表面活性剂论文范例6篇

表面活性剂论文

表面活性剂论文范文1

关键词:绿色,环保,无磷,洗衣粉

 

0引言

随着人们生活水平的提高,对洗衣粉的需求量也在逐年的增加。然而,当生活中大量的含磷污水被排放到水中,很容易造成水体“富营养化”,破坏水体中生态系统原有平衡[1-3]。与此同时,人们对环境越来越关注,环保意识的增强,人们对绿色环保产品的需求也越来越大,绿色产品也越来越受到人们的重视。随着全国禁磷、限磷区域的扩大,无磷洗衣粉的产量也在不断地增长。免费论文参考网。但是目前市场上的无磷洗衣粉绝大部分是基于4A沸石体系的,与三聚磷酸钠(STPP)相比,许多代磷助剂在软化硬水、分散、乳化、胶溶和缓冲能力方面都有明显的不足,并不能真正起到代替STPP生产高质量的无磷粉的目的。 因此,研制和开发一种无磷洗衣粉是相当有环保意义和经济价值。

目前已有报道[4-5],以烷基糖苷(alkylpolyglycoside,简称APG)作为表面活性剂合成洗衣粉。在洗衣粉中,使用APG代替AEO或部分LAS具有极高的表面活性、良好的去污效果和生物降解性,同时具有柔软、抗静电及防缩功能。烷基糖苷兼具阴离子和非离子表面活性剂的特性,表面张力低,在硬水中使用仍具有优良的去污力,而且对皮肤粘膜极低的刺激性、无毒性、与其他表面活性剂的良好配伍性及较强的广谱抗菌活性、可与任何类型表面活性剂复配,协同效应明显等性能特点[6-8],可广泛应用于化工生产的各个领域,被称作是新一代绿色表面活性剂。

1 实验部分

1.1 实验材料与仪器

1.1.1 实验材料

烷基糖苷(APG)、14-烷基二甲基甜菜碱、月桂醇聚氧乙烯醚(AEO-9)、脂肪醇聚乙烯醚硫酸钠(AES)、RL-碱性蛋白酶、香料、荧光增白剂(RBS)等均为工业品;硫酸钠、碳酸钠、过碳酸钠、硅酸钠、羧甲基纤维素钠(CMC-Na)等均为分析纯;精制玉米淀粉为市售。

1.1.2 实验仪器

1.2 实验方案

1.2.1 实验方案一

采用正交实验法选择出与APG表面活性剂复配效果最佳的表面活性剂。

1.2.2 实验方案二

经过实验方案一可以选出与APG复配效果最佳一种表面活性剂。进一步对配方比例进行优化:分别以APG和该表面活性剂的比例为:1:1、2:1、2:3、3:2,做五次实验:(其它配料的百分比仍不变)。

1.3 实验步骤

按照每一组实验方案中表面活性剂的比例,用电子天平分别称量出APG和甜菜碱,再称量出相应的羧甲基纤维素钠,将三种配料放入约500毫升的烧杯里混合并搅拌均匀。分别按比例称量出其他固体配料(除香料、荧光增白剂、RL—碱性蛋白酶),同样放入一个500毫升的烧杯里混合并搅拌均匀。免费论文参考网。等以上两烧杯里中配料都搅拌均匀后,将固体后者加入前一烧杯里混合并搅拌均匀。搅拌均匀后,在不超过30度左右的室温下将其适当干燥。等干燥后再加入适量的RL-碱性蛋白酶、香料、荧光增白剂,然后再混合并搅拌均匀。

2 结果与讨论

2.1 正交试验

2.1.1 正交试验安排

按1.2.1实验方案Ⅰ安排设计L9(33)正交试验,因素水平表见表1。免费论文参考网。

表1 因素水平表

表面活性剂论文范文2

论文摘要:系统介绍了复合柴油的作用机理、研究配制及应用发展。

1

概述

复合柴油是将水和柴油通过复合剂和复合设备复合形成的油包水(W/O)型乳液。早在100多年前,就已有人掺水使用柴油,但是因为那时的柴油掺水技术水平较低,收益不够明显以及石油危机尚未突出等原因,而使柴油掺水技术处于缓慢发展的状态。50年代末,由于环境保护需要以及石油危机等原因,柴油掺水应用技术才获得重视。到了70年代,柴油掺水技术进入到实用性的发展阶段。美国、前苏联、日本等工业发达国家竞相把柴油掺水技术列为国家重点开发研究项目,对掺水复合柴油的复合手段、复合工艺、复合装置、表面活性剂、复合机理及其燃烧动力学和对内燃机的磨损腐蚀以及规格化、商品化等多方面都进行了大量的实验和深入研究。大量的研究表明:油水混合燃料能极大地改善排放污染,节省燃油。同时,柴油掺水复合燃料对内燃机不但没有腐蚀和增加磨损的问题,反而能起到清洗剂的作用,可以降低内燃机维修费用。目前,世界各国研究燃油掺水技术的专业机构空前增加,专利文献和学术论文如雨后春笋般地涌现。在日本、美国、德国等,柴油复合剂早已作为商品销售,现已开发出第三代或第四代产品。日本专营复合油的萨米特公司推出的H一106 , H一107复合剂产品,销往东南亚各国。纵观柴油掺水技术的过去和现在,它已显示出了强大的生命力。

2复合柴油的节能、降污原理及复合机理

2.1复合柴油节能、降污原理

2.1.1“微爆”效应(二次雾化)

目前,国内外大多数专家认为复合柴油的节能是由于乳液内部的微小水珠的“微爆”效应引起的或称二次雾化。微爆是在高温环境下,由两种或多种有不同挥发性的液体的汽化引起的。由于液体的扩散速度是有限的,稳定性差的液体就会覆盖在表面,从而导致液滴迅速升温。一旦温度达到某个组分的过热极限,微爆就会伴随连续产生并变大的泡核而发生。微爆的作用是提高油滴的表面活化能。复合柴油为油包水(W/0 )型乳液,外相为柴油,内相为水。由于油的沸点比水高,所以受热时水总是先达到沸点而沸腾或蒸发。当油滴内部的压力超过油的表面张力和环境压力之和时,水汽将冲破油膜的阻力而使油滴爆炸,形成更细小的油滴。爆炸后的油滴更细小,因此燃烧更完全,从而达到节能效果。

2.1.2化学效应

有文献对复合油的燃烧化学进行了研究,提出了水煤气反应的重要性,燃料中由于高温裂解产生的碳粒子,能与水蒸气反应生成CO和H2,使碳粒子能充分燃烧,提高了燃烧效率,降低了排烟中的烟尘含量。复合柴油在柴油机燃烧室高温高压条件下发生化学反应,由于复合油中水的存在,促使产生了许多OH"基团,使得消除积炭的反应()速度加快,从而达到降污的目的。有文献提出了其他一些用于解释复合油节能降污的观点,例如掺混效应、汽提效应、改善燃料与空气的混合比例减少过剩空气系数以大幅度降低氮氧化物()的产生等。

2.2柴油复合机理

复合柴油是由普通柴油、水、表面活性剂、助表面活性剂组成。柴油和水是两相互不相溶的体系,作为油包水的乳液,水是分散相,为使水的微小液滴在两相交流中足够稳定,须使用表面活性剂。柴油复合剂能使乳液稳定的因素有二:其一,降低了油一水界面张力,即降低了吉布斯函数,有利于乳液的稳定存在;其二,柴油复合剂的分子在界面处作定向吸附,生成具有一定机械强度的薄膜,阻止分散相液滴的合并聚集。由于乳液中液滴分子作不停顿的布朗运动,频繁地相互碰撞,如果界面膜的强度较小,在碰撞中界面膜容易破裂成液滴合并。因此,柴油复合剂需要二种或二种以上的表面活性剂复配而成,这种复配的柴油复合剂所形成的界面膜有较高的膜弹性,所形成的乳液也比较稳定。目前柴油复合剂的配方根据其结构大致分为五种类型:①阴离子型有烷基磺酸盐类、烷基苯磺酸盐类、烷基蔡磺酸盐类、脂肪酸皂类、烷基醋墟泊酸磺酸盐类等;②阳离子型有简单胺盐类、季胺盐类等;③非离子型有脂类,如脂肪酸聚氧乙烯醋、脂肪酸山梨醇醋;醚类,如脂肪醇聚氧乙烯醚,烷基苯酚聚氧乙烯醚,脂肪醇山梨醇脂聚氧乙烯醚;酞胺类,如烷基醇酞胺等;$两型离子型有梭酸类、硫酸类、磺酸类等;④高分子型有天然水溶性胶类、淀粉衍生物类、纤维素类、合成水溶性高分子类等。

3复合柴油的配制及性能

3.1复合剂配方成分的筛选依据

(1)亲油基团与油相具有相似结构的复合剂复合效果好。根据相似相溶原理,要求复合剂的憎水基团的结构和油的结构越相似越好。结构与柴油越相似,界面上的吸附作用也就越强,这样就能既可使油水界面张力降低得多,又能使界面膜的强度大,因而稳定性就好。根据多种活性剂的性能试验筛选最终选择了与柴油的主要成分有相似分子结构的有机酸和复合剂且。

(2)混合复合剂的效果往往比单一复合剂效果好。为了形成稳定的复合液,要求复合剂不仅能大量降低水的表面张力,而且能在油水界面形成坚固的保护膜。有些物质的表面活性大,能大量降低水的表面张力;有些物质表面活性虽然较差,但能在水微粒周围形成坚固的保护膜。选择具有相似分子结构的这两类表面活性剂,把它们组合起来,就可以取长补短,达到更好的复合效果。因此,使用一种以上的表面活性剂加助剂制备的微乳液,比用单一表面活性剂加助剂制备的微乳液更稳定。因此采用了使用混合表面活性剂加助剂进行复合配方设计。

(3)辅助表面活性剂是微乳液形成的一个不可缺少的组分。一般乳状液的形成主要是由于复合剂在油/水界面的吸附,形成坚韧的保护膜,同时降低界面张力,使油(或水)较易分散。但无论如何仍有界面,从而有界面张力的存在,故此种体系是不稳定的。若再加人一定量的极性有机物,可将界面张力降至不可测量的程度;此后即形成稳定的微乳液。辅助表面活性剂是微乳液形成一个不可缺少的组分,它除了能降低界面张力外,还能增强界面膜的流动性,使界面膜的弯曲更加容易,有利于微乳液的形成。

3.2复合剂配方的筛选

虽然有以上这些理论依据,但关于复合剂中各种组分的具体确定,目前还没有成熟完整的理论模式来测算指导,必须靠经验积累和试验实践来确定每种组分的实际复合效果。因此,进行深人细致的实验选择尤为必要。

3.2.1实验试剂

①主复合剂工:由有机酸(酸值为123.3KOHmg/g)和碱溶液反应制成。

②复合剂n:非离子表面活性剂,上海大众药业有限公司,粘度:1 000一1 400mm2/s;

③助表面活性剂:醇类,济南化工二厂,纯度98 %。

3.2.2实验步骤

通过大量的配制试验,考察了各种组分的复合效果,从而最终找到了合适的复合剂配方。所找到的复合剂配方中阴离子型表面活性剂的比例占绝大多数,而非离子型表面活性剂仅占8%左右,这就使所配制的复合柴油成本大大降低。

①配制复合剂的小样。向锥形瓶中加人5lg有机酸,再加人8.5g碱溶液,振荡15 min,待反应完毕后,加人6g复合剂II ,3g助剂,盖上塞子,然后采用手摇振荡的方法使锥形瓶内各种物质完全混合均匀。在室温下静置,待泡沫消失,即得到复合剂。

②配制该复合剂的扩大样。向锥形瓶中依次加人510g有机酸,85g碱溶液及60g复合剂II , 30g助剂,然后按上述方法配制,得到复合剂的扩大样。将锥形瓶内的复合剂静置一段时间,待液面上的泡沫完全消失后,且再用手振荡锥形瓶也无泡沫产生为止飞这大概需要3h左右。此时用手触摸锥形瓶壁已冷却至室温,待用。

3.2.3实验现象

①在加人碱溶液的过程中,发现溶液液面上会产生泡沫。

②在振荡锥形瓶的过程中,感觉到瓶壁是热的。

③在振荡过程中,液面上有白色泡沫产生,并随复合剂量增加,泡沫层变厚。

3.2.4实验结果

由上述实验步骤得到含有机酸74 %(质量分数),含碱溶液12%(质量分数),含复合剂11为9%(质量分数),含助剂5%(质量分数)的复合剂。该剂为完全透明的棕色油状液体,无特殊不良气味,稳定性好,自配制起至今(半年多)无任何变化。

3.3复合柴油的配制

本此使用上面的复合剂配方来配制微复合柴油,在相同的实验室条件下,分别进行了复合柴油配制的小样试验和扩大试验。

3.3.1试验

配制方式用天平分别称取一定量的水、剂、油(0#柴油)按一定顺序加人到烧杯中,搅拌一段时间后,静置,观察到体系为透明的均相液体后,继续加人一滴剂,重复上述操作,直至体系出现浑浊为止。然后取体系出现浑浊的前一滴加剂量作为该微乳油的最终加剂量,重新按上述步骤配制乳油。从刚刚配制的乳油样中取出一部分,倒人250m1带磨口塞的锥形瓶中,保存起来,观察其稳定性如何。

2配制结果

3结果分析

①从表2可以看出:在水占6%一20 %、复合剂占10%一21%时,均可形成乳油。特别是其中的油样1、油样2、油样3及油样4和油样6不但形成乳油的速度快,而且形成的乳油透明度高、稳定性好。

②试验证明:在小样试验中所配制的复合剂,进行扩大试验后,仍能实现对柴油的复合,这表明该剂的复合能力没有改变。而且在小样试验中可以配成复合柴油的水、油、剂之配比,在扩大试验中同样可以配成乳油。

3.3.4复合哭油指标(以4号样为例)

4我国复合柴油的发展现状及研究方向

我国柴油复合技术研究起步较晚,最近几年发展迅速,已开发出许多较好的复合剂配方并研究了复合复合剂的亲水一亲油值(H LB值)等性质,和国外技术相比,没有合成反应,均采用多种表面活性剂复配而成,只是在复合剂的配方组成上略有差别。这些柴油复合剂配方组成的共同特点是:

1)以非离子表面活性剂为主体的高效复合剂达80%左右。此非离子表面活性剂的亲水基团为聚氧乙烯()。即一般所说的EO链。其醚氧可与金属催化剂络合,提高催化剂活性。

2)低沸点易燃有机物,如丙酮、甲苯、硝酸乙酷、正己烷等。其目的在于降低点火温度,便于内燃机起动。

表面活性剂论文范文3

关键词:A-TIG;活性剂;电弧收缩;表面张力

前 言

TIG焊的单道焊缝熔深浅、熔敷率低,是一种低效率的焊接方法。A-TIG焊是在传统TIG焊接前将很薄的一层表面活性剂涂敷在施焊板材表面,焊接时活性剂引起焊接电弧收缩或熔池内金属流态发生变化,在相同的焊接规范下使焊接熔深显著增加。从20世纪60年代中期乌克兰巴顿焊接研究所提出卤化物组成的活性剂针对钛合金的氩弧焊接技术至今,各国研究者在活性剂的熔深增加机理、不同材料的活性剂研发、活性剂成分的改进、活性焊接技术与激光焊接技术结合等方面做了大量试验研究工作,并达到了一定的实用化、商品化水平。

1 A-TIG工艺特点

A-TIG焊最重要的特点在于使用活性剂。活性焊剂一般为细粉状,为便于涂敷及防止焊接时被保护气体吹散,应用易挥发的溶剂将其溶解成糊状,焊接前均匀地涂覆在焊缝两侧[1]。工业生产中则多把活性剂配制成可以直接使用的溶剂或喷剂,其用量应根据工件的厚度、焊接条件和所需解决的技术问题决定。

A-TIG焊接技术最大的优点在于对熔深的增加效应上。该技术可以在保持TIG焊接强度、抗晶间腐蚀性能等优点的前提下,增加焊接深深、减小变形、消除气孔、提高生产效率[2]。A-TIG焊技术在现有焊接装备的前提下,采用活性剂技术,获得了大熔深、高效率、高质量的优点,可以先进的激光焊、电子束焊接相比,而成本却较低。

2 研究现状

A-TIG焊由于能显著增加焊接熔深,在不锈钢、有色金属的焊接中有广泛的研究。目前国内外研究主要集中在针对不同母材的工艺使用、活性剂配方、电弧机理、数据仿真等方面。

2.1 工艺使用

A-TIG焊工艺使用主要集中在不锈钢、铝合金、镁合金、钛合金等材料的焊接中。南京航空航天大学徐杰等人针对AZ31铝合金的A-TIG焊工艺进行了研究。研究了在A-TIG焊中单一成分的活性剂和涂敷量对焊缝成形的影响。结果表明,与无活性剂的焊缝相比,活性剂TiO2、SiO2、Cr2O3、CdCl2和CaCl2能够有效地增加镁合金焊缝的熔深和深宽比。但涂敷有氟化物的镁合金焊缝熔深没有增加,涂敷CaF2的焊缝甚至出现开裂现象。在AZ31镁合金的焊接中,活性剂CdCl[3]。

对于不锈钢的A-TIG焊,国内主要研究该工艺下的焊接接头的力学性能与耐腐蚀性能。赵忠义等人利用活性焊剂在304不锈钢板上进行工艺试验,研究得出6mm钢板的工艺参数[2]。陕西理工学院胡礼木等,用沸腾硝酸腐蚀法和室温硫酸加硫酸铜溶液浸蚀法对奥氏体不锈钢TIG焊和自制活性剂A-TIG焊接头进行了对比腐蚀试验,焊缝金属的化学成分分析表明,自制活性剂在焊接过程中能抑制金属中Cr、Ni等合金元素的烧损,因此提高了A-TIG焊接头的抗腐蚀性能[4]。

铝合金TIG焊时,由于导热率大,故很难有理想熔深。A-TIG则解决了这一难题,兰州理工大学樊丁等人研究了铝合金交流A-TIG焊中单组分活性剂对焊缝熔深的影响,还针对多组分活性剂研究了焊接参数对焊缝熔深的影响.实验结果表明,卤化物几乎不能增加焊缝熔深,而氧化物对焊缝熔深的影响很复杂,有的能增加焊缝熔深,有的效果不明显,有的甚至减小焊缝熔深。其中SiO2增加熔深作用最显著,焊接参数包括焊接电流、焊接速度、氩气流量和电弧长度等对焊缝熔深有一定影响[5]。

2.2 活化剂

活性剂是A-TIG焊接工艺中最关键的因素。主要起到增加熔深的作用,也参加焊接冶金过程,对焊缝成份有一定的影响。不同的焊接材料,一定会有最适合的活性剂相配合,所以焊接界对活性剂的研究较多且成果显著。兰州理工大学樊丁等人对铝合金、镁合金的活性剂研究较多。在镁合金交流A-TIG焊中,分别以单质Te,Ti和Si,氧化物SiO2,TiO2和V2O5,卤化物MnCl2,CdCl2和ZnF2作为表面活性剂进行了镁合金交流A-TIG焊,研究了活性剂对焊缝成形和组织的影响规律。结果表明,活性剂增加镁合金A-TIG焊熔深主要与活性剂粒子和电子复合导致电弧收缩有关[6]。在相同的焊接工艺参数下,活化剂成分、活化焊剂涂层对焊缝成型都有显著影响。与单一成份相比,混合型助焊剂,特别是添加稀土的混合助焊剂可使焊缝熔深显著增加。

2.3 增加熔深机理研究

对于A-TIG焊工艺增加熔深的机理,主要有两种说法,电弧收缩论与表面张力论。南京航空航天大学魏艳红通过分析流体流动方式,推测了A-TIG熔深增加机理:熔池内液体流动方式是熔深增加的主要原因,熔池中心处液体的流速明显高于熔池边缘,中心由外向内的环流为熔池内液体流动的主导方向。这个方向的环流将高温液体带到熔池底部,使熔池底部的熔化速度较熔池边缘有了明显的增加,且随着焊接电流的增加,熔深增加效果也不断提高[7]。

电弧收缩理论,活性剂使电弧斑点收缩,缩小母材上电弧面积,从而增加了熔深。利用高速摄影技术,对在焊接区域表面内涂敷不同的单组分活性焊剂的A-TIG焊电弧形态进行记录、分析和数据处理。分析了A-TIG焊熔深增加的机理。分析表明,A-TIG电弧收缩,进而电弧力增加是其熔深增加的主要原因,而单组分活性焊剂中阳离子的电离能对A-TIG电弧是否收缩以及收缩的程度有着直接的关系。

在铝合金的A-TIG焊中,氧化物活性剂对熔深增加的机理,一般认为是电弧收缩同表面张力梯度改变的共同结果。但是兰州理工大学,樊丁等人,以SiO2和V2O5作为实验用表面活性剂,通过A-TIG焊与真空电子束焊的对比实验,研究得出电弧因素起主要作用的结论。

3 结 论

(1)A-TIG焊由于能大幅度增加熔深,所以在有色金属焊接中,有广泛的应用前景,特别是传热系数大的材料;

(2)活性剂成份的研究,是A-TIG焊工艺的关键,而熔深机理的研究,则是开发活性剂的基础;

(3)活性剂尚有表面成形不好,焊缝成份改变等缺点等解决。

参考文献

[1]胡礼木,胡波,郭从盛等.奥氏体不锈钢TIG焊用活性剂的研制[J].焊接学报,2006,27(6):53~55,70.

[2]赵忠义,伏金生,李飞等.不锈钢A-TIG焊接方法[J].电焊机,2008,38(2):67~68.

[3]徐杰,刘子利,沈以赴等.AZ31镁合金A-TIG焊的研究[J].宇航材料工艺,2006,36(6):42~45.

[4]胡礼木,胡波,张永宏等.不锈钢A-TIG焊接头的抗腐蚀性能分析[J].焊接学报,2006,27(7):34~36.

[5]黄勇,樊丁,杨鹏等.活性剂对镁合金交流A-TIG焊的影响[J].焊接学报,2007,28(6):41~44.

[6]魏艳红,徐艳利,孙燕洁等.A-TIG焊接熔深增加机理[C].//第十三次全国焊接学术会议论文集.2008:37~40.

表面活性剂论文范文4

[关键词]乳化剂;油包水乳状液;抗高温

中图分类号:TE254.1 文献标识码:A 文章编号:1009-914X(2014)18-0075-01

前言

油包水钻井液由油、水、乳化剂、亲油胶体和碱度调节剂等处理剂组成,由于油水为两种互不相溶的液体,在自然状态下受重力影响而分层,因此需加入具有两亲结构的表面活性剂,即乳化剂。乳化剂亲油端伸入油相,亲水端伸入水相,在降低油水界面的界面张力的同时,由于表面活性剂在界面上的吸附形成一层具有一定强度的界面膜,该膜能够对分散相起到保护作用,使分散相液滴在相互碰撞后不易合并,从而达到稳定乳状液的目的[1]。除乳化剂之外,油水比、搅拌条件等也对乳状液稳定性有一定影响。

1.影响因素室内研究

乳状液稳定性的评价方法有观察法、离心法和电稳定法,本文使用fann MODEL 23D型电稳定测试仪测量破乳电压(测三次取平均值),评价油包水乳状液的稳定性。

1.1 搅拌强度

搅拌强度即搅拌速度,对形成的分散相液滴的大小有影响,液滴尺寸范围越窄,越不易聚结变大,乳状液的稳定性越好。

配制200ml油水比为80:20的油包水乳状液,主乳加量为3%。搅拌速度分别为3000r/min、4000r/min、6000r/min、 8000r/min、10000r/min、11000r/min、12000r/min,搅拌时间均为20min。测不同搅拌速度下的破乳电压Es,记录数据如下。

1.2 搅拌时间

配制200ml油水比为80:20的油包水乳状液,主乳加量为3%。搅拌速度为12000r/min,分别搅拌20min、40min、60min。测不同搅拌时间下的破乳电压Es,记录数据如下。

1.3 乳化剂

1.3.1 主乳化剂

稳定性强的油包水乳化剂应该具有以下特点,即(1)亲油基具有较长的饱和碳链(10~20个碳原子)。只有碳原子数增加到一定程度后,才能表现出明显的表面活性,而如果碳原子数过多则成为不溶于水的物质,即失去表面活性,因此,要求碳链上的碳原子数为10~20较宜[2];

(2)亲水基具有较强的极性。一般油包水钻井液乳化剂亲水基的极性头小,不易与水相相吸引而吸附在界面上,因而采用与HLB值>7的亲水性强的乳化剂相复配的方法来提高其吸附在界面上的能力[3][4];

(3)亲水基含有高价阳离子。含有高价阳离子即有多条碳链,从几何形状来考虑,其在界面上的排列趋向于形成一个凸形油面,有利于形成油包水型乳状液。这种由乳化剂分子的空间构型决定乳状液类型的原理在胶体化学在中被称为定向楔型理论。而实际上,乳状液液滴的大小比乳化剂分子要大很多,所以液滴的曲面相对于乳化剂分子近于平面,故乳化剂分子两端的大小就不是很重要了,也无所谓楔形插入。同时,影响乳状液稳定性的因素是多方面的,因此,定向楔理论和亲水基含有高价阳离子对乳状液的影响也就较弱。因此,乳化剂提高油包水钻井液的抗高温稳定性主要是通过提高其在油水两相的吸附强度。

1.3.2 辅助乳化剂

配制200ml油水比为80:20的油包水乳状液,主乳加量为3%,辅助乳化剂加量为1%、2%、3%,12000r/min搅拌60min。测不同辅乳加量下乳状液的破乳电压Es,数据如下。

辅乳一般为HLB值大于7的表面活性剂,辅乳和主乳复合使用可以形成密堆复合膜,增强乳化效果。然而,辅乳的加量也应当适当,主乳和辅乳的比例失调会导致复合乳化剂的HLB值偏大,反而破坏乳状液的稳定性。

1.4 油水比

配制200ml油水比分别为75:25、80:20、85:15、90:10的油包水乳状液,主乳加量为3%,12000r/min搅拌60min。测不同油水比下的破乳电压Es,数据如下。

数据表明油水比为90:10,油相所占体积百分比越大,破乳电压越大,乳状液的稳定性越好。

1.5 外相的影响

配制200ml油水比为90:10的柴油基和白油基油包水乳状液,主乳加量3%,12000r/min搅拌60min,分别测破乳电压Es,数据如下。

1.6 内相的影响

油包水乳状液的内相为盐水相,一方面可以调节活度,另一方面所用的盐可以提供阳离子,例如一般使用氯化钙水,Ca2+与乳化剂作用,生成金属的二价钙皂,利于形成凸形的油包水型乳状液,提高乳化作用,稳定乳状液。

2 结论

(1)搅拌强度越大,搅拌时间越长,油水比越大,破乳电压越大,稳定性越强。

(2)主辅乳共同作用,可以进一步增强界面膜强度,提高稳定性。白油比柴油易乳化,盐水比清水更有利于提高稳定性。

(3)油包水钻井液处理剂中有机土对乳状液的稳定性影响较大。

参考文献

[1] 刘程,李江华,等.表面活性剂应用手册[M].化学工业出版社,2004:1-20.

[2] 王正良,姚士强,肖鹤.高含水油包水乳化液稳定性机理及实验研究[J]. 机床与液压,1996:48-50.

表面活性剂论文范文5

关键词:琥珀酸酐;酯化;表面活性

中图分类号:TQ423 文献标识码:A

1 实验

1.1 实验试剂

琥珀酸酐(分析纯,沈阳市新西试剂厂);AEO3(分析纯,国药集团化学试剂有限公司);乙酸乙酯、甲苯、甲醇、氢氧化钠均为分析纯试剂。

1.2 实验步骤

1.2.1 AEO3-SA酯羧酸钠的合成

将一定量的AEO3、有机溶剂加入到装有搅拌器、冷凝管、温度计的250ml的三口烧瓶中。加热到反应所需温度时加入一定量的琥珀酸酐进行酯化反应,反应结束后降温,在冰水浴中冷却同时向其中加入一定量的甲醇使产品析出。进行抽滤和干燥后即得到所要的产品。将得到的中间产品用氢氧化钠水溶液进行皂化,得到AEO3-SA酯羧酸钠

1.2.2 AEO3-SA酯羧酸钠的表面性质测定

临界胶束浓度:用Jzhyl-180型表面张力仪测定,由不同质量浓度(ρ)的AEO3-SA酯羧酸钠的水溶液表面张力(γ)作γ-lgρ力作曲线, 曲线上转折点所对应的浓度即为临界胶束浓度(cmc),此时的表面张力即为γcmc。

润湿性采用帆布沉降法, 活性物质量分数为0.1%,温室检测。

乳化性:将液体石蜡(沸程-300℃)和活性物质量分数为0.1%的表面活性剂溶液按体积比1:1加人到具塞量筒中, 充分振荡至形成乳状液, 记录析相(分层)时间。

增溶性能:取活性物质量分数为0.5%的表面活性剂溶液于锥形瓶中, 用微量滴定管将甲苯滴入锥形瓶中,至浑浊出现,记录消耗甲苯的体积(mL)。

2 结果与讨论

2.1 AEO3-SA酯基羧酸钠的合成

AEO3与琥珀酸酐的酯化反应得到的是单酯化羧酸化合物,反应的主要影响因素包括介质、反应温度、物料配比、反应时间等。不同条件对酯化反应影响的实验结果见表1

由表1可以看出,采用无溶剂法进行酯化反应,因为琥珀酸酐在反应温度下为固体,而且在AEO3中的溶解度较低,所以,当两者的投料比为1:1时,反应进行不完全;而在非极性的甲苯中,反应进行的也较为缓慢,以乙酸乙酯为溶剂时,在相同的反应条件下,琥珀酸酐的转化率最高。

得到的AEO3-SA酯基羧酸中间体,用不同浓度的氢氧化钠水溶液进行皂化,得到不同浓度的AEO3-SA酯基羧酸钠盐表面活性剂产物。

2.2 AEO3-SA酯基羧酸盐的表面性质测定

制备的AEO3-SA酯基羧酸钠盐表面活性剂在不同的pH值条件下,因其羧酸基-羧酸钠盐处于不同的平衡状态,其表面活性也有所不同。表2为制备的AEO3-SA酯基羧酸钠盐(AEO3-SACOONa)在不同pH值时的表面性质。

可以看出,制备的AEO3-SA酯基羧酸钠在中性条件下具有较高的表面活性,但是润湿、乳化、增溶性较差,而在碱性条件下,表面活性有微弱下降,但是,润湿、乳化、增溶等应用性能有明显提高,所以,该化合物适宜的应用条件是弱碱性,当pH值大于9时,因为分子的酯基会发生水解,应该尽量避免。

3 结论

3.1 以AEO3和琥珀酸酐为原料,合成出分子中同时含有聚氧乙烯基、羧基、酯基的羧酸钠盐表面活性剂,并得到表面活性剂制备的最佳工艺条件。

3.2 进行了AEO3-SA酯基羧酸盐表面活性及应用性质的测定,表明该化合物在中性条件下具有较高的表面活性,而在弱碱性条件下则具有较好的应用性能。

参考文献

表面活性剂论文范文6

论文关键词:UV-TiO2,印染废水,光催化氧化,影响因素

印染废水的成分与加工不同纤维所用染料助剂、机器设备及操作方法的不同,而有所差异。各类不同纤维(纤维素纤维、蛋白质纤维、合成纤维 )所用染料及助剂造成污染的成分如下:直接染料所用助剂为:Na2CO3、 NaCl、 Na2SO4、表面活性剂;活性染料所用助剂为NaOH、Na2CO3、Na2SO4、NaCl、表面活性剂;还原染料所用助剂为:NaOH、 Na2SO4、 Na2Cr2O2、H2O2、NaBO3、CH3COOH、表面活性剂;硫化染料所用助剂为:Na2S、 Na2CO3、NaCl、H2O2,冰染料所用助剂为:NaOH、NaNO2、HC1、皂洗剂等表面活性剂;颜料所用助剂为:浆料、粘合剂、树脂等。酸性染料所用助剂为:CH3COOH、CH3COONa、Na2SO4、CH3COONH4、(NH4)3PO4、(NH4 )2SO4、表面活性剂;阳离子染料染腈纶所用助剂为:有机酸、表面活性剂。分散染料所用助剂为导染剂、CH3CH2OH、 CH3COONa、表面活性剂;酸性染料染尼龙所用助剂为:Na2SO4、有机酸、单宁酸、酒石酸、表面活性剂;阳离子染料染腈纶所用助剂为:有机酸、表面活性剂。除此以外还包括印花上的大量废弃物。由此可见印染废水的成分的确是非常复杂且难以处理的[1]。

2、光催化氧化原理[2-4]

光化学氧化法是近多年来发展迅速的一种高级氧化技术,它的反应条件温和“氧化能力强”适用范围广,利用该法处理难降解毒性有机污染已成为国内外研究的热点。目前,人们已对半导体多相光催化进行了广泛的应用研究,包括高效催化剂的制备和新型反应装置的设计、光催化在环境保护、卫生保健、金属催化剂制备和贵金属回收、物质合成制备等几个主要方面的应用情况,并取得了丰硕成果。半导体多相光催化反应的基本原理是半导体粒子具有能带结构,一般由填满电子的低能价带(valence band,VB)和空的高能导带(conduction band,CB)构成,价带与导带之间称为禁带。当用能量等于或大于禁带宽度(也称为带隙,Eg)的光照射半导体时,低能价带上的电子被激发跃迁至导带,在价带上产生相应的空穴(h+),它们在电场作用下分离。光生电子(e-)被迁移到粒子的表面,能还原半导体颗粒表面吸附的具有氧化性的金属离子,形成金属单质。光生空穴(h+)有很强的得电子能力,具有强氧化性,可以夺取半导体颗粒表面吸附的具有还原性的物质中的电子,使这些物质被氧化。通过这种作用,半导体本身因为得到电子而被还原,可以继续被光激发。从理论上讲,只要半导体吸收的光能不小于半导体的带隙能Eg,就足以被激发产生电子和空穴,该半导体就有可能用作光催化剂。反应如下:

TiO2+hv→hvb++evb-

O2+TiO2(e-)→TiO2+·O2-

·O2+2H2O+TiO2(e-)→TiO2+H2O2+2OH-

H2O2+TiO2(e-)→TiO2+·OH+OH-

今后的工作中,还要努力寻求高活性和高选择性的催化剂,加强采用自然光源和连续处理的研究,摸索最佳操作条件(包括体系温度、酸碱度、添加剂用量与配比、光照强度等),逐步向生产和生活实际靠拢,为半导体多相光催化在生产和生活中的实际应用奠定可靠基础。

3、UV-TiO2降解难降解有机物的影响因素

3.1光强

光催化氧化于光照下n型半导体中电子的激发跃迁,就像光电效应一样,只有当入射光子的能量大于或等于所用光催化剂的禁带宽度才能激发光催化反应。TiO2的禁带宽度约为3.2 eV,要激发TiO2价带电子跃迁所需入射光的最大波长为387 nm,研究中所用波长一般为紫外光波段300~400 nm,所用光源包括高压汞灯、中压汞灯、低压汞灯、黑光灯、紫外线杀菌灯等。应用太阳光作为光源的研究也取得了一定的进展,试验发现有相当多的有机物可以通过太阳光实现降解。

3.2 温度的影响

一般来说,液相中光催化反应对温度的微小变化不十分敏感。当反应温度增幅为20~60℃时,而反应速率一般只稍微增加。光催化反应是自由基反应,自由基的活化能很小,受温度影响的其他步骤如吸附、解吸、表面迁移和重排都不是决定光反应速率的关键步骤。因此,温度对光反应速率影响很小。

3.3pH的影响

溶液pH值的变化不仅可以影响到半导体光催化剂的光催化活性,而且还能影响半导体表面电荷的属性。光催化氧化反应的较高速率,在低pH和高pH值时都可能出现,pH值的变化对不同反应物降解的影响不同。pH值可影响半导体的能带位置,表面性质。当pH值较低时,半导体表面为正电荷,反之则为负电荷。表面电荷影响吸附性能,从而影响光催化反应的速率。但pH值变化很大时,光催化降解速率变化不大,光催化反应普遍特征是反应速率受pH值影响很小。

3.4·OH自由基清除剂的影响

·OH自由基清除剂如CO32-、HCO3-等的存在必然会消弱被降解物的去除效果。

参考文献

[1]陈一飞,施成良.印染废水成分分析及净化处理技术[J].四川丝绸,2002,92(3):15-17.

[2] 籍宏伟,马万红,黄应平等.可见光诱导TiO2光催化的研究进展[J].科学通报,2003,48:2199-2204.

[3]Sivalingam G, Priya M H, Madras G.Kinetics of the Photodegradation of Substituted Phenols by Solution Combustion Synthesized TiO2 [J]. Applied Catalysis B: Environmental, 2004, 51(1): 67-76.

上一篇毕业论文语文

下一篇国庆的诗