钢纤维范例6篇

钢纤维

钢纤维范文1

论文摘要:钢纤维混凝土的高强等显著优点,使其在大跨度桥梁、高层建筑、隧道等工程应用中具有巨大的技术经济优势和突出的社会效益,正成为现代混凝土的一个重要发展方向。本文主要介绍了从钢纤维混凝土的配备材料到泵送和施工等方面的控制技术。

1.原材料配比方面的质量控制

1.1单位水泥用量

在保持水灰比不变的情况下,单位体积混凝土拌合料中,如水泥浆用量愈多,拌合料的流动性愈好,反之,较差。在钢纤维混凝土拌合料中,除必须有足够的水泥浆填充的空隙外,还需要有一部分水泥浆包裹骨料和钢纤维的表面形成层,以减少骨料和钢纤维彼此间的摩擦阻力,使拌合料有更好的流动性。

1.2水泥

水泥品种对混凝土的可泵性也有一定影响。一般宜采用硅酸盐水泥、普通硅酸盐水泥以及矿渣硅酸盐水泥、粉煤灰硅酸盐水泥,但均应符合相应标准的规定。

1.3钢纤维

在一定范围内,钢纤维增强作用随长径比增大而提高。钢纤维长度太短起不到增强作用,太长则施工较困难,影响拌合物的质量,直径过细易在拌合过程中被弯折,过粗则在同样体积率时,其增强效果较差。

1.4粗集料

粗集料的级配、粒径和形状对于混凝上拌合物的可泵性影响很大。级配良好的粗骨料,空隙率小,对节约砂浆和增加混凝土的密实度起很大作用。因而泵送混凝土应用较多的国家,对粗集料的级配都有规定。

1.5细集料

又称细骨料,用于填充碎石或砾石等粗骨料的空隙并共同组成钢纤维混凝土的骨架。在保证钢纤维混凝土强度相同时,粗砂需要的水泥用量较细砂为少。显然,当水泥用量相同时,用粗砂配制的混凝上强度要比用细砂配制的混凝土强度为高。

1.6减水剂

减水剂可分为普通减水剂和高效减水剂。普通减水剂是一种对规定和易性混凝土可减少拌和用水量的外加剂,这种减水剂一般为可溶于水的有机物质。它可以改变新拌和硬化混凝土的性能,特别是提高混凝土的强度和耐久性。

1.7其它掺合料

除去水、水泥、粗细集料、粉煤灰等材料外,在搅拌时还可加入其它掺合料,如矿渣、超细粉等。

2.钢纤维混凝土施工方面控制

2.1泵送混凝土的质量控制

泵送混凝土的连续不间断地、均衡地供应,能保证混凝土泵送施工顺利进行。泵送混凝土要按照配合比要求、拌制得好,混凝土泵送时则不会产生堵塞。因此,泵送施工前周密地组织泵送混凝土的供应,对混凝土泵送施工是重要的。

泵送混凝土的供应,包括泵送混凝土的拌制和泵送混凝土的运送。泵送混凝土宜采用预拌混凝土,在商品混凝土工厂制备,用混凝土搅拌运输车运送至施工现场,这样制备的泵送混凝土容易保证质量。泵送混凝土由商品混凝土工厂制备时,应按国家现行标准,《预拌混凝土》的有关规定,在交货地点进行泵送混凝土的交货检验。

拌制泵送混凝土时,应严格按混凝土配合比的规定对原材料进行计量,也应符合《预拌混凝土》中有关的规定。

混凝土搅拌时的投料顺序,应严格按规定投料。如配合比规定掺加粉煤灰时,则粉煤灰宜与水泥同步投料。外加剂的添加时间应符合配合比设计的要求,且宜滞后于水和水泥。泵送混凝土的最短搅拌时间,应符合《预拌混凝土》中有关的规定,一定要保证混凝土拌合物的均匀性,保证制备好的混凝土拌合物有符合要求的可泵性。

搅拌好的混凝土拌合物最好用混凝土搅拌运输车进行运输。现在大量使用的是搅拌筒6-7m,的混凝土搅拌运输车。用搅拌运输车运输途中,搅拌筒以3-6r/min的缓慢速度转动,不断搅拌混凝土拌合物,以防止其产生离析。

搅拌运输车还具有搅拌机的功能,当施工现场距离混凝土搅拌站很远时,可在混凝土搅拌站将经过称量过的砂、石、水泥等干料装入搅拌筒,运输途中加水自行搅拌以减少长途运输中混凝土坍落度的经时损失,待搅拌运输车行驶到临近施工现场搅拌结束,随即进行浇筑。

2.2混凝土泵送施工质量控制

开始泵送时,混凝土泵应在可慢速、匀速并随时可反泵的状态。待各方面情况都正常后再转入正常泵送。正常泵送时,泵送要连续进行,尽量不停顿,遇有运转不正常的情况,可放慢泵送速度。当混凝土供应不及时时,宁可降低泵送速度,也要保持连续泵送速度,但慢速泵送的时间不能超过从搅拌到浇筑的允许延续时间。不得己停泵时,料斗中应保留足够多的混凝土,作为间隔推动管路中的混凝土之用。

3.喷射混凝土施工控制

(1)上料速度要均匀、连续、适中,始终要保持喷射机进料斗中有一定的贮存量,并及时清除振动筛上大粒径粗骨料和杂物;

(2)喷射过程中,喷射手后方的助手应及时协助喷射手,理顺混凝土管。避免喷射手在更换方向时使混凝土管产生急拐弯,引起堵管;

(3)喷射手在操作喷嘴时,应尽量使喷嘴与受喷面垂直距离0.8-1m,喷射压力保持在200-500kPa左右,才能保证有效施工喷射作业时喷射手要时刻注意观察喷嘴情况,一旦堵管,要让助手立即与操作司机联系停机关风,检查管路是否畅通;

(4)在喷射作业时,坍落度要根据实际情况进行调整,喷上部时坍落度控制在8cm,喷边墙时坍落度控制在12cm;

(5)在施工喷射混凝土时,侧墙壁由下至上部由一侧末端开始向另一侧延续,喷射混凝土的一次喷射设计厚度在5cm以内,在第二次喷混凝土作业时,完全除去附着在第一次喷射混凝土面的异物,喷射混凝土的操作人员要使用护具注意安全;

(6)喷射混凝土的连接部分,应在需要连接的部分约13cm以前厚度开始变薄,在受喷面各种机械设备操作场所配备充足照明及通风设备;

(7)喷射钢纤维混凝土厚度一般比普通混凝土薄,水泥含量多,因此要经常保持适当的环境温度和受喷面湿润以防干缩裂缝。

结语

钢纤维是当今世界各国普遍采用的混凝土增强材料,它具有抗裂、抗冲击性能强、耐磨强度高、与水泥亲合性好,可增加构件强度,延长使用寿命等优点。钢纤维在水泥制品中的应用尽管起步比较晚,但其发展速度却相当迅猛。目前钢纤维增强混凝上己广泛应用于公路路面、桥梁、隧洞、机场道面、建筑、水利、港工、军事及各种建筑制品等混凝土领域,它有着极大的生命力。应用前景十分广阔,并朝向高性能与超高性能方向发展。

参考文献:

钢纤维范文2

关键词:钢纤维混凝土路桥应用

中图分类号:TU37 文献标识码:A 文章编号:

钢纤维混凝土作为一种新型的优质水泥基复合材料,能够达到依照使用要求设计材料的目的。钢纤维混凝土已广泛应用于道路路面、桥面等实际工程中,并也取得了较好的经济效益和社会效益。钢纤维生产技术的不断进步和基础理论的仍在不断完善,日后钢纤维混凝土在路桥工程的施工中必将发挥更为重要的作用。

一、路桥施工中钢纤维混凝土的应用

1、道路施工中钢纤维混凝土的应用

由于钢纤维混凝土路面具有减薄铺装厚度、纵缝不设或少设、横向缩缝少、良好的耐磨性及冻融性等优点,延长路面使用寿命,从而在路面工程中获得广泛应用。

(1)新建全截面钢纤维混凝土路面

全截面采用钢纤维混凝土的路面厚度为普通混凝土路面厚度的50%~60%,钢纤维掺量为0.8%~1.2%。双车道路面一般不设纵逢,横缝间距20m~30m,最长可取50m。

(2)新建复合式钢纤维混凝土路面

复合式路面可以做成双层式或三层式。双层式路面的构造是在全路面板厚的上层约全厚40%~60%铺设钢纤维混凝土。三层式复合路面是上下两层分别做成钢纤维混凝土层,中间夹普通混凝土层。结构上比较合理,但施工复杂。根据经验,三层式复合路面宜在机械化铺设条件较高的地区使用。此外,还可以采用钢纤维-钢丝网混凝土复合式路面。

(3)碾压钢纤维混凝土路面

将钢纤维置于碾压混凝土中,从而使路面的强度和韧性增强,改善碾压混凝土的力学性能。

(4)钢纤维混凝土罩面

旧混凝土路面损坏采用钢纤维混凝土铺筑罩面层。钢纤维混凝土罩面分结合式、直接式、分离式三种结合。结合式罩面面层与旧混凝土相互粘结为一整体,共同发挥结构的整体强度作用。分离式罩面层与旧混凝土不粘结,而是中间设置一个隔离层,各层独立发挥作用。直接式是直接在旧水泥混凝土面层上加铺钢纤维混凝土罩面层。一般用于损坏较轻微的旧水泥混凝土路面。

(5)钢纤维水泥砂浆或钢纤维细石

混凝土罩面修补用钢纤维水泥砂浆或钢纤维细石混凝土对损坏的路面进行修补罩面。钢纤维体积率以1%~2%为宜,长径比可略高于钢纤维增强混凝土的长径比。一般限制在70~100 范围内。

(6)在多年冻土地区的用于抗冻

在多年冻土地区选用钢纤维混凝土路面以减少吸热,并维持冻土热平衡和提高抗冻性。

2、桥梁施工中钢纤维混凝土的应用

(1)桥面铺装

采用钢纤维混凝土桥面铺装层不仅可以增强桥面的抗裂性、耐久性和提高舒适性能,还可以增强桥梁抗折强度,增加桥梁本身刚度,减少铺装厚度,降低结构自重,改善桥梁受力状况。此外,采用钢纤维混凝土和橡胶沥青混凝土复合的双层桥面也是一种有效措施。

(2)桥梁上部承受荷载部位

采用钢纤维混凝土作为主拱圈(主梁)或在应力集中区局部加强,改善结构受力性能,有效控制结构变形,减轻自重,推动桥梁结构向大跨度、轻型化方向发展。结构性能良好,造型美观,而且可减少上部材料用量,使下部墩台数量也相应减少,从而降低造价,提高经济效益。通过修建钢纤维混凝土桥梁降低梁高,满足使用上的特殊要求。

(3)桥梁墩台等结构局部加固

对动载长期作用下造成的桥梁墩台及桥面板裂缝或表层剥落病害,采用转子Ⅱ型喷射机喷射5cm~20cm 钢纤维混凝土以满足结构的整体性和抗震性要求。一般钢纤维类型采用剪切钢纤维,掺量为10%;采用硫铝酸盐快硬水泥和TS 型速凝剂提高早期抗裂性能;对旧混凝土表面喷砂或凿毛,增加新旧混凝土的整体性。

(4)钢筋混凝土桩加强

采用钢纤维混凝土对桩顶或桩尖局部增强,桩的穿透力有较大提高,锤击次数减少,大大提高打击速度。一般在桩顶和桩尖部位采用钢纤维混凝土,增强桩顶的抗冲击韧性,避免桩顶在打入设计深度以前出现破裂,并增加桩尖入土能力,提高打击速度。桩身部分仍用预应力或非预应力钢筋混凝土。当然也可以全断面整体浇筑钢纤维混凝土,但其经济效益会有所下降。所以,应经过技术经济比较决定。

二、工程实例

1、工程概况

一项目工程上部结构采用普通钢筋混凝土现浇板及预应力钢筋混凝土空心板。下部结构为重力式桥台,桩式桥墩及轻型薄壁墩,扩大基础。设计荷载:公路-II 级。

2、材料选择及配合比设计

(1)主要原材料

根据设计文件规定铺装的控制标准为:要求28d 抗折强度≥7.5MPa,抗剪强度≥11.0MPa,抗磨度≥300h/cm。其主要材料为:

水泥:水泥统一使用525# 中热水泥,水泥使用时特别注意进行安定性检验

外加剂:混凝土中掺入减水率在25%以上,其他品质达到GB8076《混凝土外加剂》技术要求的高效减水剂。

骨料:骨料最大粒径20mm,砂细度模数2.4~2.8。

钢纤维:品质应同时符合CFCS38:92中规定。

(2)刚纤维砼配合比设计

钢纤维的增强效果随体积掺量的增大而提高,但掺量太大。增强效果并非按正比增大,且不易满足施工要求。在铺装层实际应用中,钢纤维的体积掺量在1%~1.5%之间选择。作为为铺装层材料应按抗折强度为依据配合比设计。掺量确定后,由钢纤维混凝土抗折强度和主要因素的关系即可求出水灰比:ffim=Rtm(0.12c/w+0.31+βtmρfLf/df)。式中:ffim-钢纤维混凝土配制抗折强度,MPa;

Rtm-水泥实测的28d 的抗折强度,MPa;C/w-钢纤维混凝土的水灰比;βtm-钢纤维对抗折强度的影响系数,依试验确定;ρf、Lf/df-钢纤维的体积掺量和长细比。

根据抗折强度设计值,按强度保证率为85%考虑,进行配合比和实验。达到上述指标的钢纤维混凝土配合比为:水灰比为0.4~0.43,钢纤维体积掺量为1.0%。

3、钢纤维混凝土施工技术

钢纤维混凝土的施工,按其施工方法来分有浇注钢纤维混凝土、喷射钢纤维混凝土和灌浆钢纤维混凝土。钢纤维混凝土道桥工程质量的优劣,在很大程度上取决于施工质量。因此,在钢纤维混凝土施工时,除了满足普通混凝土的施工要求外,还应特别重视钢纤维给施工带来的技术问题,确保钢纤维均匀分布在基体中。

(1)设置钢纤维分散装置

由于钢纤维一次性直接投入搅拌机易出现结团现象,为使钢纤维充分分散,宜将钢纤维通过分散机再进入搅拌机。分散机功率宜为0.75kW~1.0 kW,分散力宜为20kg/min~60kg/min。钢纤维应事先与细骨料定量拌合均匀或选择直径较粗、材质较好的纤维,并在料斗入口处设置振动筛。

(2)搅拌投料顺序和搅拌时间

为了使钢纤维在混凝土中分布均匀,施工中不结团,必须严格控制投料顺序、搅拌方法和时间,这是有别于普通混凝土的关键工艺,也是保证施工质量的重要环节。本项目搅拌时先将粗细骨料、钢纤维、水泥干拌1.5min,再加水和加剂湿拌2min,确保混凝土拌制质量。

(3)采用强制式搅拌机

钢纤维混凝土搅拌机,一般最好使用强制式搅拌机和双锥反转出料搅拌机。当纤维掺量较高和坍落度较小时,为不使搅拌机超负荷工作,搅拌机的利用率相应有所降低。

(4)浇注和振捣

钢纤维混凝土在浇注时,不得有明显的浇注接头。每次倒料必须相压15cm~20cm,使钢纤维混凝土保持整体连续性。同时,钢纤维混凝土的浇注必须连续进行。因使用插入式振动棒插入钢纤维混凝土进行振捣,会使钢纤维朝振动着的振动棒聚集,产生集束效应,为确保钢纤维的二维分布,宜使用平板振动器振捣成型。当采用振捣棒时,为保证边角混凝土密实,应使钢纤维纵向条状集束排列有利于抵抗板体收缩应力、温度应力及荷载的传递。振捣好的混凝土表面应抹平,将外露的钢纤维压入混凝土中,以防止露出表面的纤维锈蚀或刺人。

(5)成型

钢纤维混凝土具有粗骨料细、砂率大、纤维乱向分布的特点,因此钢纤维混凝土路面宜采用真空吸水工艺,机械抹平以防止钢纤维外露。采用压纹机压纹工艺以避免拉毛产生纤维外露现象。拆模后对纤维外露或漏振时,应及时处理。

(6)接缝施工

钢纤维混凝土的收缩性小、抗裂性能好。有条件封闭交通的施工路段,采用混凝土摊铺机可做成整幅式,不设纵缝。钢纤维浇筑养生达设计强度50%后切锯缩缝。

(7)运输

钢纤维混凝土在运输过程中,坍落度和含气量都会有损失,拌和物稠度下降。由于在运输时受到振动使钢纤维下沉,影响了钢纤维混凝土的均匀性。因此钢纤维混凝土的运输距离应尽量缩短,料斗出口尺寸要大一些。有条件时也可以采用泵送。

总之,我认为,钢纤维混凝土路面具有减薄铺装厚度、纵缝不设或少设、横向缩缝少、良好的耐磨性及冻融性等优点,延长路面使用寿命,从而在道路和桥梁中会得到的更好地应用。

参考文献:

钢纤维范文3

关键词 钢纤维混凝土冻胀 推广应用

中图分类号:TU37文献标识码: A

钢纤维混凝土是一种新型的优质水泥基复合材料,是当今世界各国普遍采用的混凝土增强材料。它具有抗裂、抗冲击性能强、耐磨强度高、与水泥亲合性好,可增加构件强度,延长使用寿命等优点。由于优异的力学性能、化学稳定性、轻质高强、施工方便快捷、省力节时、施工工序简单、施工质量易于保证,而且进度快、工期短、补强后不改变结构外形,不显露补强痕迹,以及工程造价低等优点而被广泛应用。

⑴ 钢纤维混凝土的特性

① 力学强度

根据各国钢纤维混凝土资料分析,钢纤维对提高混凝土的抗压强度不显著,统计资料表明,钢纤维混凝土抗压强度仅提高了10%左右,但其受压韧性却大幅度提高。这是由于钢纤维的存在,增大了混凝土的压缩变形,提高了破坏时的韧性;试验表明,钢纤维混凝土的劈拉强度、抗剪强度、抗弯强度等均比普通混凝土有大幅度的提高。

② 钢纤维混凝土的韧性及抗裂性能

韧性是在材料受力破坏前吸收能量的性质。抗裂性是指钢纤维在脆性混凝土基体中减少裂缝和阻止裂缝开展的性质。混凝土中掺入钢纤维后,可减少收缩和变型,并且荷载作用时,随着荷载继续增加,超过混凝土所能承受的压力时,应力通过混凝土与钢纤维的粘结力传递给钢纤维,混凝土受到钢纤维的约束作用,限制了新裂缝的发生,推迟了裂缝的扩展,因此钢纤维混凝土具有较好的韧性和抗裂性。

③ 钢纤维混凝土的耐磨性和耐久性

混凝土中掺入钢纤维后,其耐磨性能得到了很大提高。国内采用了标号为C35 和CF35的普通混凝土和钢纤维混凝土5cm×5cm×5cm的试件在国产耐磨机上做等条件磨损试验。结果表明,钢纤维混凝土比普通混凝土的磨损损失降低了30%;钢纤维混凝土的耐腐蚀性、抗冻融性等均较普通混凝土好。

⑵ 钢纤维混凝土的施工技术

① 钢纤维混凝土拌和

为防止钢纤维混凝土在搅拌时纤维结团,在施工时每拌一次为搅拌量的80%。采用滚动式搅拌机拌和,在搅拌混凝土过程中必须保证钢纤维均匀分布。为保证混凝土混合料的搅拌质量,采用先干后湿的拌和工艺。投料顺序及搅拌时间为:粗集料钢纤维(干拌1min) 细集料水泥(干拌1min) ,其中钢纤维在拌和

时分三次加入拌合机中,边拌和边加入钢纤维,再倒入黄砂、水泥,待全部料投入后重拌2min~3min ,最后加足水湿拌1min。总搅拌时间不超过6min ,超搅拌会引起湿纤维结团。按此程序拌出的混合料均匀。若在拌和中,先加入水泥和粗、细集料,后加钢纤维则容易结团,而且纤维团越滚越紧,难以分开,一旦发现有纤维结团,就必须剔除掉,以防影响混凝土的质量。

② 钢纤维混凝土的浇捣

钢纤维混凝土浇捣与普通混凝土一样,浇捣是施工中的重要环节,直接影响钢纤维混凝土的整体性和致密性。不同之处就是其流动性较差,在边角处容易产生蜂窝。因此,边角部分可先用捣棒捣实。边角采用插入式振动器振捣,然后用夯梁板来回整平。

⑶ 钢纤维混凝土在灌区使用前景

河套灌区建筑物主要为小型的农田水利枢纽,包括水闸、桥梁、渡槽、涵洞及泵站等。由于河套灌区属于北方地区,冰冻时间较长,冻深较大,而产生的冻胀破坏,是影响灌区建筑物使用寿命的因素之一。钢纤维混凝土具有良好的韧性、抗裂性等良好的力学性能,可以减轻冻胀破坏对灌区建筑物寿命的影响。

目前,钢纤维混凝土在《黄河内蒙古河套灌区续建配套与节水改造》中的公庙子分干沟扬水站、南二分干沟扬水站中使用,工程项目运行2年,效率良好,混凝土表面并无除险裂缝、剥蚀等破坏现象。

钢纤维混凝土在河套灌区算是新的材料、新工艺,受传统观念的影响,新事物的产生到推广应用需要经历一定的时间。随着工程的进展,相信钢纤维混凝土会得到广泛推广应用的。

参考文献:

[1] 李世恩 申永坚 纤维混凝土在水工建筑物工程中的应用 人江 2002(2);

[2] 朱胜才 层布式钢纤维混凝土复合路面的应用 山西建筑 2007.22(5);

[3] 程秀菊.钢纤维混凝土的增强机理及断裂韧性的研究. 河海大学硕士学位论文.2005.3;

[4] 高丹盈,黄承过.钢纤维混凝土的抗压强度.河南科学,1991.9(2):83;

[5] 何华兴.浅谈钢纤维混凝土及其施工应用.科技信息,2008(19):137;

[6] 柯名强.论钢纤维混凝土的性能、施工与应用前景.科技资讯,2008(8):70;

钢纤维范文4

Abstract: Along with the development of market economy, China's urbanization process accelerates. Chinese infrastructure construction is gradually increasing, road and bridge projects construction increases, and the demand for building materials to road and bridge projects bwcomes higher and higher. Steel fiber reinforced concrete as a new type of composite material, can effectively enhance the construction of concrete tensile, flexural and impact performance. This paper briefly outlines the basic concepts and performance of steel fiber reinforced concrete, deeply discusses the specific applications of steel fiber reinforced concrete in road and bridge engineering, and briefly introduces construction technology of steel fiber reinforced concrete for reference.

关键词:钢纤维混凝土;施工工艺

Key words: steel fiber reinforced concrete;construction technology

中图分类号:TU37 文献标识码:A文章编号:1006-4311(2010)23-0063-01

1钢纤维混凝土概述

随着我国城市化建设的迅速发展,我国居民对建筑工程质量要求越来越高,为了增强混凝土的强度,在工程施工中一般在普通的混凝土中加入一定量的钢纤维混合成钢纤维混凝土,以此来改善混凝土的拉伸强度,增加其承载能力,钢纤维混凝土在我国的基础建设工程中已经得到了广泛应用。

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。

钢纤维混凝土(简称SFRC)是指把占混凝土体积的1%~2%的,直径为0.3~0.6mm、长度为20mm,40mm的短钢纤维均匀地混合到混凝土中,可以是特定方向也可以是随机的方向。新形成的混凝土便是钢纤维混凝土,根据掺入的钢纤维的加工工艺的不同,钢纤维混凝土主要可以分为四种,其中冷拔型钢纤维抗拉强度最高,性能最好。根据纤维增强机理的各种理论,诸如纤维间距理论、复合材料理论和微观断裂理论,以及大量的试验数据的分析,可以确定纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即l/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。

钢纤维混凝土主要是通过取代建筑工程中的钢筋,减小构件的截面尺寸或减小路面的厚度,调整伸缩的缝间距等来提高路桥工程的质量,有效地缩短工期,降低路桥工程的造价,保证其较长的使用寿命。

2钢纤维混凝土在路桥工程中的具体应用

2.1 在路面工程中的应用钢纤维混凝土在路面工程中应用时,主要是通过减少路面的铺设厚度,少设缝隙,提高路面的耐磨性等来提高路面的使用寿命,从具体的应用来看,主要包括两个方面的应用,一方面是钢纤维混凝土在新建路面工程中的应用,另一方面是钢纤维混凝土在罩面修补路面中的应用。在新建路面的工程中,采用钢纤维混凝土,减小路面的厚度,保证双车道路面不设纵缝,增加路面的使用寿命。在罩面修补路面中,可以采用结合式罩面面层与旧混凝土相互粘结为一整体,共同发挥结构的整体强度作用。也可以采用分离式罩面层,在中间设置一个隔离层,各层独立发挥作用。

2.2 在桥梁工程中的应用钢纤维混凝土一般在桥梁工程中应用于以下几个方面,在桥面铺装上,可以利用钢纤维混凝土达到上述道路工程的效果,有效改善桥梁的受力情况,在桥梁结构的局部加固方面,可以采用转子Ⅱ型喷射机喷射5~20cm钢纤维混凝土以满足结构的整体性和抗震性要求。

2.3 在隧道工程中的应用在隧道工程中采用钢纤维混凝土,一般是通过钢纤维混凝土对隧道进行支护加固,可以有效的加强隧道结构的整体性,增强其承载能力,同时在隧道工程中,可以采用钢纤维混凝土减少隧道的衬砌结构厚度,增强隧道的抗震能力,减少隧道的开挖数量,降低隧道工程的成本,增强隧道工程的经济效益。

3施工中应注意的问题

钢纤维混凝土因其低成本和有效提升混凝土强度的作用,在路桥工程上应用广泛。钢纤维的分布是否均匀对钢纤维混凝土的工程质量有很大的影响。为了保证钢纤维混凝土发挥出其应有的作用,在施工中,除了依据混凝土的施工规范进行施工外,还要关注以下几个方面:

3.1 施工流程中需要注意的将钢纤维放入搅拌机与混凝土搅拌在一起时,必须要先通过分散机,采用分级投料,按照砂、钢纤维、碎石的次序,先干后湿,进行搅拌,避免出现结团现象。同时在进行钢纤维混凝土浇注时必须连续保持连续进行,振捣时使用平板振动器振捣成型,并将振捣过的混凝土表面压平,避免钢纤维外露。

3.2 施工工具方面在钢纤维混凝土施工时要避免搅拌机的超负荷工作,一般在进行钢纤维混凝土施工中采用的工具是强制式搅拌机。在钢纤维混凝土工程即将完工时,可以采用摊铺机将其做成整幅式。

4结语

随着我国城市化建设的深入发展,路桥工程作为城市基础建设的重要组成部分,将会逐步增加,钢纤维混凝土作为新型的混凝土符合材料,可以提高混凝土的强度,降低路桥工程成本,可以预见,其将会在路桥工程中广泛使用,同时随着生产方法的成熟和生产技术的改进,钢纤维混凝土的成本将逐渐降低,因此其应用范围将进一步拓宽,在具体的施工过程中,一定要严格按照混凝土的施工规范进行指导操作,保证钢纤维混凝土最大效用的发挥。

参考文献:

[1]徐平.钢纤维聚合物混凝土机床基础件静动态力学性能及损伤机理研究[D]. 辽宁工程技术大学,2006 .

[2]范小春.层布式钢纤维混凝土基本性能与应用研究[D].武汉理工大学, 2008.

[3]郭艳华.钢纤维混凝土增韧性能研究及韧性特征在地下结构计算中的应用[D].西南交通大学,2008.

钢纤维范文5

关键词:市政路桥工程;钢纤维混凝土;施工技术;质量控制

市政路桥工程对混凝土要求是比较高的,一般混凝土是由石头、砂子、水泥、水一起搅拌形成,由于其构成物本身特性抗拉伸能力较小这样在受到外界因素影响时容易发生断裂,这样形成的桥梁也容易发生坍塌及道路不平崎岖,不利于交通发展及居民生活。而在搅拌混凝土过程中按一定比例投入钢纤维形成新的复合型材料,钢纤维自身物理特性使其能够均匀分布其他材料之中,发挥不同材料特性。钢纤维混凝土具有强的耐久性、高强度、高效负荷性能,而且相比较经济成本低,使用性能高,因此,钢纤维混凝土的施工技术要不断地提高,更好的应用于道路、桥梁工程中,促进路桥工程事业的发展。

1关于钢纤维混凝土的简要介绍

钢纤维混凝土顾名思义就是钢纤维与混凝土混合搅拌新兴复合材料。相对比其他普通混凝土其物理特性具有较强的优越性,把钢纤维与混凝土二者的优点充分发挥出来。钢纤维混凝土已经被广泛应用到路桥工程中,将钢纤维的柔韧性及强度与混凝土的硬度结合起来发挥1+1>2的效应,现在针对钢纤维混凝土研究技术不断发展,保障路桥工程事业的进步发展。

2钢纤维混凝土运用于道路施工的重要意义

在市政路桥工程中运用钢纤维混凝土施工技术,能够有效地降低市政工程道路的厚度,提高道路耐磨型及抗压性,同时能够简化工序有效延伸道路使用周期,确切表现在以下几方面:2.1降低市政工程道路的厚度。钢纤维混凝土施工技术在市政工程道路施工中主要应用的是复合式路面铺设方式,复合式路面铺设方式主要分为双层铺设方式及三层铺设方式,不管哪种方式都能有效降低道路的厚度,但施工人员需要结合现场实际情况决定采取哪种方式从而提高钢纤维混凝土在道路施工中应用性能。2.2简化道路施工的工序。钢纤维混凝是属于复合型材料,比普通混凝土的性能及施工工艺高出很多,在道路施工中运用钢纤维混凝土施工技术有效降低道路厚度进而减少道路施工程序。2.3可有效的延长道路的使用寿命。在道路施工中运用钢纤维混凝土施工技术不仅减低道路厚度,简化道路施工程序,同时能够提高道路增强道路耐磨、抗压、抗冻性能,有效提高道路使用寿命,钢纤维混凝土施工技术的优越性能使得其广泛应用到道路施工中。

3桥梁施工中钢纤维混凝土的应用价值

3.1提高桥面的力学性能。在桥梁施工中运用钢纤维混凝土施工技术能够提高桥面的抗冻性及抗压性同时增加桥面舒适度,因为桥面本身有一定刚度对钢纤维混凝土的铺设可以减小这样就可以降低桥梁承载能力。3.2提高主梁的承载力。运用钢纤维混凝土施工技术能够发挥桥梁力学结构作用预防桥梁变形保障桥梁质量,提高桥梁承载力减轻桥梁结构重量降低材料使用率,减少材料成本支出提高桥梁工程带来经济效益。3.3增加桩的力学性能。在市政桥梁工程施工中运用钢纤维混凝土施工技术能够有效提高桥梁桩的穿透力从而减少桥梁桩的锤击工序进而加快桥梁工程的施工进度。

4市政路桥施工中钢纤维混凝土质量的控制措施

4.1关于原材料的检验与控制。首先,需要对原材料进行入库前的数量、质量检查,并且严格按照相关规定进行原材料存放工作。同时,对于不合格原材料要拒绝入库处理,做好相应处理工作。其次,在材料发放的过程中要进行自检,对原材料进行分类存放,严格把控材料质量。最后,投料作为材料在工艺过程中最后程序要严格进行材料自检,避免不合格品出现。因此,这就要求负责材料相关人员对材料存放分类、规格等有一定熟悉度,并且相关质检工作要从仓库到施工现场进行监督。4.2关于工地实验室相关配置。工地实验室是进行钢纤维混凝土施工技术研究的专业化场所,加强对工地实验室的相关配置及对实验工作人员工作能力培训,对于实验工作人员要求有专业技术水平及相关工作经验。4.3关于施工过程中工序的质量控制。加强对施工过程中每一道工序的质检工作,保证每一道工序质量,从源头开始对质量进行控制,确保在施工过程中避免因质量问题出现返工及停工,保证工程正常运行。同时对实验室机器设备进行定期检查,并做好相应文字记录。

5钢纤维混凝土施工技术的可持续发展策略

5.1提高人们对路桥钢纤维混凝土高性能化的意识。通过对技术施工人员进行积极知识技能培训,让相关人员了解钢纤维混凝土的性能及优势,加大社会、政府、施工单位各方对钢纤维混凝施工技术的重视,强化对其性能的认识,推广钢纤维混凝土施工技术在市政路桥工程中的应用,从而实现钢纤维混凝土技术的可持续发展。5.2健全钢纤维混凝土施工技术体系。建立健全钢纤维混凝土施工技术体系,并制定相关规章制度,保障钢纤维混凝土施工技术质量,并建立相关奖惩制度加强对钢纤维混凝土的技术管理,促进钢纤维混凝土施工工艺的不断创新发展。5.3加强对钢纤维混凝土施工技术创新应用。为适应市政路桥工程发展,要不断加强对钢纤维混凝土施工技术的创新,这样才能充分发挥钢纤维混凝土性能,能够加强路桥工程质量,促进钢纤维混凝土施工技术的可持续发展。

6结论

钢纤维混凝土由于其具有良好的抗压力及负荷性能在市政路桥工程中被广泛应用,加强对钢纤维混凝土施工技术创新,使钢纤维混凝土整体性能得到提高。同时加强市政路桥工程钢纤维混凝土质量控制,工程施工人员对钢纤维混凝土的性能及应用范围有清晰的认识,可以更好地将钢纤维混凝土技术应用到路桥工程中,为推动路桥工程事业不断发展提供技术支持。

参考文献

[1]李进兴.市政路桥施工中钢纤维混凝土施工技术的应用研究[J].中华民居(下旬刊),2014(7):302-303.

[2]李勤剑.市政路桥建设中钢纤维混凝土施工技术要点探究[J].科技展望,2014(8):72.

钢纤维范文6

1基于能量消耗原理分析

钢纤维对混凝土韧性的改善1976年,瑞典学者Hiller-borgf通过对混凝土的微裂区分析后,提出了虚拟裂缝模型[6],其基本假定为:(1)当混凝土端缝应力较低时,微裂区稳定不扩展,而当应力达到某一临界值(抗拉强度)时,微裂区扩展;(2)混凝土应力达到抗拉强度后,裂缝间仍有相互作用应力,这种相互有应力作用的裂缝称为虚拟裂缝。虚拟裂缝面上传递应力的大小随虚拟裂缝张开宽度的增大而减小。应力减小到零的点,即为真实宏观裂缝的端点;(3)虚拟裂缝区应力变化的规律由拉伸试验确定;(4)虚拟裂缝区以外的材料仍按弹性材料处理。钢纤维混凝土材料的裂缝端部存在明显的非线性效应区,称为破坏过程区。虚拟裂纹模型把钢纤维混凝土材料的微裂纹前端划分为4个区域[7,8],如图2所示。在这4部分区域中,纤维桥联区内基体已经开裂,此时横跨裂缝的纤维通过界面的粘结,阻止裂缝的扩展。基体微裂缝区内裂缝存在但并未张开,基体和纤维共同阻止裂缝扩展。很明显,纤维只在这两个区域内发挥作用。裂缝的扩展必然会加大裂缝两岸的距离,无损伤区开裂成为微裂缝区,进而张开变成纤维桥联区。在这一过程中,桥联裂缝的钢纤维不断地被拔出或拉断,消耗了大量的外载荷做功。因此可以使用断裂能作为参数,定量分析钢纤维对混凝土基体的增韧效果。破坏过程区的形成引起较大的能量耗散,这主要是由于:(1)在水泥净浆的裂纹顶端附近围绕一微裂纹区;(2)在裂缝顶端前存在集料的跨接区;(3)当有足量的纤维存在时,在裂纹的顶端处存在一纤维的跨接区,为使纤维由基材中拔出必须消耗较多的能量。

2钢纤维混凝土节点经典受力破坏过程

一般而言,钢纤维混凝土框架节点在低周反复荷载作用下将经历初裂、屈服、强度极限和破损等特征状态。在加荷过程中,钢纤维混凝土节点约在极限荷载的60%左右时,在平行对角线方向出现第一条肉眼可见裂缝(宽度约0.02mm),其长度约为节点对角线长度的1/3,此时,节点达到初裂状态;反方向加载,将在平行另一对角线方向出现初裂。随着荷载的增大和反复循环,裂缝沿对角线方向延伸和扩大,并出现其他平行裂缝和交叉裂缝。当荷载到达极限荷载的80%左右时,沿对角线方向的主裂缝宽度约0.3mm,但钢纤维混凝土节点一般尚未屈服。当荷载增加到梁柱交界处梁主筋屈服时,梁的变形明显增大,梁端荷载-位移曲线将发生转折,节点到达屈服状态;反荷载方向也一样。随着荷载增大和反复循环,钢纤维混凝土节点达到强度极限状态,节点核心区被多条大致平行对角线方向的裂缝分割,其中贯通的主裂缝宽度大0.6mm~2mm,但核心区混凝土无剥落现象,充分体现了钢纤维混凝土“坏而不散”的延性特点。

3钢纤维对框架节点抗震性能的改善

3.1钢纤维对框架节点裂缝的控制作用节点区的初裂状态可以作为节点正常使用的初裂度的根据。对于抗震结构,节点核心区的早期开裂对结构的强度、变形和耐久性都不利。节点核心区的初裂抗剪强度主要与混凝土抗拉强度有关,而与节点配箍率关系不大。由于钢纤维混凝土具有抗拉强度、延性性能高的特点,将其用于框架结构节点区域,对提高其抗裂强度是很有效的。由于钢纤维混凝土控制裂缝延伸、扩展的作用较强,钢纤维混凝土节点核心区裂缝贯通较晚。因此,对钢纤维混凝土节点,“通裂”一般只以裂缝达到0.3mm宽作为判断依据。钢纤维混凝土的通裂强度约为极限强度的80%,而钢筋混凝土节点的通裂强度仅为其极限强度的60%~70%[9]。钢纤维混凝土节点通裂强度的提高,归功于钢纤维对混凝土抗拉强度和延性的改善,钢纤维的存在,使节点斜缝附近形成“伪塑性区”,缓解了裂缝尖端的应力集中,限制了裂缝发展。

3.2钢纤维对框架节点抗剪性能的改善早在1989年,唐九如采用5个梁柱边节点来研究反复荷载作用下钢纤维进对节点强度、延性、能量吸收与耗散、破坏形态以及锚固性能的影响,并与普通钢筋混凝土节点做对比。对于一般允许节点出现裂缝的结构,节点极限抗剪强度的计算可在现行规范钢筋混凝土节点抗剪公式的基础上,增加钢纤维作用一项。钢纤维混凝土抗剪试验表明,在一定范围内,随纤维含量的增加,抗剪强度呈凸曲线上升趋势[2]。因此,在实用的范围内,钢纤维混凝土节点的极限抗剪强度可认为由混凝土基体承担的剪力、箍筋承担的剪力和钢纤维承担的剪力3项叠加而成。

3.3钢纤维对节点延性和耗能性能的改善钢纤维混凝土节点的耗能系数高于普通混凝土节点,具有较好的耗能性能。同一级位移下随循环次数的增加,耗能系数有所减少,但混凝土节点的降低率小于普通混凝土节点。钢纤维混凝土耗能的增加主要表现在大形变的后期,因为随着非弹性变形的加大,裂缝也加宽,钢纤维从混凝土基体中逐渐被拔出。在纤维被拔出的过程中表现出材料的韧性,从而吸收和耗散了能量。而普通混凝的裂缝展开闭合时,刚度降低明显,滞回曲线出现“捏缩”,耗能下降。

4钢纤维混凝土框架节点抗震设计的一些建议