细胞化学元素范例6篇

更新时间:2023-06-21 09:40:32

细胞化学元素

细胞化学元素范文1

[关键词] 天麻素;氯化钴;皮质神经元损伤;神经保护;缺血缺氧性脑损伤

[中图分类号] R332 [文献标识码] A [文章编号] 1673-7210(2016)05(b)-0017-04

[Abstract] Objective To study the repair effect of gastrodin on hypoxic brain neurons damage induced by cobalt chloride in rats, and provide an experimental reference for clinical treatment of ischemic and hypoxic brain damage. Methods Cerebral cortex nerve cells of SD rats were selected for study. The original generation after 7 d, they were numbered according to the culture dish. Primary cells were divided into blank control group, model group, gastrodin group and gastrodin control group by using random number table method, and corresponding treatment was implemented. Cell morphology, neurons relative vigor, lactate dehydrogenase (LDH) release quantity, EphA4 expression difference among four groups were observed. Results The relative activity of neurons in blank control group was significantly higher than that in other groups, the relative activity of neurons in model group was significantly lower than that in gastrodin group and gastrodin control group, the relative activity of neurons in gastrodin group was significantly lower than that in gastrodin control group (P < 0.01). The neurons LDH activity of model group was significantly higher than that of other groups, the neurons LDH activity of gastrodin group and gastrodin control group were significantly higher than those of blank control group (P < 0.01). The average neurons IOD of model group was higher than that of other groups, the average neurons IOD of blank control group was lower than that of other groups (P < 0.01). Conclusion Gastrodin can reduce the expression level of EphA4 in the injured neuron, inhibit the activity of LDH in neuronal cells, and enhance the cell relative viability, has a positive effect on the protection of rat cortical neuronal injury, is worthy of further study.

[Key words] Gastrodin; Cobalt chloride; Cortical neuron injury; Nerve protection; Hypoxic ischemic brain damage

缺血缺氧性脑损伤的病理过程包括能量代谢障碍、细胞内钙超载、兴奋性氨基酸分泌过多及一氧化氮蓄积等,上述病理反应引发的级联细胞毒作用是诱发神经元损伤的主要原因[1]。目前已有大量西药相继应用于神经元损伤的预防及治疗,其临床效果得到了一定认可,但伴随而来的明显副作用大大限制了其应用前景[2]。天麻素的强效镇痛、镇静、心血管功能改善、抗炎及抗自由基作用已被广泛证实,研究表明,天麻素还具有增强血管顺应性作用,有望改善脏器缺血缺氧状态、发挥脑保护作用[3]。本研究就天麻素对神经元损伤的影响进行实验分析。

1 材料与方法

1.1 实验材料

实验动物:出生24 h内健康新生SPF级SD大鼠,由郑州大学医学院动物实验中心提供,动物合格证号:120000KXWQR08001。

主要药品:天麻素(昆明制药集团药物研究所生产,100 g/瓶,批号:20130115,分析纯),纯度99.5%,分子量286.27,其化学结构式如图1所示。

主要试剂:Neurobasal培养基(美国Gibco公司生产)、B27试剂(斯百汇生物科技有限公司,规格:10 mL)、胎牛血清(美国Gibco公司生产,规格:500 mL)、胰蛋白酶(苏州亚科科技股份有限公司,型号:9002-07-7)、多聚赖氨酸(上海宝曼生物科技公司,浓缩液,25 mg/瓶)、氯化钴(CoCl2,山东淄博润兴化工厂生产,分析纯)、3-(4,5-二甲基噻唑-2)-2、5-二苯基四氮唑溴盐(MTT)(美国Sigma公司,分析纯)、乳酸脱氢酶(LDH)定量检测试剂盒(美国罗氏公司)、抗鼠人肝癌细胞系A4(EphA4)多克隆抗体(美国Santa Cruz公司)、CY3荧光试剂盒(武汉博士得生物制品公司),其他试剂均为进口分析纯。

1.2 处理方法

1.2.1 大鼠皮质神经元细胞原代培养 使用75%乙醇消毒实验大鼠,在严格无菌条件下,行神经元细胞原代培养[4],持续7 d。

1.2.2 细胞分组及处理 将原代培养7 d后的细胞按照培养皿编号,使用随机数字表法分为空白对照组、模型组、天麻素组及天麻素对照组,以125 μmol/L CoCl2溶液处理模型组及天麻素组细胞4 h,然后以25 mg/L天麻素处理天麻素组、天麻素对照组细胞24 h[5]。

1.3 观察指标

1.3.1 神经元形态观察 于倒置显微镜下,对各组细胞神经元形态变化进行拍照、观察,并比较。

1.3.2 细胞相对活力检测 采用MTT法,对各组细胞相对活力进行检测[6],使用全自动酶标仪,检测其570 nm波长处吸光度(OD)值。

1.3.3 LDH活性检测 LDH活性检测采用速率法[7],检测其440 nm波长处OD值。

1.3.4 EphA4表达量检测 采用细胞荧光化学法,对各组细胞EphA4表达量进行检测[8],红色荧光即为免疫阳性细胞。使用Image-Pro Plus 6.0软件,对各实验组的荧光图片单个细胞的累积吸光度(IOD)值和平均IOD值进行分析并比较。

1.4 统计学方法

采用SPSS 18.0统计软件对数据进行分析和处理,计量资料以均数±标准差(x±s)表示,多组间比较采用方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 神经元形态

倒置显微镜观察结果示,空白对照组神经元形态均匀一致,大小相仿,胞体饱满,呈光滑的椭圆形或锥形,神经元的突起广泛分枝,相互交叉,折光性强;模型组神经元形态发生明显改变,细胞折光性下降,胞体萎缩,出现颗粒,轴突变细变短,形状僵硬,分枝减少;天麻素组神经元形态较模型组有所改善,胞体萎缩减轻,轴突保留较多,但仍有少数细胞坏死;天麻素对照组形态较对照组稍差。见图2。

2.2 细胞相对活力

空白对照组神经元细胞相对活力显著高于其他各组,模型组神经元细胞相对活力显著低于天麻素组、天麻素对照组,天麻素组神经元细胞相对活力显著低于天麻素对照组,差异有高度统计学意义(P < 0.01)。见图3。

2.3 LDH活性

模型组神经元细胞LDH活性显著高于其他各组,天麻素组、天麻素对照组神经元细胞LDH活性显著高于空白对照组,差异有高度统计学意义(P < 0.01)。见图4。

2.4 EphA4表达

荧光显微镜观察结果示,各组神经元胞体、突起均可见红色荧光显示,但各组荧光强度存在一定差异。模型组神经元平均IOD值显著高于其他各组,空白对照组神经元平均IOD值显著低于其他各组,差异有高度统计学意义(P < 0.01)。见图5和图6。

3 讨论

缺血缺氧性脑病存活患者病残率高达75%,这与脑组织缺血缺氧引发的神经细胞死亡,继而导致的神经功能缺损具有密切关联[9-10]。因此,临床亟需一种能够有效保护神经元功能、避免神经元损伤的药物。

天麻素是我国传统中药材天麻中的主要有效成分,已有大量研究证实,天麻素具有恢复大脑皮质兴奋与抑制过程间平衡失调等作用[11]。研究表明,天麻素还可通过抑制兴奋性氨基酸诱导的细胞凋亡过程,在清除自由基、对抗自由基诱导的细胞损伤、神经保护等方面发挥积极效果[12]。本研究结果示,经CoCl2处理后,模型组、天麻素组神经元细胞均出现了不同程度的形态学变化,以胞体萎缩、细胞坏死为主,说明天麻素具有一定的神经保护作用。

在天麻素神经保护作用机制的研究中发现,模型组神经元细胞相对活力最低,但其LDH活性最高,说明模型组神经元细胞存在明显损伤,而天麻素在一定程度上使CoCl2诱导的化学性损伤得到抑制,考虑与天麻素在对抗兴奋毒性、双向调节一氧化氮和一氧化氮合酶、促进胶质细胞产生营养因子、稳定胞膜、抗细胞氧化等方面发挥的积极作用有关[13]。大量LDH的漏出表明,神经细胞膜完整性受损,且Cai等[14]研究证实,LDH活性与神经细胞损伤程度呈正比,故本研究结果示,天麻素处理后神经细胞LDH漏出量显著降低,提示天麻素对细胞膜完整性的维持亦具有一定作用。

此外,本研究发现,经CoCl2处理后,模型组细胞EphA4表达水平显著升高,而天麻素可使细胞EphA4表达水平得到明显控制,与何保丽等[15]研究结论一致。作为一种具有影响突触可塑性的基因,EphA4广泛分布于大脑各个区域,并集中于海马锥体细胞树突棘部位,研究表明,配体Ephrin-A3可激活EphA4,诱发下游信号转导级联瀑布,导致树突棘瓦解,使成熟大脑突出的重构能力得以保存[16-18],因此,EphA4在缺血缺氧损伤后神经元的损伤中扮演了重要角色。本研究天麻素组细胞EphA4表达得到有效抑制,说明经天麻素处理后,EphA4参与的CoCl2诱导神经元损伤过程得到了有效控制,细胞自我保护现象有所降低,神经元重构能力得以保存,从而有效延缓了神经元损伤过程[19-20]。

综上所述,天麻素能够有效抑制CoCl2诱导的大鼠皮质神经元损伤,其保护作用可能与EphA4表达抑制有关,为缺血缺氧性脑损伤的临床治疗开拓了新的研究方向,但其具体作用机制有待进一步深入观察。

[参考文献]

[1] Song C,Fang S,Lv G,et al. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord [J]. Neural Regen Res,2013,8(15):1383-1389.

[2] Zhang M,Liu Y,Yu H,et al. A potential method for recycling of gastrodin separated from urine [J]. Asian J Chem,2013,25(8):4603.

[3] 杨汀,樊光辉.天麻素治疗神经系统疾病机制研究进展[J].华南国防医学杂志,2013,27(2):131-132.

[4] Zhang F,Li A. Dual regulating effects of gastrodin on extracellular dopamine concentration in rats models of Tourette's syndrome [J]. Int J Neurosci,2015,125(10):784-792.

[5] 位凯,王飞,张瑾,等.天麻素预处理减轻大鼠心肌缺血再灌注损伤的可能机制[J].安徽医科大学学报,2014,49(6):756-758.

[6] Sun G,Yuan Z,Zhang B,et al. Gastrodin blocks neural stem cell differentiation into glial cells mediated by kainic acid [J]. Neural Regen Res,2012,7(12):891-895.

[7] 陈伟康.天麻素注射液的药理作用与临床应用进展[J].海峡药学,2013,24(11):13-16.

[8] Wang X,Yan S,Wang A,et al. Gastrodin ameliorates memory deficits in 3,3′-iminodipropionitrile-induced rats:possible involvement of dopaminergic system [J]. Neurochem Res,2014,39(8):1458-1466.

[9] Jiang G,Wu H,Hu Y,et al. Gastrodin inhibits glutamate-induced apoptosis of PC12 cells via inhibition of CaMKII/ASK-1/p38 MAPK/p53 signaling cascade [J]. Cell Mol Neurobiol,2014,34(4):591-602.

[10] 梅梅,王显鹤,孙华威.白藜芦醇对缺氧缺血性脑损伤新生大鼠MMP-9及TIMP-1的影响[J].中国现代医生,2015,53(9):6-7,15.

[11] 章正祥,曹克刚,王春丹,等.天麻素对多巴胺,硝酸甘油诱发的血管舒缩异常模型大鼠神经肽,一氧化氮系统的影响[J].中华中医药学刊,2013,31(7):1514-1517.

[12] Liu W,Su BL,Wang ZS,et al. Gastrodin improved baroreflex sensitivity and increased gamma-amino butyric acid content in brains without decreasing blood pressure in spontaneously hypertensive rats [J]. CNS Neurosci Ther,2012,18(10):873-875.

[13] 吴迪,陈冠婕,彭正午,等.天麻素对脑缺血再灌注模型小鼠大脑及纹状体髓鞘的保护作用[J].中华行为医学与脑科学杂志,2015,24(3):198-200.

[14] Cai Z,Lei X,Lin Z,et al. Preparation and evaluation of sustained-release solid dispersions co-loading gastrodin with borneol as an oral brain-targeting enhancer [J]. Acta Pharm Sin B,2014,4(1):86-93.

[15] 何保丽,角建林,李波,等.天麻素对老年痴呆树海马BDNF表达的影响[J].昆明医科大学学报,2013,34(9):29-30.

[16] 张晖芬,陈晓辉,霍艳双,等.RP-HPLC双波长切换法同时测定天舒胶囊中天麻素、阿魏酸和6,7-二羟基藁本内酯的含量[J].沈阳药科大学学报,2012,29(6):443-447.

[17] Li C,Chen X,Zhang N,et al. Gastrodin inhibits neuroinflammation in rotenone-induced Parkinson's disease model rats [J]. Neural Regen Res,2012,7(5):325-331.

[18] 何小波,王晓燕.天麻素联合多奈哌齐治疗血管性痴呆疗效分析[J].实用老年医学,2014,28(7):580-582.

[19] Zhao GW,Wang Y,Li YC,et al. The neuroprotective effect of modified “Shengyu” decoction is mediated through an anti-inflammatory mechanism in the rat after traumatic brain injury [J]. J Ethnopharmacol,2014,151(1):694-703.

细胞化学元素范文2

[关键词] 神经干细胞 研究

健康网讯: 崔桂萍 天津市脑系科中心医院 300060 1992 年, Reynolds [1] 首次成功地从成年小鼠纹状体中分离出神经干细胞( neural stem cell, NSC ),于是“神经干细胞”这一概念被正式引入神经科学研究领域。可以总结为具有分化为神经元、星形细胞和少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。不少文献中还提到神经祖细胞和神经前体细胞,目前认为,神经祖细胞是指比 NSC 更有明确发展方向的细胞,而神经前体细胞是指处于发育早期的增殖细胞,可指代 NSC 和神经祖细胞:与 NSC 相比,二者的分裂增殖能力较弱而分化能力较强,是有限增殖细胞,但三者均属 NSC 范畴。 1. NSC 的起源、存在部位及生物学特征 中枢神经系统的发育起源于神经沟、神经嵴、神经管;研究发现, NSC 在神经管壁增殖,新生细胞呈放射状纤维迁移至脑的特定位置;主要存在于室管膜区,在成脑生发区以外的区域也广泛分布,即具有高度可塑性的神经前体细胞。 现发现 NSC 的生物学特征为:( 1 )具有自我更新能力;( 2 )具有多向分化潜能,可分化为神经元、星形细胞和少突胶质细胞;( 3 )处于高度未分化状态;( 4 )终生具有增殖分化能力,在有损伤的局部环境信号变化的刺激下可以增殖分化。其中( 1 )和( 2 )是 NSC 的两个基本特征。 2. NSC 的基础研究进展 NSC 的增殖和分化调控是目前 NSC 研究的核心问题,最近的研究资料显示, NSC 的增殖、分化、迁移调控受多种相关因素的影响。 2.1 神经递质 神经递质作为细胞外环境的一员,不仅介导神经元之间和神经元与效应器之间的信号传递,还参与 NSC 的增殖和分化。这些神经递质包括谷氨酸( G1u )、 5- 羟色胺( 5-HT )、 GABA 、甘氨酸( G1y )、乙酰胆碱( Ach )一氧化氮( NO )、肾上腺素与性激素等。 2.1.1 G1u :在脑的发育过程中有高含量的 G1u 表达, Haydar 等 [2] 发现, G1u 可以通过大鼠胚胎皮质 AMPA/KAR 的激活调节室周区前体细胞的增殖,但 GLU 对室管膜区( SZ )和室管膜下区( SVZ )体内细胞的影响是不同的,它可增加 SZ 细胞的增殖,减少 SVZ 细胞的增殖; GLU 还可促进神经元生长和分化。 2.1.2 5-HT :许多研究表明 [3] , 5-HT 在皮质发育、突触形成中起重要作用,抑制 5-HT 合成或选择性损伤 5-HT 神经元则引起齿状回及脑室下区神经元增殖活性下降, 5-HT 可促进胶质细胞分化和髓鞘形成。 2.1.3 GABA : GABA 是成体脑发育过程中主要的抑制性神经递质。 Haydar 等 [2] 发现, GABA 受体的激活可控制神经前体细胞的细胞周期; Stewart 等 [4] 研究发现, GABA 和 G1u 对脑内不同区域细胞增殖的影响是不同的,内源性 GABA 激活 GABA 受体在新皮质和调节神经前体细胞增殖方面起重要作用。 2.1.4 G1y 及其它: G1y 受体( G1yR )通过增加突触后细胞膜 C1 - 通透性而起突触后抑制作用。 Flint 等 [5] 发现, G1yR 在胚胎大鼠和初生早期脊髓中为未成熟迁移和分化的神经元中起重要作用,推测 G1yR 信号可能在突触形成中其重要作用; Ach 可通过 α -7 样烟碱乙酰胆碱受体激活导致新生大鼠嗅球原代培养细胞神经突起过度生长,相反, Ach 可抑制胚胎小鼠脊髓神经元的神经突起生长。有资料显示, NO 作为 CNS 的神经递质广泛参与神经细胞的存活、分化和可塑性的发生。而肾上腺素和性激素则可使新生小鼠齿状回新生细胞数量减少。 2.2 细胞外基质 细胞外基质( ECM )是组成间质和上皮血管中基质的不溶性结构成分,主要有胶原蛋白、弹性蛋白、蛋白多糖和糖蛋白等。研究表明, ECM 可影响细胞分化、增殖、黏附、形态发生和表型表达等生物学过程。 NSC 具有位置特异性的分化潜能,其增殖、分化和迁移与 ECM 有非常密切的关系。 2.2.1 B- 链蛋白:新近资料表明, NSC 与 ECM 的黏附功能可以调节细胞的生长和增殖。 NSC 中的 B- 链蛋白和 Tcy/Lef 转录因子家族参与了细胞的成活、增殖和分化。 Chenn 等 [6] 发现,在 NSC 中稳定表达 B- 链蛋白的转基因小鼠,其发育的大脑皮质表面积增大,沟回变深而宽,类似高级哺乳动物的皮质;侧脑室腔变大,与之相邻的脑室壁有大量增生的细胞;并且其大部分 NSC 在有丝分裂后可重新进入细胞周期,说明过度表达 B- 链蛋白并不破坏神经细胞正常发育分化,皮质的扩大是由于 NSC 增殖所致,提示 B- 链蛋白与 NSC 增殖有关。 2.2.2 Ree1in : Ree1in 是 ECM 中分子质量为 400 × 10 3 的蛋白质,与神经细胞表面的整合素受体 α 3 亚基、极低密度脂蛋白和载脂蛋白 E 相结合,触发 Dab-1 胞液蛋白的衔接功能。在皮质发育过程中的神经元以及脊髓节前神经元迁移中起重要作用。 2.2.3 细胞黏附因子:细胞黏附因子是一种影响干细胞行为的重要信号蛋白,包括整合素和黏合素等。研究表明, ECM 中的整合素在调控 NSC 增殖、分化和迁移方面有重要的作用。脑内整合素与配体的相互作用促进了神经细胞的迁移,神经突起过度生长和少突胶质细胞髓磷脂膜的形成,在可塑性过程的成体突触结构形成中也起重要作用。黏合素家族中的 TN-C 在早期发育的中枢神经系统中广泛表达,但在分化过程表达下降;成脑受伤后, TN-C 表达上调,提示 TN-C 在提高中枢神经系统功能和可塑性方面有重要作用。 Garcion 等 [7] 用基因敲除 TN-C 的方法,发现小鼠少突胶质前体细胞向视神经方向迁移增加,但在各脑区的增殖率下降。 2.2.4 细胞生长因子: NSC 的增殖和分化还受多种细胞生长因子的调控,如成纤维的细胞生长因子( FGF )和表皮生长因子( EGF )等。 FGF 有三种受体, FGFR1 、 FGFR2 和 FGFR3 ,发育早期 FGF 在胎脑内进行增殖或神经发生的区域内表达,成年脑内在相应的神经发生区内也有 FGF 的持续表达,提示 FGF 在调节 NSC 增殖中发挥重要作用, EGF 在发育脑和成年脑内均有表达,神经元和星形胶质细胞均可表达 EGF 。 2.2.5 糖蛋白:糖蛋白家族包括层黏蛋白( LM ),纤维连接蛋白( FN )和腱蛋白( TN ), LM 为基底膜的构成成分,可促进细胞黏附,调节细胞形态、分化及细胞迁移等; FN 具有形成 ECM ,促进细胞黏附、伸展、迁移、吞噬及血液凝固等多种生物学作用; TN 有促进细胞黏附,促进或抑制细胞增殖和迁移等多种作用,并有拮抗 FN 的细胞黏附作用。 Takano 等 [8] 新近发现, FN 对小鼠神经脊细胞中黑色素细胞的增殖、分化和迁移有重要作用。而 Chipperfield 等 [9] 则发现, ECM 中硫酸乙酰肝素葡糖胺聚糖( HS )可促进 FGF-1 对成体 NSC 的有丝分裂作用。 2.3 基因调控 2.3.1 Notch 基因: Notch 信号通路对于决定胚胎发生、造血和 NSC 分化起着至关重要的作用,当 Notch 被激活,干细胞进行增殖,当 Notch 活性被抑制,干细胞进入分化程序,发育为功能细胞。 Tanigaki [10] 等发现, Notch 在成体 NSC 发育为胶质细胞中起着重要作用,表达 Notch IC 明显增加星形细胞分化,减少神经元和少突胶质细胞的产生。 2.3.2 bHLH 基因: bHLH 基因具有高度同源性,是发育过程中转录网络的重要组成部分,广泛参与神经和肌肉、细胞增殖分化、细胞谱系决定和性别决定等生理过程。 bHLH 基因在神经上皮细胞发育为神经元中起关键并激活下游作用,可促进细胞脱离细胞周期,使细胞游离出皮质,并激活下游特定神经元分化的遗传基因表达。 2.3.3 同源盒基因:同源合基因在生物进化中有高度保守性,对下游靶细胞具有调节作用。同源盒基因目前有 Hox 、 Pax 和 Lim 等几大类;目前认为, Hox 的表达与中枢神经在发育中的分区有关,为不同神经元的发育提供位置特征; Pax 的早期表达与神经发育过程中空间和时间的局限性有密切关系; Lim 绝大多数在特定的神经元亚群中表达,参与特定神经元的发育。 Galli 等 [11] 发现,成体哺乳动物室周区的 NSC 表达同源盒基因 Emx2 分化成神经元和胶质细胞时 Emx2 基因表达明显下调;然而, Emx2 表达停止后, NSC 对称分化为两个干细胞的频率增加,随着 Emx2 表达的增加,这种对称分化能力逐渐降低。 2.3.4 Nestin 基因: Nestin 属于中间丝蛋白家族,存在于分裂的 NSC 中,成熟神经元和胶质细胞不表达,被选作 NSC 的识别物,通过检测 Nestin 的表达即可确定多潜能干细胞的存在。 3. NSC 的应用研究进展 随着对 NSC 了解的不断深入,国内外科学家积极开展对 NSC 的临床应用研究。表现如下: 3.1 细胞移植 试验研究表明, NSC 可用于损伤的神经细胞替代;如脑缺血的细胞移植治疗以成为目前脑移植的新热点。多项研究证实,移植胚胎脑组织是修复脑损害,重建神经功能的有效治疗途径。目前有自体移植和异体移植两种途径,由于胎脑来源有限,并受到孕龄选择、活力保持、异体排斥反应及伦理道德等因素制约,使异体移植受到很大限制。于是自体移植的体外分离培养受到诸多科学家的深入研究并取得成功。刘辉等 [12] 将人类胎儿海马 NSC 移植入大鼠颅脑损伤模型,一周后发现 NSC 移植治疗组与未治疗损伤组相比,呈明显运动功能改善, NSC 分裂增殖为神经元或胶质细胞,并向受损脑组织迁移,所以, NSC 是细胞移植治疗颅脑损伤的一种良好来源。 3.2 基因载体治疗 一些大分子物质如神经生长因子( NGF )、脑源性生长因子,尽管有治疗作用,却不能通过血脑屏障,其治疗作用受到限制;然而,用 NSC 作载体,将编码特定神经递质或蛋白质因子的基因转导入 NSC 载体,以治疗 CNS 疾病,取得可喜进展,在脑肿瘤基因治疗更为突出。 Benedetti 等 [13] 将表达白介素 -4 的基因转导到 C57BL6J 小鼠原代神经组织细胞,然后将这些细胞注入已建立的胶质母细胞瘤模型中,结果导致大多数带瘤小鼠的存活,磁共振证实了大肿瘤渐进性缩小、消失。 3.3 神经损伤的再生 大量的试验研究表明,脑缺血可以出现发生区内源性 NSC 激活,以达到神经再生。 Iwai 等 [14] 认为,脑缺血后的神经再生可分为增殖、迁移、分化三个阶段;他们通过沙土鼠海马齿状回缺血再灌注损伤试验模型发现,沙土鼠脑缺血后第 10 天 NSC 增殖达高峰;缺血后 20 天,开始增殖的细胞表达神经黏附分子,并从颗粒层下区迁移至颗粒层;在到缺血后 60 天,这些迁移的细胞才分化为成熟细胞。 3.4 生命科学的研究 首先,通过干细胞的研究来检测人体的一些数量和浓度极为稀少的蛋白质;其次,通过研究药物对胚胎神经干细胞的生长分化的影响,推测某些药物潜在的胎儿致畸作用,人胚胎干细胞还可以提供在细胞和分子水平上研究人体发育过程中极早期事件的方法,并且不会引起相关的伦理问题。目前采用移植 NSC 治疗帕金森病、亨廷顿病、脊髓损伤、缺血性中风及老年痴呆等疾病取得一定进展,仍有待于进一步的研究和探讨。 4. 结语 近几年,对 NSC 的基础研究和应用研究均取得了可喜的进展,随着认识的不断深入,尚有许多问题未能明确,如:人体能获得利用移植 NSC 的程度有多大?移植物增殖分化的关键基因是什么?国内外的部分研究已发现神经干细胞移植到动物脑内后有潜在的致瘤性,等等。这些都有待于深入研究和解决,也希望我们的研究能广泛应用于临床。 作者简介:崔桂萍,女,主管检验师。 参考文献 1. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cell of the adult mammalian central nervous system. Science, 1992,225:1707-1710. 2. Haydar TF, Wang F, Schwartz MI, et al. Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci, 2000,20:5764-5774. 3. Roerig B, Feller MB. Neurotransmitters and gap junctions in developing neural circuits. Brain Res Brain Res Rev. 2000,32:86-114. 4. Stewart RR, Hoge GJ, Zigova T, et al. Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobil, 2002,10:305-322. 5. Flint AC, Liu X, Kriegsein AR. Nonsynaptic glycine receptor activation during early neocortical development. Neuron, 1998,20:43-53. 6. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 2002,99:4020-4025. 7. Garcion E, Faissner A, ffrench Constant C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin –C to neural precursor proliferation and migration. Development, 2001,128:2485-2496. 8. Takano N, Kawakami T, Kawa Y, et al. Fibronectin combined with stem cell factor plays an important role in melanocyte proliferation differentiation and migration in culture mouse neural crest cells. Pigment Cell Res, 2002,15:192-200. 9. Chipperfield H, Bedi KS, Cool SM, et al. Heparan sulfates isolated from adult neural progenitor cells can direct phenotypic maturation. Int J Dev Biol, 2002,46:661-670. 10. Tanigak K, Nogaki F, Takahashi J, et al. Notch1 and Notch3 Instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron, 2001,29:45-55. 11. Galli R, Fiocco R, De Filippis L, et al. Emx2 regulates the proliferation of stem cells of sthe adult mammalian central nervous system. Development, 2002,129:1633-1644. 12. 刘辉,杨树源,张建宁,等 . 神经干细胞移植对颅脑外伤神经组织的替代和修复作用 . 中华神经外科杂志 . 2002 , 18 ( 5 ): 282-285. 13. Benedetti S, Pirola B, Pollo B,et al. Gene therapy of experimental brian tumors using neural progenitor cells, Nat Med,2000,6(4):447-450. 14. Iwai M, Sato K, Omon M, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischema. J Cereb Blood Flow Metab.2002,22(4):411-419. 中华综合临床医学杂志

细胞化学元素范文3

文献标识码:A

文章编号:1672―1349(2007)06―0515 03

以往对神经保护的研究主要集中在神经元本身,认为只要阻断导致神经元坏死和凋亡机制中的一个或几个环节便可减轻神经元的进一步损伤。近年的研究发现,任何导致神经元损伤的原因如缺血缺氧、癫痫、感染、外伤、肿瘤、中毒、代谢障碍、退行性变或营养缺乏等都可能同时损伤胶质细胞和血管内皮细胞,后者的病理变化会加剧神经元的进一步损伤。因而提出神经血管单元(neurovascular unit)的概念,认为在神经保护治疗的同时必须兼顾对神经胶质细胞和血管内皮的保护。

天麻(Gastrodia elata B1,GE)为兰科天麻属多年生草本植物,具有熄风定惊、平肝潜阳、益智健脑、延缓衰老之功效。近年的研究显示天麻及其提取物天麻素(Gastrodin)、香草醇(Vanillylalcohol)、香草兰醛(Vanillin)、对羟基苯甲醛(Phydroxybenzol de―hyde)、对羟基苄醇(Phvdroxybenzylalcohol)等在神经损伤的多个环节起作用,同时涉及对胶质细胞和血管内皮细胞的影响。本文就此作一综述。

1 调节递质性氨基酸的浓度

1.1抗兴奋性毒性作用 脑内的兴奋性氨基酸(EEA)主要为谷氨酸(Glu),它最主要的受体是N-甲基D-天冬氨酸(NMDA)受体。正常情况下EEA作为神经递质对中枢神经系统的活动至关重要。当各种原因引起脑损伤时,从神经末梢释放增加而摄取减少,使其在细胞外间隙蓄积,受体过度激活,从而引起兴奋毒性(Excitotoxicity),导致神经元过度兴奋、坏死和凋亡。

陈文东等在人神经母细胞瘤SH-SY5Y细胞系培养液中研究天麻素对由氯化钾诱导的神经细胞释放谷氨酸的影响,发现天麻素可以防止神经细胞产生或释放过多的Glu,提示天麻素有可能被用于治疗某些脑内Glu浓度升高或钙离子超载导致的中枢神经系统疾病。薛柳华等进行了天麻素对Glu致培养皮层神经细胞损伤的保护作用的研究,发现天麻素可拮抗兴奋性氨基酸的神经毒性。

李运曼等发现天麻素能明显提高Glu诱导的PCI2细胞还原MTT的能力,抑制细胞乳酸脱氢酶(LDH)的释放;还可抑制兴奋性氨基酸引起的细胞内Ca2+含量的升高;剂量相关性的降低PCL2细胞凋亡百分率;同时可减轻H2O22引起的PCL2细胞损伤,降低静息状态下PC12细胞内过氧化氢的含量。

曹春雨等报道各种剂量的天麻都能使N-甲基D-天冬氨酸受体结合数下降,中剂量和大剂量天麻均能明显降低反复脑缺血再灌小鼠皮层NMDA受体结合数,提示天麻的脑保护机制与降低受体活性,抑制兴奋性氨基酸神经毒性作用有关。

天麻成分香荚兰醛和对羟基苯甲醛可显著的抑制Glu引起的人IMR 32成神经细胞瘤细胞内Ca2+的升高和细胞凋亡。应用小鼠双侧颈总动脉结扎再灌注模型造成兴奋毒性损伤,口服天麻促智颗粒(由天麻钩藤饮化载而成)可以调节模型小鼠脑组织内递质性氨基酸的含量,维持兴奋性氨基酸和抑制性氨基酸的动态平衡;还能够抑制缺血再灌注损伤引起的大脑皮质、海马两部位NMDA受体活性的增高,从而对抗兴奋毒性。以上研究说明,天麻可以从调节EEA的释放和摄取,抑制NMDA受体活性,防止Ca2+超载等方面对抗兴奋毒性。

1.2对脑内r-氨基丁酸(GABA)的影响 GABA作为脑内最重要的抑制性递质,能拮抗EEA过度表达所产生的兴奋毒性,保护神经元免于损伤。

An等[8]研究了天麻素对癫痫敏感性沙土鼠海马区GABA代谢的影响,发现天麻素在减少痫性发作评分的同时,升高海马区GABA的浓度。通过检测r-氨基丁酸转氨酶(GABAtransaminase,GABA―T)、琥珀酸半醛脱氢酶(succinic semialde―hyde dehydrogenase,SSADH)、琥珀酸半醛还原酶(succinic semi―aldehyde reductase,SSR)等指标观察天麻素对GABA降解影响,发现天麻素能显著减少GABA-T、SSADH和SSR的摄取。Ha等发现羟基苯醛(4-hydroxybenaldehyde)对GABA―T的抑制作用强于氨基烯酸(Vigabatrin)和丙戊酸(Valproic acid)。表明天麻提取物能够通过抑制GABA的降解,有效提高GABA的浓度,减少神经元的损伤。

2对一氧化氮(NO)及一氧化氮合酶(NOS)的影响

铅中毒使脑内NOS活性减少,阻碍小脑长时程抑制(LTD)的形成和维持,进而损害学习记忆。天麻可以拮抗铅中毒引起的大鼠小脑匀浆NO水平的降低和学习记忆损害。胡建军等研究发现天麻素能减轻胶质细丝酸性蛋白(GFAP)纤维素样改变;减少LDH漏出量;抑制NOS活性,从而减轻NO过量产生所引起的细胞毒性作用。

缺血再灌注损伤则引起体外培养星形胶质细胞NOS表达的上调,天麻素和川芎天麻液可对抗这种上调,从而抑制NO本身及由其而产生的一系列氧自由基的毒性。可见,天麻通过对NO的双相调节发挥其益智和神经保护作用。

3抗氧化作用

超氧化物歧化酶(SOD)是组织内重要的抗氧化活性物质,是氧自由基的清除剂,能够有效地清除超氧阴离子自由基(O2-),保护细胞免受损伤。丙二醛(MDA)是氧自由基攻击生物膜结构中的多不饱和脂肪酸后形成的脂质过氧化物,脑组织缺血缺氧后SOD含量下降,氧自由基增加,导致脂质过氧化过程加剧。研究表明,天麻增加脑内SOD含量,降低MDA含量,减少自由基产生,抑制脂质过氧化过程,提高脑细胞的存活率,在海马CA1区尤为显著。

对体外培养的缺血再灌注神经细胞,天麻素能明显地抑制其过氧化脂质(LPO)的增多。荚香兰醇则能够显著的抑制脑内注射氯化铁造成的大鼠癫痫模型皮层内LPO的升高。荚香兰醛和对羟基苄醇均可以抑制大鼠脑匀浆、微粒体、线粒体的脂质过氧化反应[16]。川芎天麻液可提高缺血再灌注损伤大鼠脑内SOD的含量。天智颗粒可在体内和体外显著抑制大鼠脑LPO的生成,使反复缺血再灌注小鼠皮层和海马谷胱甘肽过氧化物酶(GSH-Px,GPX)活性增高,但对脑组织SOD的活性未见影响,提示天智颗粒抗氧化作用的机制主要是提高GPX的活性。

4对凋亡相关基因表达的影响

神经细胞凋亡是多种疾病脑损伤的共同过程。Bcl-2,HSP,C-fos等为抑制细胞凋亡基因,而Bax、p53、caspase-3等为促细胞凋亡基因。脑缺血再灌注损伤可引起体外培养海马神经元Bcl-2表达减少和bax表达增加,黄建梅等观察了抗呆I号(有天麻素等中药提取物组成)对体外模拟脑缺血再灌注损

伤原代培养海马神经元调控基因Bcl-2和Bax表达的影响。发现抗呆I号可通过上调神经元Bcl-2表达、下调Bax的表达对缺血再灌注损伤的神经细胞起到一定的保护作用。徐坚等通过实验研究证明,天麻可上调神经元Bcl-2的表达和下调Bax和p53基因的表达,从而起到对缺血再灌注脑组织神经元的保护作用。

胡俊峰等[19]观察醋酸铅染毒对大鼠海马和小脑C-fos基因表达及学习记忆功能的影响,同时观察阿胶、天麻的拮抗作用。发现亚慢性铅染毒造成大鼠学习记忆障碍的同时,导致C-los基因表达水平的下调,而天麻、阿胶可通过不同途径拮抗其对C―fos基因表达及学习记忆能力的影响。

5稳定细胞膜作用

在神经细胞损伤过程中,细胞膜状态是其损伤从可逆向不可逆转变的重要环节。膜流动性主要取决于磷脂,它可以敏感的反映细胞膜的状态。由于缺氧与兴奋性损伤,体外培养神经细胞缺血5h后即观察到膜流动性的下降,再灌后膜流动性继续下降。天麻素具有维持神经细胞膜流动性的作用,其机制可能是抑制磷脂酶的激活而阻止磷脂的降解。细胞膜受损达一定程度,膜的通透性增大,使生理情况下很少漏出的LDH大量漏出,细胞外LDH的浓度可以反映细胞膜损伤的程度。缺血再灌注以及谷氨酸的兴奋毒性使培养神经细胞膜和胶质细胞膜损伤,LDH大量漏出,表现为培养液中的LDH含量增高;天麻及其有效成分天麻素可以显著的减少上述损伤造成的LDH的漏出,并能显著地降低自由基的生成,表明天麻素有清除过多的自由基作用和细胞膜保护作用。天麻也可以通过保护脑细胞膜ATP酶的活性,改善离子转运,防止脑缺血缺氧后脑水肿的形成。

6对胶质细胞的影响

胶质细胞可分泌多种细胞因子和神经营养因子,在联系和维持神经元生存微环境中起着重要作用。生理情况下,胶质细胞数量的增多对活跃神经元起到更好的支持作用,对大脑的学习记忆功能有益。口服天麻可以明显使大鼠大脑胶质细胞增生,胶质细胞群面积增大,胶质细胞数量增多,这是天麻益智作用的机理之一。当多种原因引起脑损伤时,胶质细胞过度增生,增生的胶质细胞一方面产生和释放肿瘤坏死因子和NO等神经毒物质,促进损伤的发展;另一方面产生神经营养因子,有利于轴突的再生和修复。体外培养的星形胶质细胞在缺血再灌注损伤后胶原纤维酸性蛋白,星形胶质细胞的特异性标志物的阳性计数较正常组显著增高,且胶质细胞发生纤维样变,天麻素可以明显地抑制GFAP的增多,即通过抑制胶质细胞的过度增生以减弱其对神经细胞的进一步损伤,还能够减弱胶质细胞纤维样改变的程度。

7对血管的影响

天麻能抑制醋酸所致的小鼠腹腔毛细血管通透性增加,抑制5-羟色胺(5-HT)、PGF4所致大鼠皮肤毛细血管通透性增加,说明天麻对炎症早期的渗出有抑制作用,并能明显抑制多种炎症的肿胀。

孟云辉等观察天麻钩藤饮对血管紧张素Ⅱ(Ang Ⅱ)致人脐静脉内皮细胞(HUVECs)损伤的保护作用。发现天麻钩藤饮含药血清可抑制AngⅡ导致的细胞损伤,减少TNF-α的分泌,升高PPAR-rmRNA的表达。提示天麻钩藤饮可对抗AngⅡ所致的HUVECs损伤,保护血管内皮细胞功能。

8问题与展望

细胞化学元素范文4

关键词:  细胞凋亡;内质网应激;caspase;Bcl2;参麦注射液

凋亡是脑缺血后神经元死亡的一种重要形式。凋亡信号途径包括外源性、内源性/应激途径。缺血后神经元的凋亡发生是一个多环节调控过程,其中包括基因表达的改变、兴奋性氨基酸的释放、钙离子稳态失衡、热休克蛋白表达受阻、脂肪酸与自由基形成、蛋白酶激活等过程,但脑缺血后神经元凋亡发生的确切机制目前还不十分清楚。内质网可能是细胞内诱导凋亡的一个新场所,内质网在应激状态下,可迅速诱导凋亡。毒胡萝卜素(thapsigargin)为不可逆性内质网钙ATP酶抑制剂,可诱导内质网应激。本研究旨在探讨大鼠皮层神经元内质网应激诱导细胞凋亡机制以及参麦注射液的保护作用。

1  材料与方法

1.1  动物与试剂

新生SD大鼠(出生24 h内)由华中科技大学同济医学院实验动物中心提供,动物合格证号:SCXK(鄂)20040007。高糖DMEM、神经元基础培养液、B27、胎牛血清、马血清购自GibcoBRL公司;胰蛋白酶、L多聚赖氨酸购自Sigma公司;Annexin VFTTC购自Bender MedSystems公司;Fura2/AM购自晶美生物公司;活性caspase3、caspase9试剂盒购自BioVision公司;AntiGRP78多克隆抗体购自Stressgen公司;Bcl2、细胞色素C试剂盒购自Santa Cruz公司;神经元特异性烯醇化酶(NSE)组化试剂盒购自北京中山公司;其他均为市售分析纯。参麦注射液由人参、麦冬组成,每支10 ml,含生药0.5 g,批号为0807046,正大青春宝药业有限公司出产。

1.2  仪器

CO2恒温细胞培养箱(Napco 5410220,美国);荧光倒置显微镜(Olympus日本);全自动酶标分析仪 (Thermo electron corporation Multiskan MK3,美国);流式细胞仪(FACSCLSR,BectonDickton,美国);F2000型双波长荧光分光光度计(Hitachi 850,日本)。

1.3  分组与给药

实验分为阴性对照组 (正常培养神经元),毒胡萝卜素组(神经元基础培养液中加2%B27,加2 μmol/L毒胡萝卜素24~48 h),参麦治疗组(神经元基础培养液中加2% B27,2 μmol/L毒胡萝卜素,参麦注射液10 ml/L 24~48 h)。

1.4  皮层神经元培养

取出生24 h以内SD大鼠皮层于冷解剖液(4℃)中,剥离脑膜、血管,将脑组织剪成≤1 mm3的组织块,入0.1%胰酶液,37℃水浴消化20 min,加种植培养液 (DEME中添加10%胎牛血清,10%马血清,pH 7.2~7.4) 终止消化并吹打,细胞悬液经200目滤网过滤,获得单细胞悬液,1×106/皿的密度接种于预先包被多聚赖氨酸的35 cm培养皿。第2天换维持培养液(神经元基础培养液中加2% B27),培养3~5 d半量换液,7~10 d用于实验。

1.5  神经元的鉴定

免疫组织化学染色标记NSE(北京中格公司产品)和IgG免疫荧光染色(FITC标记的兔抗鼠IgG 1∶2 000稀释)鉴定神经元。

1.6  参麦注射液对原代神经元活力的影响

神经元活力测定采用MTT法。取前述原代神经元(细胞计数达1×106/ml),按每孔100 μl 接种于96孔板,培养5 d后随机分组,设置空白对照组 (用来调零,只加培养基,不加细胞)、阴性对照组 (药物浓度为零,加细胞,加培养基)、治疗组 (加参麦注射液,加细胞,加培养基),治疗组参麦注射液终浓度10 ml/L。分别继续培养1、2、3 d,每孔加入MTT 15 μl,37℃孵育4 h,镜下观察形成紫色针状结晶,小心弃去上清,每孔加入DMSO 100 μl,室温下放置10 min。待镜下观察紫色结晶全部溶解后,以Dynatech MR400 ELISA读数仪测定MTT吸光度值,检测波长570 nm,参考波长630 nm。

1.7  流式细胞分析仪检测神经元凋亡及caspase3、9活性

取上述分组培养的神经元经胰蛋白酶消化后在4℃离心5 min,去上清后细胞沉淀用冷PBS洗2次,加195 μl结合缓冲液悬浮细胞,然后加入Annexin VFTTC 5 μl,室温避光孵育10 min,结合缓冲液洗3遍,190 μl结合缓冲液重悬细胞,加10 μl (20 μg/ml) PI (终浓度1 μg/ml),上机检测,重复3次。取上述各组及阴性对照组细胞 (正常培养的细胞培养液中加1×106/ml caspase3、9抑制剂共孵育) 消化、重悬,取300 μl细胞悬液于EP管中,每管分别加入1 μl FITC标记的caspase3、9,37℃ 5% CO2恒温细胞培养箱孵育1 h,3 000 r/min离心5 min,弃上清,0.5 ml缓冲液重悬细胞,3 000 r/min离心5 min,弃上清,300 μl缓冲液重悬细胞,上机检测,重复3次。

1.8  GRP78、Bcl2、细胞色素C免疫印迹分析

各组细胞按照总蛋白提取试剂盒操作提取总蛋白,按蛋白定量试剂盒说明定量。免疫印迹操作参照Elyaman等〔1〕的方法进行。每组实验重复3次。利用激光扫描光密度分析法半定量测定细胞GRP78、Bcl2、细胞色素C水平变化。

细胞化学元素范文5

目的 研究脑心清及其黄酮成分对海马神经元细胞l型ca2+通道活性的影响。 方法 采用全细胞记录式(wholecell model)的膜片钳技术记录海马神经细胞l型ca2+通道电流变化。 结果 槲皮素、柿叶黄酮、脑心清在5.0~25.0 μg/ml浓度下,均能增加海马锥体神经元全细胞l型钙通道电流(ica,l)峰值(p<0.01),增加最大值分别为61.6%,55.3%,52.0%,可使ica,l 的i-v相关曲线下移,但没有电压依赖性特征,也不改变钙通道的电学特征。结论 脑心清及其黄酮成分对海马神经细胞l型ca2+通道活性有激活增强作用,有利于神经元细胞内钙稳定,发挥抗缺血再灌注损伤的作用。

【关键词】  l 型ca2+通道 脑心清 黄酮 槲皮素 海马神经元 膜片钳技术

effect of naoxingqing and its flavonoid components on the ltype ca2+ channel current in the cultured hippocampal pyramidal neurons of rats

bei weijian1,li chuyuan2,wang deqing2,hu dehui3,peng wenlie4,xu anlong4

(1.academy of chinese medicinal sciences,guangdong pharmaceutical college,guangzhou,

guangdong 510006, china; 2.hutchison whampoa guangzhou baiyunshan chinese medicine company

limited,guangzhou,guangdong 510515, china; 3.department of physiology,southern medical

university,guangzhou,guangdong 510515, china; 4.school of life sciences,sun yatsen university,

guangzhou,guangdong 510275, china)abstract:objective to investigate the effects of quercetin,fldkp70 and naoxingqing (nxq) on ltype calcium channel (ltcc) in the cultured pyramidal neurons isolated from hippocampus.methods calcium currents were recorded in wholecell patchclamp mode with quercetin,fldkp70 and nxq in the measurement medium.results it was found that 5.0~25.0 μg/ml of quercetin,fldkp70 and nxq enhanced ltype calcium channel current by 61.6%,55.3%,52.0% ,respectively in the cultured neurons. significantly,the quercetin,fldkp70 and nxqmediated increases of calcium currents saturated at the concentrations around 100 μg/ml in the cultured neurons.conclusion these findings suggested that the ltype calcium channel in cultured pyramidal neurons could be modulated by quercetin,fldkp70 and nxq,which might be beneficial to the intracellular calcium homeostasis in the insulted and damaged susceptible neurons under ischemia/reperfusion disorder.

key words:ltype ca2+ channels; hipocamcal pyramidal neurons; naoxinqing (nxq);flavonoids;quercetin;patchclamp

在复杂的编码细胞内激活细胞凋亡的信号相互作用中,钙起着重要作用。通过内质网、线粒体和其他信号通路,ca2+稳态改变与启动细胞凋亡性死亡密切相关[1,2]。ca2+稳态的调节极其复杂,至今还未明了。近年来研究表明,在控制ca2+稳态的过程中更精细的变化可能对决定细胞生死有深刻影响[3]。ca2+稳态可能是凋亡的基本致病过程中的一个药理靶标。

l型ca2+通道在海马锥体神经元基底树突和胞体都特别集中,其电流占细胞总钙电流的30%~50%。它们的开放和关闭能有效调节细胞浆内ca2+的水平,而且有证据表明它们还能将钙信号直接传至细胞核[3,4]。l型ca2+通道的激活可以直接调控一些对神经元存活及其功能所必需的重要基因的表达,如bcl2和脑源性神经营养因子等[5]。

脑心清(nxq)及其有效成分柿叶黄酮(fldk)都具有抗脑缺血损伤作用[6],通过上调抗氧化基因bcl2的表达,改善神经细胞氧化还原状态,清除自由基、抗脂质过氧化等方面来发挥其抗缺氧缺血性神经损伤、抗氧化应激和抗兴奋性谷氨酸毒性神经损伤、抗急性脑缺血作用,抑制缺血再灌注引起的脑组织细胞凋亡,保护缺血再灌注引起损伤的脑组织,并能改善缺血再灌注引起损伤的脑组织神经功能[6,7]。本文研究脑心清及其黄酮成分对海马锥体神经元l型ca2+通道活性的影响,以探讨在ca2+稳态调节方面,脑心清及其黄酮成分抗脑缺血损伤神经保护作用的机制。

1 实验材料

1.1 受试药

脑心清片用干浸膏(以下简称脑心清、nxq),由广州白云山和记黄埔中药有限公司提供。

脑心清黄酮(fldk),由脑心清经聚酰胺树脂吸附分离而得,总黄酮类含量77.35%,其中槲皮素类含量34.625%,山柰酚类含量为42.50%(hplc测定),代号fldkp70。用2% nahco3 溶液加热到80 ℃溶解成含药25 mg/ml的热溶液。

实验所用溶液的ph均用hcl 和naoh溶液调至7.2~7.4,并用0.22 μm的滤膜过滤除去尘粒和细菌。室温保存,用时加pbs稀释至所需浓度即可。

1.2 药品与试剂

阿拉伯糖胞嘧啶、dna酶ⅰ、2巯基乙醇、mem(modified eagle medium)合成培养基、dhanks 平衡盐干粉、dmem培养基、胰蛋白酶、胎牛血清、l谷氨酰胺、多聚赖氨酸(mw70150kd)均为美国hyclone公司产品。rnase a(sigma):以1 mg/ml的水溶液,经100 ℃煮沸以灭活dna酶活性后,分装冻存于-20 ℃备用。

1.3 大鼠

新生sd乳鼠,24 h龄,体质量约5.5~10 g,清洁级,合格证号:粤检证字第2003a053号,南方医科大学实验动物中心提供。

1.4 主要仪器

leica dmlfs倒置显微镜、mo203微电极操纵器(mo203,日本)、axopatch 200b型膜片钳放大器(美国 axon instrument)。

2 实验方法

2.1 新生乳鼠海马神经元的原代培养[4]

无菌条件下,借助于解剖显微镜,取刚出生24 h内的sd乳鼠,分离海马组织,用0.25%胰蛋白酶和0.2%脱氧核糖核酸酶pbs溶液37 ℃孵育消化20 min,并不断摇动,用3倍体积的dmem培养基分散和冲洗,消化的细胞经200目细胞筛过滤后,200×g离心5 min,用血球计数板计数细胞,0. 4%台盼蓝镜检存活率大于95%,以1.5 × 105个/ml的密度种植于涂有多聚赖氨酸(10 μg/ml)的24孔培养皿内,每孔0.4 ml,完全培养基为45% dmem+45% f12+10%胎牛血清的混合液,内含青霉素(100 iu/ml)和链霉素100 μg/ml。正常糖培养液: 含5 mmol/l葡萄糖的完全培养基。在一定湿度的37 ℃恒温的培养箱(5%co2)培养48 h,换培养基去除死细胞,加入终质量浓度为10 μg/ml的阿糖胞苷培养48 h,抑制非神经元细胞生长。然后隔48 h换半量新培养基,继续培养12 d,进行钙通道活性测定。

2.2 膜片钳技术测定海马神经细胞l型ca2+通道电流[8]

2.2.1 l型钙通道全细胞钙电流记录的液体配制 细胞浴液(mmol/l):choline chloride 75; teacl(氯化四乙铵,tetraethyl ammonium tea)50;bacl2 5; cscl 5;hepes 10; mgcl2·6h2o 2;dglucose 10;ttx(河豚毒素,tetrodotoxin) 0.001。用teacl调ph 至7.3。电极冲灌液(mmol/l):csmeth 145; teacl 10; egta 10;mgcl2·6h2o 5;hepes 10; cacl2·2h2o 1;mgatp 5;leupitin 0.1;用csoh调ph 至7.3,过滤除菌,避光保存。

2.2.2 记录用玻璃微电极的制作 用无芯硬质玻璃毛细管坯(gg15,中科院上海生理所)在垂直微电极拉制仪(p97拉制器)上用两步法拉制。在其尖端涂布ntrimethylsilydiethylamine,并进行热抛光。电极尖端直径约为1 μm,内灌电极液后,全细胞记录的电极冲灌电极液后入细胞浴液的电极电阻在2~5 mω为佳;内插泛极化氯化银与膜片钳放大器探头相连。

2.2.3 全细胞式膜片钳记录[10] 将载有海马神经元的载玻片从培养板中取出,在每次实验前均用记录浴槽内的溶液冲洗带有神经细胞的载玻片,以洗去细胞表面上的其他成分,然后置于含有培养液的膜片钳测定专用平台液槽中,加1 ml浴液,实验仅选用状态优良的锥体细胞(贴壁良好、有明显突起、细胞边界清昕、胞浆均匀一致)。

在显微镜下找到优良的单个神经元细胞,通过倒置显微镜和微电极操纵器监视,驱动微电极接近细胞。当微电极尖端刚刚接触到细胞时,稍加负压,使之与细胞膜形成高达10 gω以上的高阻密封即刻形成。

在贴附式基础上,实验中仅选用密封电阻大于5 gω的细胞。再施以负压吸破细胞膜,形成全细胞记录状态,根据需要对串联电阻和电容进行补偿,再进行记录即为全细胞记录[10]。用l型钙通道特异性阻断剂硝苯地平(nifedipine)和开通剂bay k 8644鉴定所记录的电流为l型钙通道电流。前置放大器的低通滤波设置 1 khz。用 axopatch 200b型膜片钳放大器,调用pclamp软件的clampex程序,由此发出去极化脉冲波,同步采集通道开放电流,一次采集50条曲线存入硬盘。记录时,钳制电压-40 mv施予150 ms,0 mv去极化脉冲,记录ica,l。并给予-70~60 mv的系列去极化脉冲,去极化步距为10 mv,记录钙电流,以各电流幅值对相应电位作图得i-v相关曲线。

2.3 实验分组与药物处理

药物以高浓度溶解在电极液中,实验时加5~20 μl到神经细胞孵育液中,使达到所需浓度。分组:①正常对照:给予溶媒对照。②给药组: 脑心清、fldkp70 、槲皮素、芦丁,剂量分别为5.0、10.0、20.0 μg/ml。

测定记录正常和给药条件下的海马神经细胞l型ca2+通道活性的有关参数,记录在电脑软件上。实验在(25±1)℃温度下进行。

2.4 资料分析

全细胞记录的结果可用clampfit软件直接分析。

2.5 统计学处理

数据以(±s)表示,采用非配对t检验,p<0.05为差异有显著性。patch数用n表示。

3 结 果

3.1 海马锥体神经细胞全细胞l型钙通道电流特性

正常海马锥体神经细胞l型钙通道多显短暂性开放,在记录时间里,无明显的通道时间依赖性失活;当钳制电压vp为-40 mv时,可见一定的内向电流。不同钳制电压下,有不同的电流值,能被bay k 86444激活,并且被硝苯地平完全抑制。当vp=-10 mv时,l型钙通道电流ica,l峰值,电流幅度平均值为(-192.7±46.2)pa,见图1、表1。

3.2 脑心清及其黄酮对海马神经元全细胞l型钙通道电流幅度的影响

脑心清及其黄酮fldkp70 、槲皮素对海马锥体神经元全细胞l型钙通道电流幅度的影响见表1、图1-3。表1 脑心清、柿叶黄酮和槲皮素对大鼠海马锥体神经元全细胞l型钙通道电流的影响注:*vp=-10 mv时,药物处理各组ica,l峰值(电流幅度平均值);与对照组比较:*p<0.05;**p<0.01

槲皮素、柿叶黄酮、脑心清在5.0~25.0 μg/ml浓度下,均能增加海马锥体神经元全细胞l型钙通道电流(ica,l)峰值(p<0.01),并呈浓度依赖性增加,增加最大值分别为61.6%,55.3%,52.0%,可使ica,l的iv相关曲线下移,在不同钳制电压下电流幅度均有增加,但没有电压依赖性特征(不改变i-v相关曲线的形状),也不改变钙通道的电学特征(最大激活电位在10 mv附近也未改变),见图1-3和表1。提示它们对海马锥体神经细胞l型钙通道有激活增强作用,并且这种激活是在钙通道结构和功能没有受到破坏的情况下激活。

对海马锥体神经元全细胞l型钙通道电流最大幅度增强作用的强度从大到小顺序为槲皮素>柿叶黄酮>脑心清。

4 讨 论

中枢神经系统神经元上存在l、n、p、q、r、t等6种类型的电压依赖型钙通道,它们各自有不同的电生理学特征[3]。本实验由于细胞外液中的ttx选择性地阻断了钠通道,外液中的tea和电极内液中的cs+选择性地阻断了钾通道,所记录到内向电流为钙电流。其开放动力学特征与文献报道高电位激活电压门控性钙通道有相似的电学特征性[3],是典型的l型钙通道。

近年来,传统的兴奋性毒性所致的ca2+超载学说也受到挑战。虽然细胞凋亡时,大多数情况下,细胞内钙离子浓度是增高的,而且这可能是凋亡中的某些环节所必需[9]。但是,另一方面,通过多种途径提高细胞内钙离子浓度又可以减轻培养的神经元细胞的凋亡,如在培养基中加入低浓度的n甲基d门冬氨酸(nmethydaspatrate,nmda)[10],激活电压门控的钙离子通道[1]等措施。

实验发现:在培养的交感神经元,抑制神经元凋亡的钙离子水平为180~240 nmol·l-1[17],这比在许多细胞中引起细胞中毒的钙离子浓度水平(>5 μmol·l-1)[11]要低得多。年青的、生长因子依赖性很大的交感神经元,其细胞内钙离子浓度比对生长因子依赖性很小的年老交感神经元细胞内钙离子浓度要低。johnson em 等因此提出了一个神经细胞的存活和轴突的生长依赖于细胞内一个适宜的钙浓度的钙调定点学说[1]。认为细胞可能主要有3个不同的钙离子状态:(1)低钙离子状态,此时神经元有凋亡的危险,其存活对生长因子高度依赖;(2)中等浓度钙离子状态,适合细胞的生存,对生长因子的依赖性很小;(3)高钙离子状态,具有细胞毒性[11,13]。

据钙调定点学说,可以推测缺血后谷氨酸受体(glutamate receptor,glur2 /glurb) 表达下调引起钙离子内流,可能具有细胞保护作用;而且,近年来的研究也表明,短暂的前脑缺血3 d后,细胞内钙离子浓度没有增高,并且电压门控钙通道电流是降低的[14]。koh jy 等报道,皮层神经元持续暴露于电压门控钙离子通道拮抗剂中,或者降低培养基中钙离子浓度都能引起细胞凋亡,这与钙调定点学说一致[15]。

nmda本身也可以减少细胞凋亡,而nmda受体拮抗剂类药物则能增加培养细胞和发育中的啮齿类神经细胞的凋亡。这些结果表明nmda受体拮抗剂类药物对缺血性脑损伤的治疗可能具有双刃剑的效果:一方面可降低由于钙超载引起的兴奋性神经元的坏死; 另一方面则可加重其他细胞内的钙离子缺失而引起细胞凋亡[16]。

李晓明等发现对缺血特别敏感的海马ca1区锥体神经细胞l型钙通道活性在脑缺血再灌流早期呈瞬时升高(电流增大、开放概率和频率上升),而在再灌流后期和晚期却持续性降低(电流减小、开放概率和频率下降),即先激活后抑制,而对缺血不敏感的海马ca3区神经元则无此现象。此外,海马ca1区锥体神经细胞l型钙通道活性可被细胞外氧化还原状态所调节。细胞外处于高氧化的状态时,l型钙通道活性明显受抑制,细胞外处于高还原的状态时,l型钙通道活性受激活(电流增大),这在脑缺血后期的ca1区锥体神经元上呈得更明显。抗氧剂在脑缺血后期的ca1区锥体神经元上能更显著地增大全细胞l型电压敏感钙通道电流。提示缺血后晚期l型电压敏感钙通道的抑制可能是由于通道被氧化所致,且这种抑制可能与自由基参与海马ca1区锥体神经元缺血性神经元迟发性死亡的机制之一[17]。

总之,虽然钙超载和钙缺失是两个相反的状态,但缺血后的不同时间和不同区域,两种情形都可出现,兴奋毒性的钙超载可能主要出现于缺血早期和缺血中心区,而钙缺失和细胞凋亡可能主要出现在缺血后期和缺血边缘区。不同时间和不同区域,不同的损伤程度细胞内的钙离子浓度水平不一样,其细胞命运也不一样。可见细胞内钙的水平与缺血性神经元损伤的关系相当复杂[1,11]。

槲皮素、柿叶黄酮、脑心清均能增加海马锥体神经细胞l型钙通道的电流幅度,提示它们对海马锥体神经细胞l型钙通道有激活增强作用。作用强度柿叶黄酮大于脑心清,提示黄酮类是其增加l型钙通道电流的主要活性成分。

脑心清所含黄酮类和酚酸类成分是其抗脑缺血神经保护的重要活性成分。黄酮类成分和酚酸类成分是天然抗氧化剂,能改善细胞的氧化还原状态和促进细胞抗氧化基因表达[7],将有助于维护l型电压依赖性钙通道的正常功能,这对缺血再灌注时缺血敏感神经元的存活有重要保护意义,可能是脑心清抗脑缺血损伤的药理机制之一。但脑心清及其黄酮成分对l型电压依赖性钙通道的作用是直接激活,还是通过改变细胞外氧化还原状态而激活,还有待进一步研究。

【参考文献】

 

[1] johnson e m j r,koike t,franklin j. a "calcium setpoint hypothesis" of neuronal dependence on neurotrophic factor[j]. exp neurol,1992,115:163-166.

[2] tymianski m,tator c h. normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury[j]. neurosurgery,1996,38:1176-1195.

[3] thompon s m,wong r k. development of calcium current subtypes in isolated rat hippocampal pyramidal cells[j]. j physiol,1991,439:671-689.

[4] dea k f,lasztoczi b,pacher p,et al. inhibition of voltagegated calcium channels by fluoxetine in rat hippocampal pyramidal cells[j]. neuropharmacol,2000,39:1029-1036.

[5] west a e,chen w g,dalva m b,et al. calcium regulation of neuronal gene expression[j]. proc natl acad sci usa,2001,98: 11024-11031.

[6] bei w j,peng w l,xu a l,et al. neuroprotective effects of a standardized extract from leaves of diospyros kaki in middle cerebral artery occlusion (mcao) transient focal cerebral ischemic rats and in cultured neurons injured by glutamate or hypoxia[j]. planta medica,2007,73:636-643.

[7] bei w j,pen w l,ma y,et al. flavanoids from leaves of diospyros kaki protect primary neuron culture from injury induced by oxidative stress[j]. life science,2005,76:1975-1988.

[8] hamill o p,marty a,neher e,et al. improved patchclamp techniques for highresolution current recording from cells and cellfree membrane patches[j]. pflügers archiv, 1981,391:85-100.

细胞化学元素范文6

组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。下面是为大家整理的高中生物备考知识归纳精选参考资料,提供参考,欢迎你的阅读。

高中生物备考知识归纳精选参考一

1.生物体具有共同的物质基础和结构基础。

2.从结构上说,除病毒以外,生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。

3.新陈代谢是活细胞中全部的序的化学变化总称,是生物体进行一切生命活动的基础。

4.生物体具应激性,因而能适应周围环境。

5.生物体都有生长、发育和生殖的现象。

6.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。

7.生物体都能适应一定的环境,也能影响环境。

知识点总结:生命的物质基础

8.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。

9.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。

10.各种生物体的一切生命活动,绝对不能离开水。

11.糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。

12.脂类包括脂肪、类脂和固醇等,这些物质普遍存在于生物体内。

13.蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。

14.核酸是一切生物的遗传物质,对于生物体的遗传变异和蛋白质的生物合成有极重要作用。

15.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。

16.活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。

17.细胞壁对植物细胞有支持和保护作用。

18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。

19.线粒体是活细胞进行有氧呼吸的主要场所。

20.叶绿体是绿色植物叶肉细胞中进行光合作用的细胞器。

21.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。

22.核糖体是细胞内合成为蛋白质的场所。

23.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。

24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。

25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。

26.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。

27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。

28.细胞有丝分裂的重要意义(特征),是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。

29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。

30.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。

31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。

32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA.

33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。

34.ATP是新陈代谢所需能量的直接来源。

35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。

36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。

37.植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。

38.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。

39.高等多细胞动物的体细胞只有通过内环境,才能与外界环境进行物质交换。

40.正常机体在神经系统和体液的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫稳态。稳态是机体进行正常生命活动的必要条件。

41.对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成提供原料。

42.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段。

43.生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般来说,低浓度促进生长,高浓度抑制生长。

44.在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。

45.植物的生长发育过程,不是受单一激素的调节,而是由多种激素相互协调、共同调节的。

46.下丘脑是机体调节内分泌活动的枢纽。

47.相关激素间具有协同作用和拮抗作用。

48.神经系统调节动物体各种活动的基本方式是反射。反射活动的结构基础是反射弧。

49.神经元受到刺激后能够产生兴奋并传导兴奋;兴奋在神经元与神经元之间是通过突触来传递的,神经元之间兴奋的传递只能是单方向的。

50.在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。

51.动物建立后天性行为的主要方式是条件反射。

52.判断和推理是动物后天性行为发展的最高级形式,是大脑皮层的功能活动,也是通过学习获得的。

53.动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导的地位。

高中生物备考知识归纳精选参考二

1、消化酶、抗体等分泌蛋白合成需要四种细胞器:核糖体,内质网、高尔基体、线粒体。

2、细胞膜、核膜、细胞器膜共同构成细胞的生物膜系统,它们在结构和功能上紧密联系,协调。

维持细胞内环境相对稳定生物膜系统功能许多重要化学反应的位点把各种细胞器分开,提高生命活动效率

核膜:双层膜,其上有核孔,可供mRNA通过结构核仁

3、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的染色质两种状态容易被碱性染料染成深色

功能:是遗传信息库,是细胞代谢和遗传的控制中心

4、植物细胞内的液体环境,主要是指液泡中的细胞液

原生质层指细胞膜,液泡膜及两层膜之间的细胞质

植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁

5、细胞膜和其他生物膜都是选择透过性膜

自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯