机械结构论文范例6篇

机械结构论文

机械结构论文范文1

低温波荡器机械结构。支撑杆连接真空室内外大梁,磁结构及夹持机构安装在真空内大梁上,通过控制真空室外大梁的运动,调节磁间隙。低温波荡器运行时,在磁结构表面覆盖一层导电薄膜,以减小束流造成的热负荷。根据低温波荡器结构,低温波荡器的主要热负荷来源包括:内大梁支撑杆的热传导、真空室壁和内大梁之间的辐射换热,以及电子束经过低温波荡器时在导电薄膜表面激发的镜像电流。低温波荡器采用液氮冷却的方式,通过在真空内大梁上布置冷却管道的方式,来降低磁铁温度,同时保证磁铁在束流方向上温度较为均匀,从而避免温度梯度对磁场的不利影响,减小磁场相位误差。

2镨铁硼物性

磁铁是低温波荡器产生周期性强磁场的关键部件。镨铁硼材料在室温和低温下的热学特性和力学特性,是使用数值模拟方法进行结构优化设计的基础。在中国科学院物理所和理化所的帮助下,我们先后测量了镨铁硼在300K到80K之间的热导率、热容、热膨胀系数。此外,还分别测量了300K和80K温度下,镨铁硼的抗压强度、弹性模量和泊松比。

2.1热学特性

镨铁硼材料在低温环境下的热导率和比热容是对磁铁夹持机构进行热分析的必要参数。测量结果表明,镨铁硼样品热导率随着温度的降低而降低,在80K时,垂直和平行于磁化方向的热导率较为接近,均约为4W/m•K,该值约为相同温度下铝合金的5%左右。由于镨铁硼的导热性较差,因此在设计时需要尽量增大磁铁的传热面积。通常,我们使用热扩散系数α来衡量材料内部温度变化传播的速率,即热扩散系数越大的材料,温度变化越容易在该材料中传递。热扩散系数的定义式如公式(1)所示:α=k/(ρcp)(1)式中,k为热导率;ρ为密度;cp为比热容。镨铁硼在80K时的比热容约为185J/kg•K,约为室温下的40%。根据上述测量结果,比较镨铁硼和铝合金6061的热扩散系数,80K时,镨铁硼的热扩散系数约为铝合金的2%,这意味着镨铁硼材料内传递温度的速率远远小于铝合金。因此,在监测磁铁温度与热负荷关系时,应将温度探头布置在比较接近热负荷来源的位置。

2.2力学特性

镨铁硼材料随温度变化的膨胀曲线,。镨铁硼在沿平行于取向方向上的收缩量大于垂直于取向方向上的收缩量。由室温降低到液氮温度时,单位长度的镨铁硼大约收缩0.8mm。300K和77K温度下,镨铁硼样品沿垂直于取向方向和平行于取向方向的的弹性模量Y、泊松比v和抗压强度σbc的测量结果

3传热结构设计

3.1磁铁夹持机构

对低温波荡器而言,磁铁的夹持机构不仅用于固定磁铁的位置,还需要通过良好的热接触,确保磁铁能够被冷却到设计温度,是传热结构设计的关键。磁铁夹持机构设计,与磁铁接触并进行热交换的结构包括:磁铁夹持基座、磁铁压紧块、磁极和磁极夹持基座。在设计时,应尽量增大上述结构与磁铁的接触面积,使热量更多的经过夹持机构传递至冷却管道。使用ANSYS软件模拟工作状态下磁铁的温度分布以及各个结构与磁铁之间的换热量,分析不同结构对磁铁平均温度的影响。假设夹持机构的底面为80K定温,在磁块顶面热负荷为0.35W,此时,镨铁硼磁块的平均温度约为82K,满足设计要求,计算各个接触面的热流量。可以看出,磁极和磁极夹持基座由于与磁铁接触面积最大,其在冷却磁铁时起到的作用最大。因此,在公差设计时应确保磁极和磁极夹持机构在低温条件下与磁铁良好接触。由于低温环境下,铝合金的收缩量大于镨铁硼,因此在设计时需要确保磁极和磁铁在室温条件下接触良好。此外,需要注意的是,机械结构在降温后会发生收缩,这使磁块面临着可能被破坏的风险。因此,模拟计算该温度场下磁铁的受力情况,确保结构设计的可行性。计算得到磁块承受的最大应力约为782MPa,该值约为磁块抗压强度的70%,不会对磁块造成破坏,满足使用需求。

3.2冷却管道

冷却管道和内大梁支撑杆在设计时,会互相影响。一方面,支撑杆引入的热传导是热负荷的主要来源之一,冷却管道在设计时需要提供足够的换热面积,带走系统的全部热负荷。另一方面,内大梁支撑杆需要提供足够的机械强度,使得低温环境下机械结构的收缩造成的相位误差尽可能小。首先,分析热负荷对温度梯度的影响。设定支撑杆的安装位置,通过调整在该面积上加载的热流量大小,比较当采用单冷却通道或者双冷却通道的方案时,磁铁阵列的最大温差。随着热流量的增大,采用单冷却管道的方案时,磁铁沿束流方向的最大温差与采用双冷却通道方案时大得多。为避免支撑杆引入的热负荷对磁铁温度的影响,双冷却通道的方案是使磁铁阵列温度均匀度更小的设计。然后,选择冷却管道的布置方式,比较双冷却管道与单冷却管道方案对磁场相位误差的影响。使用ANSYS软件计算低温环境下内大梁的变形量,分析磁间隙的波动,再使用RADIA程序计算由于机械变形造成的相位误差。考虑液氮的流动方向,共存在如下四种设计方案:单通道同向、单通道反向、双通道同向和双通道反向。磁间隙模拟结果,双冷却通道的方案由于可以减小内大梁在束流方向上的温差,使得磁间隙波动量相对较小。相位误差计算结果,使用双通道的方案造成的相位误差约为0.1度,并且可以忽略液氮的流动方向对相位误差的影响,是非常适合低温波荡器的液氮管道布置方案。而单冷却通道的设计则最好分别在两真空内大梁内采用的相反流动方向。综上所述,低温波荡器内冷却管道采用双冷却通道同向并联的设计方案,每根真空内大梁中开设两条水平排布的冷却通道,使液氮在单梁上往返流动一个来回。该方案不仅可以获得更好的冷却效果,允许使用机械强度较大的支撑杆,还能有效减小降温造成的相位误差。而上下两真空内大梁采用相同的流动方向可以在简化管道的同时,并不造成相位误差额外的增大。

4结论

本文利用测量得到的镨铁硼物性参数,使用数值模拟的方法,综合分析低温波荡器内传热结构的热力耦合场,开展对磁铁及其夹持机构、冷却管道和真空内大梁支撑杆的分析研究。

(1)磁极和磁极夹持机构是冷却磁铁的关键结构,在设计工况下,磁铁的平均温度约为82K。因结构收缩对磁铁造成的压迫在磁铁的抗压强度范围内,不会对磁铁造成破坏。

机械结构论文范文2

1.1喷嘴快速定位系统

在活塞打靶试验中,喷油嘴出油口与活塞进油口之间的同轴精度对试验结果的影响较大。因此喷嘴的快速定位系统应保证喷嘴的上述要求及重复定位精度,同时兼顾多型号喷嘴的快速装夹。基于以上,活塞打靶试验台采用自制的双轴精密工作平台,并配以自行开发的数控系统。喷嘴固定到工作台上,由数控系统控制工作台的运动完成喷嘴的快速精确定位。

1.2喷嘴的供油系统

发动机冷却过程中,油由喷嘴进入活塞进油口,经活塞内冷油腔从出油口流出,完成活塞的冷却过程。未进入活塞的油不参与活塞冷却。为模拟油的流动过程,活塞打靶试验台的液压系统运行过程。但为满足喷嘴开启试验和多型号喷嘴的要求,液压系统的温度和压力均实现自动调节。

2结构设计

2.1活塞运动机构

模拟活塞竖直方向的运动采用曲柄连杆机构较适宜,结构简单且运行可靠。但滑块行程难以实现自动调节,不能满足多型活塞的行程。结合以往经验,试验台采用双排直线方形导轨和短节矩滚子链组成的竖直移动机构,并应用伺服电机驱动。方形导轨可实现活塞在竖直方向的精密导向,并且滑块与导轨间的滚动摩擦使活塞移动的阻力较小。在活塞正弦运动下,活塞的加速度一直在变化。故应用双排短节矩链既可承受变化的载荷,又能运行平稳。由上述公式(3)可知,一种型号的活塞在试验工况下,R和ω均为常数。活塞瞬时速度公式(3)简化为:V≈C×sinβ其中C为常数。由自行开发的控制程序实现伺服电机精确转动以实现活塞的正弦运动要求。本系统满足了活塞沿竖直方向的运动要求。

2.2喷嘴快速定位

双轴精密工作台实现了在其平面行程内任意点的喷嘴定位。每个移动方向都应用双排方形导轨导向和滚珠丝杠传动的结构,并配以步进电机驱动。自行开发的数控程序可较好的实现工作台运行速度调节与喷嘴精确定位。经过工作台反复的运行实践,工作台有较好的重复性。

2.3液压系统

液压系统由液压泵,节流阀,冷却器和加热器等组成如图4。主要由恒温管路和试验管路两部分。其恒温管路包括循环加热和循环冷却,满足试验对油的温度要求。试验管路模拟了活塞冷却的整个循环过程,并对试验所需参数完成测量。本液压系统还较好的实现了全量程内自动调压(0-1MPa)以及试验对压力波动的要求(≤10KPa)。

3结论

机械结构论文范文3

关键词:机械装配结构;组织性;概率

中图分类号:TG95

对于一个机械产品的设计而言,在其概念设计机端,就需要对各个零部件的装配结构进行全方面的研究,一定要尽可能的保证他们有着较好的装配结构。任何一个机械产品各零部件的装配结构都不可能随意设计,必须按照最终的设计目标,在一定的生产条件下,按照规定标准、结构,使用特定的工艺进行产品设计、制造以及装配整个过程。随着研究人员的不断深入探索发现,机械系统在一定程度上与生物结构有着非常多的相似之处,这对于机械装配结构组织性相关理论的研究开辟了新的道路。总结出了机械装配的不确定性,如何进行度量就是下一步所需要研究的重要内容。

1、机械系统与生物学的结构相似性

上世纪中期仿生学的概念被提出,这是一门根据生物结构、功能以及作用原理,通过特殊的工程技术手段,实现机械特殊功能的学科。人类的胳膊就像机械臂一样,也可以抽象的看作是有很多个连杆、转动关节以及牵引装置所构成。在结构上,二者有着非常多的相似之处。这实际上就是仿生学的一个研究内容。按照系统论的相关理论可以看出,生物体均是由很多种具有不同功能的器官所组成的,如呼吸器官、消化器官等等;这些器官又是由很多种组织所构成,如肌肉组织、神经组织等等;每一个组织又可以细分为很多种细胞,如白细胞、红细胞等等;多种化学元素又共同构成了每一个细胞。这些细分方式是按照不同组成部分的形态来划分的,相较于传统机械系统而言,也就是按照不同结构来进行划分的。假设生物体的划分是从不同结构所起到的作用角度来进行划分,那么生物体中的肌肉所起到的作用就是传递能量,并且可以将生物体按照肌肉所起的不同的作用进行细分。所以,有些研究人员就基于这个思想,将一个生物体划分为多层次结构。相应的,机械产品如果也按照功能来进行划分,那么也具有多层次结构:机械装配结构、机械外形、机械的每一个基本组成零件。

2、机械装配结构系统组织不确定性

所谓不确定性,也就是说某一个事件或者决策可能出现的结构不止一个。联系到机械产品的概念设计,如果按照功能需求来选择机械装配的结构以及各种零部件,那么整个机械产品就会出现大量的不确定性。

(1)选择不确定性

想要达到某一功能,机械装配结构可以有很多种选择。最简单的一个例子就是,不管是使用直齿圆柱齿轮传动,还是斜齿圆柱齿轮传动,均可以实现异向转矩传递。在对机械装配结构进行设计时,选择哪种结构才最合理就需要进行全面深入的研究,这里就会出现不确定性。

(2)特征不确定性

机械装配结构确定之后,相应的也就确定了这个结构所需要的零件,第一种选择不确定性也就相应的消除,也就是说保证了在该粒度下的有序。但是此时新的不确定性又出现了,就是组成机械的所有同类型零件其特性并不一定完全相同,不能够保证所使用的零件均能够达到某一个标准。

(3)配合不确定性

在机械装配结构以及零件选择均确定之后,第一种选择不确定性以及第二种特征不确定性也就相应的消除,但是任何一个机械任务的完成均不可能只有一种机械装配结构参与,它需要多个机械装配结构的协同配合,才能够保证整个任务的有序进行。一旦多个机械装配结构共同参与到某一个机械任务当中来,那么这些结构相互之间的如何装配,相互之间如何配合就会形成新的不确定性。

3、机械装配结构系统不确定性的度量

通过对机械装配结构系统不确定性的分析不难得到,研究不确定性实质上就是研究某一种决策发生的概率问题。也就是像图1所表示的那样,主因子A在与下层结构建立联系时有多种选择,既可以选择被因子B,也可以选择被因子C,但是两种选择中,A只能够选择其中之一,也就是说B与C二者被选择的概率均是50%。一旦A选择与C建立的相互之间的联系,那么对于A而言,选择被因子C的概率就变为100%,选择被因子B的概率就是0。这实质上就是数学上的概率问题。

决策的确定对于整个机械产品的设计有着非常大的影响,设计的整个过程涉及到方方面面的决策确定。相应的,产品设计的完成也即是每一个决策的确定。实质上,这就是信息论中所提到的不确定性分析过程。在机械产品的设计过程中,所需要考虑到的不确定性非常之多,所需要做出的决策也同样很多,就像图2所示,整个系统中节点之间共有6种装配关系等待确定。通过信息论中离散信息分析理论以及概率论的知识可以知道,每一种装配关系在机械产品设计的整个过程中,所发生的概率是相同的:

参考文献

机械结构论文范文4

根据国家机械设计制造及其自动化专业毕业培养标准中对毕业能力要求之4“具有设计机械系统、部件的能力”要求,整合现有教学内容,形成了基础知识递增和设计能力递进的机械设计类课程教学环节结构。其中先修课程包括数学类、工程力学、机械制图、公差与技术测量等基础课和专业基础课。为达到“具有设计机械系统、部件的能力”的毕业要求,设计了课程教学及课内实验、基础设计能力培养、创新设计能力培养三个能力递进培养环节。

2机械设计类课程教学及课内实验

课程教学及课内实验教学环节分为机械原理和机械设计两个部分,每部分。含课内实验,课程内容及培养目标如下:机械原理课程是一门培养学生机械机构运动设计与分析的技术基础课,主要研究机构的结构分析、运动分析和动力分析,常用机构设计的基本理论和方法,机械系统传动方案的规划与设计,其主要任务是培养学生:第一,理论联系实际的学风,设计实践能力和创新精神。第二,掌握机构运动方案设计的能力。第三,具有机械系统运动简图的绘制,计算机辅助机构分析和设计的能力。机械原理实验教学是机械原理课程教学中的实践环节。在实验中通过安排部分课程基本理论的验证性实验,使学生进一步加深对课堂教学内容的理解。通过增设一些综合性、设计性实验,培养学生基本知识、基础理论与实际项目需求的理论知识应用能力,同时培养学生创新意识和能力。通过设立较多的选修实验,促进学生的个性发展。机械设计课程是一门培养学生机械设计能力的技术基础课,在教学内容方面着重掌握机械设计的基本知识、基本理论、基本方法和创新思维,通过对本课程的学习,使学生掌握常用机构和机器中各种通用零件的基本理论和基本知识,初步具有机械结构方面的分析、设计能力,同时注意培养学生正确的设计思想和严谨的工作作风。机械设计实验教学通过设立部分验证性实验,使学生进一步加深理解课堂教学的内容;通过设立一些综合性、设计性实验,培养学生理论联系实际的能力及机械结构设计的创新意识和创新能力;通过强调学生参与实验的全过程,培养学生的动手操作能力;通过设立较多的选做实验,满足学生的求知欲,促进学生的个性发展。

3基础设计能力培养

机械设计课程设计是机械设计基础类课程的重要实践性环节,通过对机械传动装置和简单机械的设计,使学生综合运用机械设计课程和其他先修课程的理论和实际知识,熟悉机械设计的一般规律,掌握机械通用零部件及简单机械的设计理论及设计方法。培养学生理论联系实际的正确设计思想,树立工程意识,培养独立分析和解决工程实际问题的能力,为毕业设计和以后从事工程设计工作打下良好的基础。课程的教学目的:第一,学习机械设计的一般方法、步骤,掌握机械设计的一般规律。第二,学会从机器的功能要求出发,合理选择传动机构的类型,制定传动设计方案,正确计算零件的工作能力,确定它的结构、形状、尺寸及材料,并考虑制造工艺、使用、维护、经济和安全等问题,培养机械设计能力。第三,进行机械设计基本技能训练,例如计算、绘图,运用标准、规范、手册、图册和设计资料,以及使用经验数据和处理数据等。第四,通过编写设计说明书,提高学生文字表达能力,掌握撰写技术文件的有关要求;培养学生运用计算机撰写论文的能力。第五,训练学生用CAD绘图的能力。机械综合课程设计是形成机械装备设计能力的重要实践性教学环节。内容以车床或铣床的主传动系统设计为主线,以所学过的机械制造装备的基础知识为支撑,完成主传动系统设计、操纵装置布置、工程分析计算等环节的训练。其目的是在相关先修课程学习后,进行机械结构设计综合训练,使学生掌握机械系统分析和设计的基本步骤和方法,培养和锻炼学生综合运用所学知识解决实际工程问题的能力。

4创新设计能力培养

学生创新设计能力培养包括机械产品创新设计与仿真和机械创新设计与制作两个环节:机械产品创新设计与仿真是学生以项目组的形式自主开展的为期一年的研发与制作项目,在学院的统一命题下完成一项任务。提高学生自主学习、问题求解、团队协作、项目管理、综合创新等方面的能力和素质。机械创新设计与制作是结合学生已有的知识储备,充分发挥学生的创新设计思维,通过机构综合模拟现实自然界生物的动作行为,并辅以相应的控制系统达到机构的协调运动。在教师的启发和指导下,学生以组为单位自主地进行相关内容科技文献检索、方案设计、虚拟仿真、绘制加工图纸、撰写设计说明书并进行答辩,通过工程实践培养学生灵活运用所学机械设计知识的能力。

5结论

机械结构论文范文5

关键词 :起重机械;剩余寿命;疲劳计算;Miner法则;Paris公式

中图分类号:TH21 文献标识码:A

起重机械钢结构剩余寿命估算是起重机安全评估中的一类,其特点是利用模拟工况中测得的应力结合数学分析方法进行剩余使用年限的推算。鉴于起重机本身结构和工况的复杂性和多样性,以及对材料断裂机理的研究还不够深入,想准确判断其结构什么时候断裂很难,也不可能采用某种方法就能够解决问题,目前大多还处于科研分析和检测并实时跟踪的状况。

1 与剩余寿命估算相关的法律法规

明确与起重机剩余安全使用寿命评估相关联的法规,从国家主管部门层面看,质检总局2007年下发的《关于印发起重机械专项治理攻坚战实施方案的通知》(国质检特〔2007〕377号)文件提出“八不检”,其中之一是“主要部件或整机使用寿命到期不检验”。后来制定的TSG Q7015-2008《起重机械定期检验规则》中提到,对于使用时间超过15以上,处于严重腐蚀环境或者强风区域,使用频率高的大型起重机械,应当根据具体情况有针对性地增加其他检验手段,必要时根据大型起重机械实际安全状况和使用单位安全管理水平能力,进行安全评估。其他部门如由住建部的《建筑起重机械安全评估技术规程》(JGJ/T189-2009)对建筑起重机械提出了进行安全评估要求的具体年限。还有如《铁路运输装卸机械管理规则》(铁道部铁运〔2006〕35号)也提出了装卸机械参考使用年限,桥式和门式起重机都为19年。

2常用相关理论及应用

2.1 以疲劳计算为基础的预期使用寿命分析

2.1.1 理论基础

2.1.2 应用实际

目前用钢结构设计规范的疲劳计算来进行剩余寿命估算的方式在铁路上用的很多,这一方面跟铁路上特别是铁路货场普遍所采用的桥、门吊的钢结构设计是严格遵照《起重机设计规范》和《钢结构设计规范》密不可分的,另一方面也是因为铁路作业属性相同使得设备也大体一致。现以南昌铁路检测机构采用的计算方式为例来阐述。

其中Y剩为可以继续安全工作的年数;n余为剩余工作应力循环次数;n年为每年完成的应力循环次数;n总为钢结构总的应力循环次数;n已为已经完成的应力循环次数,以一个工作循环出现依一最大应力幅来计算;Q已为已经完成的作业吨数,查看设备履历簿获取;Q额为额定起重量;Q年为年平均作业吨数;k为安全系数,出于考虑疲劳计算的离散性比较大的原因,可查阅的文件或参考书获得。

鉴于起重机械特种设备的危害性属性,在实际应用时是采取上述结果伴随动态应力幅值、动刚度、静刚度、变形、腐蚀程度、裂纹情况和劣化速度8参数并列评价,一票否决来处理,这大大提高了起重机械的使用安全性。

其他同属铁路系统的如郑州检测机构等也是采用同样理论方法进行检测,只是载荷谱系数和安全系数等参数依现场情况和认识而取值不同。

2.2 以线性累积损伤理论为基础的疲劳寿命估算

2.2.1 理论基础

2.2.2 应用实际

线性累积损伤理论是疲劳累积损伤理论的一种,也是目前应用较为广泛的名义应力估算法的理论基础。本文以某港口机械检测机构对一江西铁路货场门吊的实际检验计算过程来简单描述其应用,其他采用此理论进行检测的过程大体类同。

2.3 以断裂力学之疲劳裂纹扩展寿命为基础的剩余寿命估算

2.3.1 理论基础

结语

以上列举了三种常用的起重机械钢结构剩余寿命估算理论及应用。它们之间有时往往搭配使用进行比对,有时在某些方面又是互相关联的。如上述以疲劳计算为基础的是与裂纹情况检测配合使用的,线性累积疲劳损伤与裂纹的扩展存在某种联系,疲劳计算和线性累积损伤理论都与钢的S-N曲线的幂函数表达式紧密关联等。

无论上述哪种方法,检测点选择的合适与否对寿命估算的影响很大。一方面必须熟知起重机的设计计算方法,最好查看原设计计算书,另一方面选择一种好的有限元分析软件如ANSYS等可以带来很大的帮助,再者可多布置几个检测点。

设备有与法律法规及技术标准等明确提出报废项的不宜寿检或修复后符合要求再检。

参考文献

[1] TSG Q7015-2008, 起重机械定期检验规则[S].

[2] GB50017-2003,钢结构设计规范[S].

[3] GB3811-2008,起重机设计规范[S].

机械结构论文范文6

关键词:相似理论;机械工程;应用

相似理论源自上个世纪前期,自问世之初就受到了国内外物理学科研究人员的广泛关注。众做周知,在现实生活中有很多极为类似的物理现象,他们的作用原理大多相同。由于该类作用本质或是现象之间存在着奇妙的联系,因此在众多科学研究人员的不懈努力下已经早在上个世纪就形成了独立的研究学科,也就是现在所说的相似理论。顾名思义,相似理论主要是对现实情况中相似作用的影响元素及其表现出来的物理性质进行分析。伴随着国内外科学技术的不断发展,相似理论也逐渐趋于完善。构建成了以“相似三原理”为基础的研究体系,另外我国也发表了与相似理论相关的工程理论论文,引起了极大的反响,并且获得国内外相关研究人员的一致好评,被高度誉为相似理论的新鲜血液。

1相似理论的实质与特点

相似理论其实质为对实际生活中各种类似现象进行分析解释的学说。也就是对相似现象的共同点加以研究的理论。而该理论在模型构建上有着极为重要的作用,可以借助现有计算机模拟技术以虚拟的形式,根据模型原型的预定功能、结构等,以相似理论为指导完成对应模型的构建。相似理论发展的基础为:(1)对自然界作用现象的合理定义;(2)对应现象所涵盖的物理原理符合于某一客观规律,不存在偶然性;(3)不能凭借主观臆断完成对现象中各个物理量的测定,它是客观事实。现今,相似理论已经不仅仅是对物理问题进行探究,还成为了机械工程设计的基础,并得到了广泛的运用。伴随着现今科学技术高速发展的趋势,相似理论在今后必定随之不断吸纳全新技术与理论概念,进而在各个适用的领域中都可以发挥出它的重要作用。相似理论通常是以物理作用现象产生的前提条件为入手点,对每一项条件及其所对应的现象进行深入探究,同时借助现有的数学算法对其进行系统的研究,进而以函数关系的方式得出相应的研究结果,在进行充分验证之后实现推广应用。相似理论的研究及其成果较为抽象,由于大多只是通过理论分析和数学运算的方法来得到结论,所以所得的结论大多只能给以研究者一个理论的研究方向。同时,由于其研究的物理作用范围极为广泛,因此在各个领域都有着一定的应用,不光是在机械方面,还在别的工业生产研究中有着极为重要的指导作用。相似理论在应用于机械工程领域时,能够有效的为所出现的问题给以一定的指导,在解决各类复杂工程问题时,起着切入点的重要作用,在处理实践问题上有着极大的应用价值。

2相似理论在机械工程中的应用

就我国机械工程的发展而言,相似理论起到了极为关键的促进作用,同时在各类机械研发、修理中也起到重要的指导作用。相似理论,又被称之为相似工程学,以一个独立学科来表示这一理论就充分说明其对于工程研究的重要作用。而就相似理论在机械工程的实践应用而言,涵盖了工程系统相似设计、成组技术、相似模拟制造、相似仿真以及机械相似模拟设计等等。其中现今最受瞩目的就是成组技术,它的实质也就是借助实物之间的相似性质,根据原来所存在的一定规则分门别类,对相同作用性质采用统一模式进行研究的方式。目前,依托于国内电子信息技术的不断发展,该技术已经和自动控制工程等相关技术进行了有效结合,已经初步实现了信息化生产。而就工程领域而言,在设计以及制造的各个环节中也得到了极为广泛的应用。而相似模拟技术则是借助对仿真电路中电流以及电势差等相关物理参数的合理控制,进而实现逻辑运算的目的。但是,该技术在实际应用的过程中过于依赖研究人员的经验,很难对系统运行的结果加以及时控制。而借助现有的数字化技术,能够有效地改善这一缺点。在机械工程零件设计的过程之中,相似理论也有着极为广泛的应用。首先,在对机械零件继续设计的过程中,可以预先对其需要实现的工程进行预估,借助相似理论对能够实现该功能的现有零件结构进行分析,初步模拟出零件的构造。进而通过仿真模拟整个机械系统的运转情况,对不合理的结构加以适当的修正,并再次进行仿真。依托于相似理论,在多次仿真之后就可以在实践中对零件的性能、结构以及完成预定功能的能力进行测试,并合理结合相似三准则的内容,不合理的地方加以修正,进而保证整个系统能够安全、高效的投入到运营环节中。相似理论在机械工程中最为重要的作用在于研究方向指导、机械问题研究切入点以及对系统整合分析等。在实际的机械工程中,借助相似理论可以对机械整体的运转方式加以详细分析,并合理结合相似的相关机械对其运行特点以及预定功能进行合理划分,并借助相似性对其进行模拟。其基本步骤与零件设计环节类似。但是由于在对整个系统进行相似性分析时,所涉及的数据量以及各类专业理论与实践知识过于庞大,一旦出现失误将会造成极大的人力物力资源浪费。因此,在进行模型仿真的时候,可以对其适当的简化,先对模型的整体框架进行构建。进而按照预定的功能,填充能够完成相似功能的各个组件,并且及时的对模型整体运作参数进行记录分析,对不合理的地方加以适当的调整,最终实现整个机械系统模型的构建。于此之后,则可以在实践测试之后投产使用。

参考文献

[1]仵锋锋,曹平,万琳辉.相似理论及其在模拟试验中的应用[J].采矿技术,2007(04).

[2]宋,张贵文,党星海.相似理论内容的扩充与分析[J].兰州理工大学学报,2004(05).

[3]易刚,龚代瑜.试论结构模型设计中的相似理论[J].国外建材科技,2004(05).

[4]迟世春,林少书.结构动力模型试验相似理论及其验证[J].世界地震工程,2004(04).