形成光纤智能的公路桥梁,给公路桥梁健康监测和安全评价提供了新的活力和方法。与传统的传感器检测方法相比,具有以下优点:不会受到外界环境的限制,抗电磁干扰、耐腐蚀,可占体积比较小、重量轻,对测量的介质影响比较小,具有比较高的分辨率和灵敏度,实用性比较强,能够形成光纤传感网络。但是在实际的应用过程中,采用光纤传感技术的造价成本和投资,在很大程度上限制了这种技术在公路桥梁检测中的推广和应用。

(二)红外热像仪与雷达检测技术

在公路桥梁的质量检测中采用超声波、红外热像仪以及雷达检测技术,一天内可对几十种桥梁的桥面或是上千公里路面进行准确的测量。红外热像仪是通过红外摄影机而获取公路桥梁温度图。其中温度较高的点(热点)则是由于桥梁薄得仿佛充满空气的绝缘体般,因此热点部分的混凝土,其温度上升适度相比其他点更快些。雷达是借助电磁波对受测目标进行探测。其工作原理是向受测目标发射电磁脉冲使发射出的电脉冲形成电磁波并从混凝土的异质界面中反射回来,形成回波。回波对混凝土而言具有密切的关系,其交替变化的波形可将凝土中的损害情况以及裂缝情况检测出来。红外热像仪与雷达联合使用可有效检测公路桥梁现有的大部分病害种类。

(三)探地雷达检测技术

在进行公路桥梁检测过程中,探地雷达就是高频的电磁脉冲波利用宽频带短脉冲的形式把天线发射到地下,在传播过程中,遇到不同电介质时,雷达波的能量就能够被及时反射回地面,从而被天线接收,这样通过反射波确定地下介质的分布,在进行浅层或者超浅层的探测过程中,应用的比较广泛。探地雷达就会通过高频电磁波的反射、衰减、散射或者折射等进行地下的探测,以此确定介质的结构。为了获得更为精确的雷达探测结果要对雷达的记录进行分析研究,识别反射波的时间、振幅以及极性等特征,其中时间和振幅的确定比较简单,而极性的判断有很大的难度,同时也非常重要。从振幅和极性的反射中可以分析出电磁学性质差异越大,反射波就会越强,以此可以判断介质的性质和属性;当波从波高速进入到波低速的介质中时,反射的系数就会为负,振幅成反向,反之则与入射波同向。在实际探测过程中,不同的介质也就相应的巨涌不同的结构特征,反射波的振幅和方向是雷达波进行有效判断的依据。因此,根据雷达的特性,可以用于公路桥梁的结构检测,同时对相关的技术人员要求比较高,要采集大量实际的测量数据和丰富经验。

四、结束语

总而言之,随着交通量的持续增多,公路桥梁实际承载的压力也越来越大,路桥施工企业需不断研究更新的公路桥梁检测技术措施,不断优化检测技术,发现在用公路桥梁的现存问题,及早掌握处理公路桥梁中的病害,从而保持公路桥梁的质量,维护正常的交通运行。