卫星通信系统范例6篇

卫星通信系统

卫星通信系统范文1

【关键词】卫星通信;便携;通信体制

在“5.12汶川地震”过后的多次突发公共事件的处置中发现,公共通信网络在突发公共事件发生时通常会出现瘫痪、堵塞的情况,卫星通信作为应急通信的保底通信手段是不可或缺的,如果需要在环境恶劣或特殊地形的条件下第一时间到达现场,并且携带较多的抢险器材,这时体积小、重量轻、便于携带便成为了卫星通信设备考虑的重要因素。现有卫星通信系统具有不同体制,对应的使用环境也有所不同,用户需要根据不同环境和不同应用的要求选择相应的便携式卫星通信系统。

一、现有卫星通信系统的分类及优缺点

卫星现有通信制式有FDMA、TDMA、CDMA。

1.FDMA:频分多址,采用调频的多址技术。不同用户使用不同频带实现信号分割,即在同一时间内不同用户使用不同频带。

优点:一个终端对应一段频段,别的终端不能使用该频段,因为是独享,所以可以支持稳定速度较快的通信,上传、下载速度接近,应用时间较长,设备经过实战考验。

缺点:因是独享,所以在同一载波内不支持多址通信,且主站设备多,配置复杂,通常使用在传输视频上。

2.TDMA:时分多址,采用时分的多址技术。业务信道在不同的时间分配给不同的用户,即在同一频带内不同用户使用不同时隙。

优点:所有终端可以使用同一频段进行通信,在同一载波内支持多址通信,网络规模可以很大且分布起来比较简单,能接收大速率的数据,下载速度通常大于上传速度,下载速率通常大于FDMA,上传速度通常小于FDMA。应用时间较长,设备经过实战考验。

缺点:主站设备比FDMA更加复杂,因带宽不是独享,通信延时长于FDMA。

该通信制式通常在需要较大下载数据的情况下使用,通常使用于综合业务系统,上网、传输数据等。

3.CDMA:码分多址,采用码分的多址技术。业务信道在同时分配给不同的用户,通过不同的码制区别不同的用户。

缺点:在较少终端的情况下传输效率通常低于上述两种制式,上传带宽较小远小于FDMA和TDMA,只能进行低速率的通信。设备较少,没有经过实战考验。

优点:设备架设的复杂度低于上述两种体制。

载波频谱密度低,降低对邻星的干扰,特别适用于0.5m口径以下的VSAT系统;具有软容量特性,即在少量降低在用信道载噪比的代价下,可以在额定系统容量基础上临时增加少许信道,以满足系统突发负载增加。

抗干扰能力强:因将有用的信号扩展到很宽的频带上,干扰信号进入与有用信号同频带内的干扰功率大大降低,从而增加了输出信号/干扰比,因此具有很强的抗干扰能力。

可进行多址通信:采用正交性等方式区别不同终端,使各网在同一时刻共用同一频段,因此在同一频段内可支持多个终端传输。

频带可复用:采用正交性等方式区别不同终端,因此两个不同网络传输的频带可重叠复用。

二、不同卫星通信体制对应的便携系统解析

1.FDMA

设备特点:

系统采用 Ku频段,单跳直连,动态组网,满足低速、中速、高速业务需求。

具有双向通信能力,能实现语音、数据、图像的传输。

具备高速数据传输和视音频传输,每路数据传输速率不小于64kbps,每路话音传输速率不小于8kbps,每路图像传输速率为768kbps至2Mbps;每路综合业务数据至少包含4路话音、1路图像和2路数据。

采用基于IP协议的通信标准和FDMA/DAMA卫星通信技术体制,并能通过卫星链路全网互联互通。

支持任何符合TCP/IP协议的数据,支持QOS协议及TCP协议加速。

系统支持BPSK、QPSK、8PSK等多种调制方式和TPC 1/2、3/4、7/8编码方式。

卫星通信设备通过IP接口与电视会议设备、计算机网络设备、通信设备、视音频编解码设备等连结。

中频接口采用L波段。

系统应具备自动上行功率控制能力(AUPC)。

综合业务数据可通过IP加密方式传输并采用统一型号的加密设备。

设备性能:

自动对星便携站应具备一键自动对星功能,架设开通时间为3-5分钟。

天线应具有高增益、高效率、低旁瓣、小电压驻波比等良好电气特性,旁瓣特性和交叉极化隔离度指标满足卫星公司入网要求。

具备重量轻,抗震能力强,集成度高,工作适应温度范围广等特性。

能为BUC及LNB提供10MHz外参考,能通过馈线给BUC供电。

功耗小、工作温度范围广、重量轻。

便携式卫星站配置1台调制解调器和1台DVB接收机。

2.TDMA

设备特点:

两个背包就是一个完整的基于卫星通信的多业务终端,特别利于越野行动。可以选择人力发电机,这样三人小组可以完成恶劣条件下的应急通信保障。在全国城乡大多数地点,与多个固定地点和机动地点联网通信。在全国城乡大多数地点,与多个固定地点和机动地点进行视讯会议或视讯对话。可以全部放进普通小汽车的后备箱内。可以通过民航普通行李安检。

设备性能:

使用“静中通”天线手动寻星的卫星交互式宽带多媒体通信系统。主要用于卫星应急通信,在到达现场后按要求展开天线,手动寻星,然后建立卫星通信链路。卫星通信链路支持基于IP的数据通信,支持VPN,支持VLAN。系统自身对外具备一个标准的以太网络接口,可以运行地面计算机网络上的所有应用。

可以完成网络访问、网络电话、视讯会议等应用的一个终端的全部基本功能。此时,系统具备了网络拓展的接口,以便接入更多的计算机或网络设备,特别是可选IP保密机的接入;拥有基于PSTN传真机的接入能力,以便收发传真;配有无线图像传输系统,可解决最后一公里的图像传输问题;具有音视频的AV接入和输出,以便接入外接的图像和伴音,或者完成图像和声音的输出。

3.CDMA

设备特点:

主要用于拨打卫星电话,进行小速率的数据传输

可设置热线电话按键,实现一键呼叫;

携带体积不超过50cm×40cm×30cm,总重不超过8kg,包括背包、整体外壳、天线、功放、LNB、调制解调器、内置北斗模块、一块电池、电源适配器、无绳电话、支架;

选用0.3米*0.3米的平板天线,配备无绳电话,方便在单兵设备附近移动使用;

具有无线AP接入点功能,可实现数据(包括图片、文本、短信等)传输,支持802.11a/b无线网络协议,支持UDP网络协议,可通过AP访问该单兵通信系统;

符合卫星运营商的入网要求;

手动对星方式,需配备对星辅助工具,具有卫星信号强度指示灯、指南针等,对星时间为5-10分钟;

支持锂电池供电和使用电源适配器采用交流电供电。电池采用外挂式,可选配不同容量,保证持续工作时间不低于2小时,待机时间不低于8小时;

具有直观的电池电量指示灯、工作状态指示灯;

外部接口应选用航空插座,防水防尘,适应野战环境;

内置北斗定位模块,可在单兵设备数据模式下上传地理位置信息;

设备性能:

提供卫星网内便携站与主站、便携站与便携站以及便携站与公用电话网间的话音通信;

提供卫星网内便携站与主站、便携站与便携站以及便携站与公用电话网间的数据通信;

提供卫星网内便携站与主站、便携站与便携站间的短报文通信;

系统具有基本网管功能,提供系统的信道分配和基本配置管理。

扩频带宽:2、4、8MHz可变。

信息速率:话音,2.4kbps声码话;

数据,2.4kbps。

通信体制: CDMA/PSK/DAMA。

工作频段:Ku频段。

差错控制:LDPC码。

话音接口:二线话音、wifi无线接口话音;

数据接口:网口、wifi。

三、不同卫星便携系统的优缺点和使用场景总结

现总结如下:

(一)频分多址(FDMA)不扩频多址通信系统

1.特性

采用调频的多址技术。不同用户使用不同频带实现信号分割,即在同一时间内不同用户使用不同频带。

2.优点和应用环境

频带独享,延时较短,传输的时延抖动较少,通常应用与视音频传输

3.缺点

ODU要求较高,用户增加时,扩展系统能力比较麻烦

(二)时分多址(TDMA)不扩频多址通信系统

1.特性

采用时分的多址技术。一段频带在不同的时间分配给不同的用户,即在同一频带内不同用户使用不同时隙。

2.优点和应用环境

ODU要求较低,扩展系统能力较简单,该通信制式通常在需要较大下载数据的情况下使用,通常应用于综合业务系统,上网、传输数据等

3.缺点

延时长,传输的时延抖动较多,不适合对于延时敏感的传输业务

(三)码分多址(CDMA)扩频多址方式通信系统

1.特性

采用码分的多址技术。在一段频带上,将信息数据,用一个带宽远大于信号带宽的伪随机码进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去,接收端使用完全相同的伪随机码,与接收的带宽信号作相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信,不同的用户使用不同的伪随机码进行区分。

2.优点和应用环境

ODU要求最低,能够降低载波频谱密度,降低对邻星的干扰,抗干扰能力和保密能力强于不扩频通信系统,通常应用于语音、小数据传输等

3.缺点

传输效率通常低于不扩频通信系统,占用频带资源多

卫星通信系统范文2

支持移动性的文件系统

为了适应移动应用,需要专门设计一种将应用与网络连接的变化隔离开来的文件系统。在网络连接状态较好的情况也需要断开操作,因为这样可以保存能量而且维持无线静默。一个典型的支持移动性的文件系统(如Coda)具有如下功能。(1)客户机应用程序使用本地的文件缓存。采用这样的设计,可以在与文件服务器的连接断开之后,仍可以进行操作。在保持连接的时候,本地保存所需的文件。在客户机与网络断开的情况下,缓存服务可以在没有网络连接的时候访问文件。缓存丢失会提示应用程序出现了错误。一旦客户机重新接入了网络,更新的缓存文件将会传送给其他的用户,从而解决出现的冲突。(2)冲突的检测和解决。对于文件目录这样的结构,可以解决多种同步更新问题。这种同步更新有时是明显的,有时可能不太明显,均需要合理对待。例如,同时插入不同名字的文件就是很明显的。当一个用户更新一个已经被另一个用户删除的文件,也需要解决冲突,这就不太明显。(3)支持一些特殊的机制。例如,特别适于用客户机通过一个低带宽链路与它的服务器相连。它可以提供一小段一小段的组合,将本地缓存中的变化一点点地通过异步的方式发送给服务器。它也提供一个容忍模式,允许用户为缓存丢失指定一个服务时间门限,因为在一段低速链路上等待下载一个文件是可以容忍的。

移动数据库系统

个人可能会利用他们的信息应用程序获得信息,如获取最新的新闻或去图书馆的道路。经常请求的信息经过选择和过滤后,放到广播信息信道中,称为推(Push)通信。广播需要仔细的日程安排、一定量的带宽保留,以免出现过长的延时。如果很多用户都希望知道最新的篮球比分,这些信息的更新安排就需要频繁一些。如果很少的用户希望知道水球的比分,就希望这些信息更新的频率低一些,使用更少的带宽,但是这样也会增加获得最新消息的延时。用户可能不希望等待那些不太常被查询的消息的广播,或者他们所要求的信息太个性化了,不能合到一个用户群体中。这样,信息就需要用户主动地拉(Pull),或者说,主动到数据库中去查询。由于有移动性,位置对于数据库查询来说可能是一个重要的属性。游客不仅关心他们旅馆1km范围内的出租车的数量,他们也关心当前位置lkm范围内出租车的数量。

用户接口

因为便携设备对于键盘有很大的限制,用图标或笔输入的接口可能更好。一些设备没有键盘,而只有一些具有特定功能的按钮。这些设备仍然支持特定的功能虚拟键盘,它们可以在触摸式显示器上显示,通过小格子进行选择。不同类型的手写笔输入设备的性能是不同的。一些支持手写识别,而其他一些则只是记录笔画,手写识别相对困难些。一些设备支持修改过的字母表,更容易识别,但是需要用户改变手写方式。数码相机和数码摄像机等设备的视频和图像捕捉功能已很普遍了。电荷耦合设备(CCD)也因为便携式摄像机的出现而渐渐普及。高度集成的CCD摄像机在价格上逐渐下降,而且可以集成到PDA中。0引言在地面LTE标准中采用了AMC技术[1,2]。AMC技术会根据UE测量并反馈的CQI[3]变化及系统资源使用情况,动态地选择调制编码方式,来提高系统容量和信息传输速率。如果要在卫星系统中使用AMC技术,卫星信道的长时延特性会使得eNo-deB接收到的CQI是过期的,降低AMC的性能。因此在LTE-based卫星移动通信系统中,通过预测给出合理的CQI数值供AMC使用是非常必要的。一般的线性预测模型,如ARIMA等,都是依靠时间序列的相关性进行预测。而卫星信道的时延过长,往往远大于信道相关时间,因此对CQI数值进行预测存在较大困难。现阶段在卫星信道质量长时预测方面的相关文章也较少。文献[4-5]给出了含有大尺度衰落和小尺度衰落的卫星信道模型。其中大尺度衰落主要由阴影衰落造成[6-7],阴影衰落的相关模型也已给出。从文献结果看,大尺度衰落的相关时间要远大于小尺度衰落的相关时间。因此本文主要对信号的大尺度部分进行了分析,并用来对实际的CQI数据进行近似。

1GEO卫星移动通信系统和AMC

1.1卫星通信系统模型卫星通信系统中终端之间的卫星通信的典型应用就是双跳模式,如图1所示。双跳模式引起端到端的时延为540ms[8]。

1.2AMC和CQI自适应编码调制AMC技术根据信道状况调整调制方式及编码速率,能够使得处于有利位置的用户得到更高的数据速率,提高小区平均吞吐量;通过使用不同调制方案来代替原来改变发射功率的方案,可以减少干扰。地面LTE标准使用了AMC技术[2]。同样,在LTE-based卫星移动通信系统中,也需要AMC技术来提高系统容量和信息传输速率,提高用户信号质量。对于地面LTE通信系统,终端根据从下行链路接收到的信号计算出信道质量指数CQI,然后通过上行链路上报给eNodeB。eNodeB接收到CQI之后,根据小区资源情况和当前用户的CQI,分配合适的下行调制编码方案(ModulationandCodingScheme,MCS)。用户接收到基站的调整指示,按照指示进行上行传输。因此AMC是个严格的闭环过程。

1.3卫星环境下AMC存在的问题在GEO卫星通信系统中,AMC过程的与地面系统的差异主要是CQI信号经历的链路变成了卫星双跳链路。信道的传输时延、多普勒频移等特性都与地面不同。在这种通信环境下,地面站用来决定AMC策略的CQI数据是过期的,UE接收到地面站的调整指令也是过期的。因此需要利用过期的CQI进行预测,使得到达UE的AMC指示是比较符合接收时刻的信道质量要求。由于一般的预测模型都存在预测能力的限制,其主要参考指标是数据的相关时间,而信道的相关时间与UE的运动速度有关,往往远小于需要预测的时间范围,所以要对CQI数据进行有效地预测存在很大困难。如果不进行预测,又会导致系统有效性的大幅下降,因此需要找到一个折中的AMC策略,实现有价值的预测。

2卫星移动通信系统信道特性分析

2.1卫星信道模型大尺度衰落主要是由阴影效应造成的,其变化主要是由于终端移动造成的所在环境阴影程度的变化引起的。小尺度衰落主要是由于终端所在环境的障碍物散射导致的,其变化也是由于终端移动造成的环境障碍物相对位置的变化导致散射回来的信号变化引起的。事实上终端运动引起的遮挡情况变化在一段时间内都可能保持不变或较小变化,而丰富的多径信号则可能随终端移动发生剧烈变化,因此一般来说大尺度衰减的变化速度要远远低于小尺度衰减的变化速度。文献[10]指出大尺度衰落会在1~3m的范围内基本保持不变。实际信号的波动速度主要由小尺度衰落决定,有理由相信,如果去掉小尺度衰落的影响,信号波动速度将大大降低。文献[11]对重度阴影环境下含有小尺度衰落的信号和去掉小尺度衰落的信号进行了对比,也证实了文献[10]中的结论。

2.2相关时间分析文献[6]中对大尺度衰落信号的相关特性进行了总结,根据不同情况可以选择不同的相关模型进行建模,从实际情况和方便分析的角度,选择文献[7]中给出的相关模型。文献[9]中给出了实际测量的大尺度衰落信号相关数据及拟合的相关模型,对于L-band,80°情况下的相关距离是20m,60°情况下的相关距离是16m,并且S-band情况下与此有类似结果。与上表对比相关距离大大增加。因此如果用仅含有大尺度衰落的信号来近似实际信号,那么进行预测是比较有实现意义的。

2.3近似的信道质量合理性分析虽然经过上述近似之后可以进行预测,但是如果这种近似信号与实际信号相差过大,那么即使做了预测,由于输入数据本身存在的较大偏差,其预测结果也是没有意义的,因此重点讨论的是这种近似信号与实际信号的差距。由于无法获得实际测量信号,只分析现有文献中给出的实际信号的统计特性。选择的是ITU-RM1225[12]中的卫星信道模型。此模型中的多径数目较少,而且多径的功率相对于直射径来说也很低。如果去掉小尺度衰落的影响,也就是将多径的效应进一步减弱,结果与含有多径的信号质量之间的差距,直观上也不会很大。

3仿真分析

通过仿真对利用大尺度衰落对信号质量CQI进行分析的方法进行了分析。产生大尺度衰落的模型采用了文献[9]中的模型。其中低通滤波器的参数选择反映的是信道的特性,与输入信号的具体带宽和其他特性没有关系,因此在产生大尺度衰减窄带信号和大尺度衰减宽带信号时,可以使用相同的大尺度衰减模型及参数。由于无法获得具体的参数,本文仿真参照了文献[9]中关于衰落相关距离的数据进行了LPF的参数选择。下面本文利用上述模型对仅含有大尺度衰落信号和加入小尺度衰落信号的情况进行了仿真。图3是对含有小尺度衰落的CQI数据和只含有大尺度衰落的CQI数据的对比仿真,从图中可以看出,仅含有大尺度衰落的CQI数据变化趋势要明显慢于含有小尺度衰落的CQI数据。

4结束语

卫星通信系统范文3

   论文摘要:低轨道(leo)卫星移动通信系统是卫星距离地面500~1500km,运行周期2~4小时的卫星通信系统。铱系统、全球星系统及系统是地轨道卫星移动通信系统 发展 最快的范例。leo卫星移动通信系统具有广阔的发展前景 

 

 

1 leo卫星移动通信系统的特点 

 

低轨(leo)卫星移动通信系统与中轨(meo)和静止轨道(geo)卫星移动通信系统比较,具有以下特点: 

1.1 由于具有更小的信号衰减和更低的传播时延,低轨卫星通信系统更有利于实现个人全球通信。leo系统的路径传输损耗通常比geo低几十分贝,所需发射功率是geo的1/200-1/2000,传播时延仅为geo的1/7~1/50,这对于实现终端手持化和达到话音通信所需要的延时要求是十分有利的。 

1.2 蜂窝通信、多址、点波束、频率复用等技术的发展为leo卫星移动通信提供了技术保障。 

1.3 由于地面移动终端对卫星的仰角较大,天线波束不易受到地面反射的影响,可避免多径衰落。 

1.4 它在若干个轨道平面上布置多个卫星,由星间通信链路将多个轨道平面上的卫星联接起来。整个星座如同结构上连成一体的大型平台,在地球表面形成蜂窝状服务小区,服务区用户至少被一个卫星覆盖,用户可随时接入系统。 

1.5 由于卫星的高速运动和卫星数目多,也带来了多普勒频移严重和星间切换控制复杂等问题。但不管怎样,低轨卫星移动通信系统的上述特点对于支持实现个人通信是有巨大吸引力的。 

 

2 leo卫星通信系统用户切换的一般过程 

 

低轨卫星移动通信系统中,由于卫星的高速运动,使得它的波束覆盖区也跟着移动,而波束覆盖区的移动速度远大于用户的运动速度,因此,在leo卫星移动通信系统中,切换主要是由于卫星波束移动引起的。 

对于卫星移动通信系统中的呼叫切换,通常经历这样一个过程: 

2.1 用户周期测量当前使用波束和邻近波束的导频信号或广播信道的信号强度的变化,以便确定它是否正在穿越相邻波束之间的边界或者处于相邻波束的重叠区内。 

2.2 若用户进入相邻波束的重叠区,达到切换触发的条件,将开始启动切换过程。用户中止利用当前波束进行通信,等待分配信道利用新波束进行通信。 

2.3 切换过程开始后,需要在新到达波束中为该用户按照一定的信道分配算法进行信道分配,并在原先波束中释放使用的信道;如果采用了波束内切换或信道重安排,则原先波束还须按照呼叫结束后的信道重安排算法进行波束内的信道优化分配,进行必要的波束内分配。分配完成后,将数据流从旧链路转移到新链路上来,完成切换。 

 

3 leo卫星通信系统用户切换的种类 

 

低轨卫星通信系统用户切换可分为以下类型: 

3.1 同一信关站和卫星的不同波束之间的切换 

目标波束和现用波束在同一信关站和同一卫星内,该切换涉及两个波束的信道分配和修改同一信关站(不采用星上交换)或卫星(采用星上交换)的交换路由表。 

3.2 同一信关站不同卫星之间的切换 

目标波束与现用波束不在同一颗卫星内、但在同一个信关站范围内,它涉及两颗卫星的信道分配;对于采用星上交换的体制,需要改变两颗卫星星上交换路由表;对于卫星透明转发的体制,需要修改信关站交换路由表。 

3.3 不同信关站同一卫星的波束间的切换 

目标波束和现用波束属于同一颗卫星,但属于不同的信关站,它涉及两个信关站之间的切换,包括信道分配、改变地面线路连接、位置更新、记费等,对于采用星上交换的卫星还需要改变其交换路由表。 

3.4 不同信关站不同卫星之间的切换 

目标波束和先用波束属于不同的卫星且属于不同的信关站,它涉及两个信关站和两颗卫星之间的切换,信关站涉及信道分配、改变地面线路连接、位置更新、记费等问题,对于采用星上交换的卫星需要改变其交换路由表。

4 leo卫星通信系统中用户切换目标卫星的选择准则 

 

在低轨卫星移动通信系统的切换控制中,切换的目标卫星的选择策略对切换的最终性能也有着直接的影响。因此,根据系统的需要,设计出适合于本系统的切换目标卫星选择方案至关重要。目前,低轨卫星移动通信系统中的切换目标卫星选择策略主要有以下几种:最近卫星准则、最强信号准则、最长可视时间准则、最多可用信道数准则、覆盖时间与仰角加权准则及最小跳数切换准则。 

其中,最近卫星准则认为距离用户终端最近(仰角最大)的卫星能够提供很好的服务质量(qos),可从纯几何上对其性能进行分析,也称为最大仰角准则。采用该准则时,用户终端在任何时候都选择能够为其提供最大仰角的卫星。该准则实现简单,但一般不会在实际系统中采用,因为它既没有考虑无线信号在空中的传播条件,也没有考虑 网络 的运行状况。 

最强信号准则是终端在任何时候选择能够接收到最强信号的卫星。拥有足够高的信号强度是无线通信的一个基本条件,可以认为最强信号卫星准则能够提供较好的服务质量。 

最长可视时间准则又称为最大覆盖时间准则。按照这个策略,用户将利用星座系统运行的先验知识,始终选择具有最大服务时间的卫星作为其切换的目标卫星。该准则基于对最小化系统的切换请求到达率考虑,延长了切换后呼叫一直被某个卫星服务的时间,从而可获得较低的被迫中断概率。 

最多可用信道数准则为:用户选择具有最多可用信道数的卫星为它提供服务。该准则出于对整个系统信道资源利用率考虑,以使卫星系统中每个卫星所承载的业务量趋于均匀分布,避免因某个卫星节点超负荷而失效,从而影响到整个系统性能。应用这个准则时,不管卫星的具体位置,新呼叫和切换呼叫会经历相同的阻塞率或被迫中断概率,从而可以避免出现某个卫星超载的情况。 

最小跳数切换准则则应用于具有星上路由的情况,策略要求用户在任何时候都选择能够为其提供最少跳数路径的卫星。在具体实现过程中,通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。当然,如果通信双方的当前卫星出现低于最小仰角(或信噪比)时,也需要进行切换。假定卫星系统使用准静态路由算法,路由表项中带有卫星到卫星的路由跳数,而且其路由信息随着 网络 拓扑变化由系统自动刷新。 

 

5 低轨卫星通信系统用户切换与路由 

 

在切换时,由于服务卫星的改变,对于采用星上交换和星上路由的卫星通信系统,原有路由也需要被重新建立。重建路由有以下几种方案:全路由重建,部分路由重建,重路由结合扩展路由,动态概率优化路由,最小跳数路由。 

其中全路由重建卫星切换方案:原有路由完全被新路由代替,该方案得到的新路由仍然是最优化路径,但其处理时延比较大。 

部分路由重建卫星切换方案:当切换发生时,原有路由被部分保存,只有变化部分被更新,该方案处理时延比较小,但新生成的路由可能不是最优化路径。 

重路由与扩展路由结合:切换后首先进行路由扩展,再进行路由优化。以降低延时,但信令开销增大。 

动态概率优化路由:全路由重建节约带宽,但是扩大了信令资源,需要选择合适的优化概率p,在带宽和信令资源之间折中。即并不对所有扩展后的路由进行优化,而是以概率p,对一部分路由进行优化,一部分仍保持原扩展路由。 

最小跳数路由策略:用户在任何时候都选择能够为其提供最少跳数路径的卫星。通信双方周期性检测其可见卫星中是否有比当前通信路径的跳数更少的路径,如果存在则进行切换,否则继续使用当前卫星进行通信。该策略能够获得较低的传播延时和较小的切换频率,具有很好的系统性能。 

 

参考 文献  

[1] 陈振国,杨鸿文,郭文彬.卫星通信系统与技术.北京:北京邮电大学出版社,2003 

卫星通信系统范文4

【关键字】 星通信系统 人防应急通信 应用

引言:卫星通信系统具有覆盖面广、长距离通信、可靠性强等优点,卫星通信不会轻易被地面的复杂通信状况所干扰;通信系统相较于其他通信系统而言更加灵活,局限性较小;并且卫星通信具有宽频带,大容量等优势,所以在人防应急系统中较为常见[1]。

一、人防应急通信

人防应急通信就是在发生自然灾害或人为突发状况,如火灾、洪涝灾害、大面积塌方、战争等情况时,利用不同的通信手段,建立合理的紧急救援通信网络,以确保救助、救援工作能够顺利及时的开展。人防应急系统是一种多通信手段并存的兴新技术,还涉及很多人员分配,技术配合等问题。与此同时,由于应急通信系统所处的环境的不确定性,救援队时常对人防应急通新系统提出很多特殊的要求,以便在技术层面对通信系统提供更多的保障。人防应急通信系统示意图如下所示[2]。

二、卫星通信系统介绍

1、卫星地面站。在进行高空卫星通信的同时,人防应急通信系统可以在地面布置卫星地面站,如短波电台等,卫星地面站可以用于各种自然灾害、战争破坏下不同地形地势中救灾的指令转达、资源分配和调度等使用,同时也可以应用到点对点通信系统中,如民众通信。这种通信系统具有很强的可移动性,实时性等优点,但是系统的安装成本较高,并且一旦部署完毕很难拆除更改,所以具有一定的局限性。

2、卫星电话。卫星电话是一种较为稳定的人防应急系统中常用的通信手段,它具有一定的稳定性,灵活性,可以进行实时的指令传达,但是存在终端设备限制等问题,无法大面积使用。

3、其他设备。较为常见的人防应急通信系统设备还有地面通信应急车、卫星通信便携站等,这些设备在一定程度上确保了人防应急通新系y的完备性、可操作性、可靠性、机动性[3]。

三、卫星通信系统在人防应急通信中的应用

在人防应急通信系统中对卫星通信就提出了如下要求:灵活性、稳定性、大容量,高速率传输等。一般的传输速率要求为:4Mbps-24Mbps,图像分辨率一般要求为352×288以上。卫星通信系统也应具备“总体部署、统一协调、应急通信为主、各个通信技术并存”的理念。

1、 在军事突发事件中的应用。在军事突发状况下,主要的技术局限性体现在战地的危险性、破坏性、反侦察性等。在这类人防应急状况下对卫星通信的要求较高,首先卫星通信应具有较好的隐身性能,这就对卫星的性能指标,如方向图、增益等提出了较高的要求。此时可利用无人机、直升机等平台进行卫星通信系统的搭建。其次该系统需要具备较强的灵活性,可靠性等,可利用装甲车这个平台进行战地部署。

2、在公共安全突发事件中的应用。在一些地质灾害中,由于这些自然灾害的突发性、不确定性,对此类人防应急状况,通信系统就提出了灵活性、机动性等要求。此类灾害是突然发生的,而且灾害的类型无法预知,所以针对此类灾害建立的系统可以进行底层基础设施的搭建,并提供较多的兼容性接口,以便能够实时适应各种新型技术手段,以及各种类型的突发状况。

四、在人防应急通信中使用卫星通信系统中应注意的问题

因为对人防应急通信系统有较高的要求,所以本文选取了卫星通信的技术手段,但是卫星通信对环境要求以及经济要求较高,所以在建立卫星通信系统时要注意相应的可靠性和稳定性,兼容性等,又来避免不必要的拆除和修改,以更好的适应各种环境、各个时期的不同技术要求。

五、结论

卫星通信具有实时性、远距离性、宽频带等优点,所以卫星通信系统在人防应急通信系统中有较为广泛的应用。

参 考 文 献

[1]余建国.SVC卫星应急通信保障系统探析[J].中国减灾,2012,(9):54-55.

卫星通信系统范文5

随着遥感器分辨率不断提高,对传输速率的要求也越来越高,因此用传统的微波数据传输方式难度很大。在这种情况下,倘若改用激光通信传输,那么便可比较容易的满足要求,就其通道终端设备自身而言实现难度相对较小。当然,事物都有两面性,由于激光通信的波束很窄(一般为几十微弧度),对两个都处于运动的通信系统来说,激光束的捕获、跟踪和瞄准都具有较大的挑战性,是急待攻关解决的难题。空间激光通信作为高性能卫星通信技术中的关键性课题,国际上开展了大量的研究工作,美、欧、日等国投入大量的人力物力进行相关技术的研究和空间光通信实验装置的开发。

国外卫星激光通信星间

链路系统概况

未来的空间通信网络既包括轨道间链路(IOL),同时又包括星间链路(ISL)。通常所说的星间链路是IOL和ISL的总称。目前国际上所开展的有关星间链路的研究主要是指IOL。IOL是指由地球低轨(LEO)到地球同步轨道(GEO)间的链路;而ISL是指占据相同轨道的既可以是LEO也可以是GEO的卫星间的链路。

星间链路一般被认为是多波束卫星的一种特殊波束,该波束并不指向地球而是指向其它卫星。卫星网络互联本身就含有卫星之间的互联以及卫星与地面站之间的互联两层含义。今天,在卫星光通信领域已取得突破性进展―――成功的实现了卫星―――地面、卫星―――卫星之间的光通信试验。

欧洲的空间激光通信的发展基于欧洲各国的合作,欧空局(ESA)在卫星激光通信的研究方面也投入了大量资金,先后研制了以不同星间链路为背景的一系列卫星激光通信终端,如SILEX和SOUT。SILEX系统的一个终端装于欧空局的中继卫星ARTEMIS,另一个终端装于法国地球观测卫星SPOT-4。2001年11月21日顺利建立了激光通信链路,实现了50Mbps速率的激光通信试验。这是世界上进行的首次星间激光链路试验,是卫星激光通信领域一项里程碑式的进展。

日本开展卫星激光通信的研究尽管较晚,但是进展却很快。日本已于1995年利用装于ETS-VI卫星上的激光通信终端成功地与地面站进行了激光通信实验,尽管此次实验的数率仅为1.04Mbps,但这是世界上首次成功进行的星地激光通信试验。日本NASDA研制的LCE激光通信实验系统1996年与美国的JPL的地面站进行了双向激光通信试验,日本的宇宙开发事业团(NASDA)还研制了专门的激光通信实验卫星OICETS,计划与ESA的ARTEMIS之间进行激光通信实验。

美国是世界上开展空间光通信研究最早的国家之一,研究工作经过了地面演示验证、关键技术研究以及星间和星地空间激光通信试验过程,已经实施了多个有关卫星激光通信的研究计划,投入了大量的资金研制了多个卫星激光通信实验终端,如NASA支持的LCDS、MIT林肯实验室的LITE系统,NASA的喷气推进实验室(JPL)已研制成的2×600Mbps卫星激光通信终端,美国军方BMDO建立了低轨卫星-地面站激光链路终端,数据率为1Gbps,并在积极进行小卫星星座中激光星间链路终端的研制。

俄罗斯在星间激光通信方面也取得了较好的成果,俄罗斯的星间激光数据传输系统(ILDTS)已用于载人空间站、飞行器等。

目前,国际上已完成了空间激光通信链路的概念研究,关键技术和核心部件已解决,已实现了低轨卫星对同步卫星的低、中码速率激光通信实验和进行了低轨卫星对地面站的激光通信实验。这些通信实验系统达到了高捕获概率,短捕获时间,抗多种干扰的高灵敏度动态跟瞄和较高传输数据率,同时研制了激光链路系统评估测试平台及分析、仿真软件。下面的表1是国外激光通信系统研究情况的一个大致概括:

国外已完成和正在进行研究的几个激光通信系统的性能参数概况如表2所示。

取得空间实验成功的SILEX系统是欧洲宇航局研制的,包括两个飞行器的空间光通信终端,其中高轨道(GEO)空间光通信终端载于欧洲航天局的ARTEMIS同步卫星上,低轨道(LEO)空间光通信终端载于法国的地球观测卫星Spot-4上。该系统于2001年11月21日顺利建立了光通信链路,完成50Mbps的光通信试验。

取得空间实验成功的另一个系统是日本邮政省通信实验室(CRL)研制的LCE系统,于1995年取得了星地激光链接的成功。

随着空间激光通信涉及的关键技术的解决,空间激光通信技术与系统的日趋完善,系统实验已经全面进入星载实验阶段,空间激光通信应用范围越来越大,卫星工程技术研究也进一步深化。目前,空间激光通信的主要发展趋势是:

1、原理性实验系统向建立工程实用的系统转化;

2、展更高传输速率系统;

3、向小型化及轻量化发展;

4、实现星间组网。

国外卫星激光通信系统

具体关键技术最新进展

激光通信系统构成大致可分为以下几个部分,激光器、探测器、高速调制和解调、高速电系统单元、高精度的APT组成、高质量的光系统和天线、高稳定的机械结构等。下面对激光器技术、APT技术、调制与接收技术、振动抑制技术目前发展情况予以简单的介绍。

1、激光器技术

用于建立激光链路的光源,一直是激光通信的关键技术之一,由于受到光传输介质及探测器的影响,对激光波长的研究主要集中在800nm、1000nm及1550nm三个波段,除去激光通信第一代气体激光器,其后用于星上的激光器研究主要集中在与以上三种波长对应的半导体激光器、固体激光器和光纤激光器。

(1)半导体激光器 半导体激光器是以半导体材料作为激光工作物质的激光器。它的优点在于超小的外形体积、极高的转换效率、结构简单等。在已进行的星间、星-地试验中几乎都采用半导体激光器。但半导体激光器相比较与别的激光器,缺点是发射光功率较小、波长稳定性差、线宽较宽、调制速度较低。相对于别的缺点,发射功率是它最大的缺点,SILEX系统中,信标光使用了19只半导体激光器,STRV-2系统不管是信标还是信号都使用了多只激光器。多只激光器复合会带来别的问题。针对于发射功率限制,一种被称为主控振荡功率放大(MOPA)的半导体器件被采用。根据所公布资料中MOPA的参数可以看出,半导体激光器功率小的问题已获得初步解决,只要MOPA的功率环境能满足空间环境的要求,半导体激光器会被更广泛的应用于星间和星地激光链接。

(2)固体激光器 固体激光器因其体积大、转换效率低并未被星上应用看好,但随着探测灵敏度对调制方式选择,固体激光器波长稳定性好、发射功率可以做得很大的优点受到重视。特别是Nd:YAG固体激光器,比较适合空间应用。

Nd:YAG激光器优异的性能使其可采用各种调制方式,虽然1064nm的波长落在APD的高增益区外,但基于PSK调制、直接采用光零差解调的检测方式,可使探测器灵敏度大幅提高,几乎等于量子极限∽9光子/比特。据资料报道,Nd:YAG激光器的在保证性能的情况下,已通过各种空间环境试验,满足空间飞行条件。

长期以来,Nd:YAG激光器的电光转换效率是它的一个突出缺点,现在这一情况已经部分得到改善,通过采用性能比较好的半导体激光二极管作为泵浦光源,可以提高Nd:YAG激光器的电光转换效率,使其达到较高的程度。

(3)光纤激光器 光纤通信技术到目前为止,已经是一项非常成熟的技术,不管是体积、转换效率、光束质量、发射功率、谱线宽度、波长稳定性还是调制速率,都可以通过对陆上已有的器件经过比较简单的技术加工而使其满足星上应用。在接收端已经存在的低噪前置光纤放大器,也可以满足接收端对灵敏度的要求。

目前光纤激光器用于星上最大的问题是空间光到光纤的耦合问题。耦合问题包括耦合效率问题和耦合头的污染问题。目前已有1550nm的星间激光通信系统正在研究,如果耦合效率问题和耦合头的污染问题能很好的得到解决,光纤激光器及光纤前置放大器能满足空间环境要求,采用1550nm的光纤无线高速星间、星地通信系统的链路建立应该没有多大问题。

2、捕获、瞄准、跟踪技术

所有的星间、星地激光通信系统,都将APT技术列为关键技术之一,在茫茫太空,以μrad量级的发散角度,在两个相对高速运动的终端之间建立通信链路,能正确的捕获、瞄准、跟踪变成了能进行通信的前提。APT技术在理论上没有多大问题,但由于APT系统所采用的传感器的不同造成了APT系统之间的差异。

早期的及已有飞行记录的激光通信系统,基本上都采用800nm的光波段建立链路,其捕获、跟踪都采用对该波段比较敏感的CCD或四象限作为传感器。

随着1064nm和1550nm波段的广泛研究应用,与该波段相匹配的APT技术和元器件研究受到重视。捕获阶段由于对视场角的要求,只能采用大视场的CCD或四象限作为传感器,跟踪由于和通信联系更为紧密而出现了与通信波段、调制方式及放大策略密切相关的方法。

3、调制、接收技术

激光链路的调制与接收技术集中反映了通信系统的情况。调制方式大致分为调幅、调频、调相,与之对应的接收方式直接强度探测和相干(外差)探测。调频调制方式在激光通信中在组成系统的复杂性和灵敏度方面都没有优势,目前不被采用。直接强度探测(DD),即非相干探测,这种方法具有结构简单、成本低、易实现等优点。相干(外差)探测,这种方法具有接收灵敏度高、抗干扰能力强等优点,但系统较为复杂,对元器件性能要求较高,特别是对波长的稳定性和谱线宽度。

在800nm的通信波段,结合半导体激光器的特点,一般采用直接光强度调制(IM)/直接强度探测(DD)的方式,现在这一波段的调制速率单信道不超过1Gbps。除系统简单外,这一波段的另一个优点是,能够采用对光有内置放大作用的APD探测器。

在1550nm波段,更多的继承了陆地上光纤通信系统的特点,一般也采用的是幅度调制和解调的方式,但它的幅度调制是基于相位的幅度调制外加功率放大的方法,而接收端一般采用光纤前置放大加强度探测的接收技术,对于该波段单信道调制速率40Gbps已经是几年前的报道。

相干探测技术在激光通信中发展较晚也比较缓慢,主要原因是实际应用中光纤通信更适合需要。光纤通信中采用比较简单的幅度调制即可获得极高的传输速率,而传输距离和功率的问题通过简单的中继光纤放大器可以解决,这些优点抑制了相干技术的发展。

相干检测技术的发展,本来也是一个渐进的过程,先是外差和差分检测,最后的目标是零差检测。相干检测通常可比非相干直接探测在灵敏度上高约10~20dB。但受限于激光器发射功率、频率稳定度及线宽,对激光相干技术1064nm和1550nm两个波段是可选的工作频段。

相干系统最大的优点是检测灵敏度高,由于对系统元器件的要求比较高,在向零差系统PSK发展的过程中,形成了多种相干检测系统。表3给出一个对不同的相干检测系统,码速率1.25Gbps、误码率10-7、在1064nm波段各系统探测灵敏度(以光子数/比特表示)及相对于零差PSK,各检测系统灵敏度下降(dB)情况。

从以上的表格可以看出零差PSK系统、同步外差PSK系统、差分检测DPSK能够满足-53dBm要求,其中零差PSK的灵敏度是最高,同步外差PSK次之,差分检测DPSK的灵敏度最低。

4、振动抑制技术

振动抑制是困扰卫星光通信的一个重要问题,从开环捕获、闭环跟踪到光通信各个环节,该问题都成为影响系统性能的重要因素。

最早提出的抑制措施主要集中在结构方面,采用对结构的被动控制和主动控制来抑制振动。被动控制是通过优化结构设计,依靠结构本身的阻尼消耗振动能量;主动控制是将外部的能量输入受控系统,与系统本身能量相互抵消来实现振动抑制。

随着激光通信的深入,在注重结构抑制的同时,就通信系统设计本身也引入了对付振动的方法,大致可归结为以下几种方法:

(1)调整带宽 通过调整带宽或是改变接收机的参数来改变接收功率,从而补偿发射机振动对通信系统性能的影响,适用于低频抑制。

(2)调整探测阵列 用N×M个象素组成的探测矩阵,基于在每个象素中对信号噪声振幅的认识,通过调整探测阵列中的每个象素各自的增益,可以使误码率降到最低适用于低频抑制。

(3)调整波束宽度 使用相位阵列技术,使用一个振动振幅测量单元和一个可调增益的天线。如果振动振幅测量单元探测到振动振幅在发生变化时,它将调整天线增益使之达到一个合适的值,达到新的振动水平,最终使通信系统性能达到优化。

(4)功率控制 依振动改变发射功率,这种方法总体上可节省发射功率,又可以对付振动达到有的放矢的目的。

(5)采用多样性的星间链路 该方法基于星间组网,通过使用一系列不相关的传播链路来传输相同的信息,而达到避免使用性能非常差的信道,来增加通信链路的有效连接的几率。

结束语

资料显示,目前在研的激光通信链路系统及在研机构相比较于上世纪八、九十年代有所减少,这并不代表激光通信相比较与微波通信没有优势,也不代表激光通信没有市场,仅是激光链路从理论研究和试验阶段向实用化、商业化的发展过程中出现的一种必然趋势,符合优胜劣汰的规律。以在激光通信链路系统这一领域的三个集团为例,下面作一简要分析评述:

ESA是星间、星地激光链路系统设计中处于优势的竞争者,在SILEX之后紧接着研制了小光学用户终端SOUT,甚小光学用户终端VSOUT,高级激光通信终端ALCT和短距离星间链路终端SROIL。以他们目前的实力,完全可以打通所有星间的连接,但他们研究的范围领域仍在扩大,有迹象表明ESA在1064nm领域的研究也已明显处于优势。

日本是最早在星-地激光链接试验中获得成功的国家,在搭载激光系统LCE的卫星出现故障后,日本并没有停止原有的OICETS的发射计划,而是对LUCE系统实施了更周密、更可靠的测试计划。

美国STRV-2计划星-地激光链接试验的失败,对其是一个打击,但早在1995年,利用日本的LCE系统,美国已取得部分直接试验数据,我们更应该相信STRV-2是一个有继承性的激光链接计划,回顾STRV-2上的激光终端配置,多信标、多接收信道、多发射信道、多种码速率(最低155Mbps),总体上采用模块化设计,一旦星-地双向激光链接成功,其能验证的星-地、星间链接项目之多令人吃惊。2001年5月18日,美国的GEO-LITE卫星进入轨道,其上装有一个由MITLL研制的激光通信终端。

空间光通信的优点以及其巨大的发展潜力,无疑将是今后高码速率通信的一个方向,可以看出在这一领域中,欧、日、美的领先地位已相当明显,并且今后的竞争将更加日趋激烈。

我国在空间激光通信系统技术开展比较系统的协作性研究比较晚,一方面,应当承认在这一领域与处于世界领先地位的其他国家之间存在有相当大的差距,并且给予高度重视,加快研究的进程,提高研究的效率,以便能够及时跟上他们前进的步伐。另外一方面,由于有国外的经验可以借鉴,如果抓住机遇,一定会在较短时间内实现赶上世界发达国家研究水平的目标。未来适时研制有光通信系统的卫星星座或通过国际合作租用国际上现成的卫星光通信信道,并建设卫星光通信地球站,以便日后利用卫星光通信系统进行载人航天器对地通信。结合我国目前的情况,对今后未来的发展给出如下建议:

1、星间、星地激光通信领域,应有一个明确的、长远的发展目标和计划;

卫星通信系统范文6

关键词:卫星通信;干扰分类;抗干扰手段

Abstract: Satellite communication has a transmission distance, wide coverage, not limited by geographical conditions, communication bandwidth, large capacity and other advantages, are widely used in military communication. But the satellite communication is affected by its own characteristics and the environment, there exists all kinds of interference, especially the open system, the use of transparent transponder, more vulnerable to some unpredictable malicious interference, several jamming the following about common and its treatment measures.

Key words: classification of satellite communication; interference; anti-interference measures

中图分类号:TN927+.2

1.卫星通信的内涵

从理论上来说,卫星通信主要是通过利用人造地球卫星作为中继站来转发无线电波的通信的一种卫星通讯方式。卫星通讯的水平如何在很大程度上影响了信号功能和水平。就目前来说,卫星通讯在国际通信、国内通信、国防通信、移动通信、广播电视等领域内,卫星通信技术正在迅速的发展,并已经成为世界电信结构中的重要组成部分。

2.卫星通讯中的常见干扰

2.1 地面干扰。地面干扰是卫星干扰最为普遍的一种干扰形式。我们这里提到的地面干扰主要包括两方面的内容:一方面是电磁干扰。随着当前我国经济的发展,各地城市化的建设,越来越多地信号设备开始被应用到城市的发展中区,在这种情况之下,不可避免地会出现电磁波。卫星通讯在电磁波的影响下,会影响正常的信号传递功能,信号传递容易受到影响。另一方面就是互调干扰。一般在卫星通讯处于多载波的状态时,其自身的功放容量总量有限,往返的信号传递中,力度不够,不能够有效地对数据进行传递。在信号运行中,往往会出现三阶互调分量超额或者是发射率不合格等方面的问题。

2.2 空间干扰。空间干扰是卫星通讯干扰的重要方式。笔者这里提到的空间干扰主要包括了临星干扰和交调干扰。随着当前社会的发展,卫星通讯的科技水平日益进步,同步轨道卫星的数量也会增多。在这种情况下,难免会出现这种临近的卫星干扰。这种扰的信号超出了原来信号的覆盖率,其容易被掺杂其邻近卫星的信号,传输的信号效果不好。一般来说,邻星干扰主要包括上行干扰和下行干扰。

交调干扰主要是指用户载波频率分配与相邻信号的频带出现重叠,这里重点强调的是重叠。在实际的信号传递工作中,如果没有较强的保护或者是防干扰措施,那么信号在传递的过程中就容易出现噪底过高或出现副瓣方面的问题。这对于正常信号的传递有负面的影响。

2.3 自然干扰。自然干扰是当前卫星传递过程中的不可预料到的一种干扰。一般说来,自然干扰包括了降雨现象和日凌现象。

降雨过程中出现的雨滴是干扰卫星通讯的重要因素。我们这里提到的雨滴会根据风向与卫星信号传递过程中的方向不同而会产生信号吸收和信号散射的不同干扰情况。从理论上来说,电波波长与雨滴的比值大小和信号的受干扰情况有关,电波波长与雨滴的比值越大,卫星传输的信号扰的程度就越低,相反,如果电波波长与雨滴的比值越小,卫星传输的信号扰的程度就越高。

作为一种自然现象,日凌现象对于卫星信号的传递有很大的影响。日凌现象是发生在每年的春分和秋分前后,这个时候的卫星在运输的过程中是处在太阳与地球之间的直线上,受太阳电磁波的影响,卫星信号的下行线路容易发生链路恶化的现象。从实际的运行中来看,日凌的时间与地区所处的纬度位置有关系。春分时节,纬度越高的地区,其日凌时间就短,而秋分时节,纬度越高的地区,其日凌时间则短。日凌现象发生的发生也与地区所处的经度有关系,从理论上来说,经度由西向东每增加2度日凌开始和结束的时间就会晚1小时。可以说,日凌现象发生期间,卫星通信会受到很大的影响。一旦日凌现象结束,通信就会恢复正常。通信会自动恢复正常。

2.4 人为干扰。人为干扰是目前对卫星信号干扰影响很大的一种干扰方式。部分人群为了窃取将经济利益以及商业机密,会对卫星通讯进行恶意干扰。他们会通过卫星透明转发器的弱点对卫星频道的信号传递进行干扰。加之我国相关的法律不完善,对于卫星设施的监控不到位,就导致信号受到干扰、非法信号得意传播等问题的产生。

3.卫星通信抗干扰的主要手段

3.1军用卫星通信抗干扰手段。(1)直接序列(DS)扩频。所谓直接序列扩频,就是直接用高码率的扩频码序列(通常是伪随机序列)在发射端去扩展信号的频谱,使单位频带内的功率变小,即信号的功率谱密度变低,通信可在信道噪声和热噪声的背景下,使信号淹没在噪声里,敌方很不容易发现有信号存在。而在接收端,用相同的扩频码去进行解扩(缩谱),即可把DS扩频信号能量集中,恢复原状,又能把干扰能量分散并抑制掉。因此,该体制的最大特点是信号隐蔽性好,被截收的概率小,抗干扰能力随着码序列的长度增加而加强。通常认为,直扩信号要隐蔽,其码长不能低于32位。DS扩频技术在军事星(Milstar)、租赁卫星(LEASAT)和舰队通信卫星(FLTSATCOM)等军用通信卫星中得到应用。(2)跳频(FH)。所谓跳频,是指用一定码序列去选择的多频率频移键控,使载波频率不断跳变,这是一种以“躲避”方式为主的抗干扰体制。为了对付跟踪式干扰,各国都力图提高跳频速度。20世纪80年代跳频速度一般在200跳/秒左右,目前,跳速可达300~500跳/秒。美国的军事星和舰队通信卫星7号和8号上装有的极高频(EHF)组件,上下行均使用了跳频技术。军事星-2的跳频范围达2GHz带宽。(3)跳时(TH)。跳时是用一定的码序列进行选择的多时片的时移键控,使发射信号在时间轴上跳变。从抑制干扰的角度来看,跳时得益甚少,唯一的优点是在于减少了占空比,一个干扰发射机为取得干扰效果就必须连续发射,因为干扰机不易识破跳时所使用的伪码参数。(4)各种混合方式。在上述几种基本的抗干扰方式的基础上,可以互相组合,构成各种混合方式。例如FH/DS、DS/TH、FH/TH或DS/FH/TH等。采用两维甚至三维的混合式抗干扰技术体制是国外抗干扰通信发展的一个趋势。例如,将跳频信号用直扩码进行调制的跳频/直扩(FH/DS)混合抗干扰体制,这种体制每一跳频率点均以直扩信号方式出现,直扩信号的特点是其功率谱密度低,敌方难以侦收,即使侦收出来,只要侦收时间超过跳频所需时间,也无法进行跟踪干扰。美国的军事星和舰队通信卫星采用了跳频/直扩混合体制,美国的三军联合战术信息系统(JTIDS)就采用跳时、跳频加直扩的三维抗干扰技术体制。

(5)多波束天线和干扰置零技术。美国的国防卫星通信系统(DSCSⅢ)的多波束天线(含19个发射波束和61个接收波束)能够根据敏感器探测到的干扰源位置,通过波束形成网络控制每个波束的相对幅度和相位,使天线在干扰方向上的增益为零。军事星和舰队通信卫星EHF组件都有点波束天线,使点波束之处的干扰很难奏效。(6)转发器加限幅器抗饱和。未采用扩频调制技术等上述技术的透明式线性转发器,其抗干扰性是很弱的,使用常规的干扰样式和与地球站的发射功率相当的干扰功率就可把它推入饱和区,而使它无法正常工作。带有限幅器的转发器,其抗干扰性优于线性转发器。但由于它具有强信号抑制弱信号的作用,只要干扰功率足够大,干扰仍可奏效。

3.2民用卫星通信抗干扰手段。通过对已经发生的若干干扰事件的分析,可以看出对民用(商用)卫星通信的故意干扰通常采取干扰卫星通信上行链路的方式,因为这种方式针对民用卫星通信频率公开、抗干扰防护措施少的特点,并且干扰设备较简单,所以较易实现。虽然军事卫星通信抗干扰手段可以很好地解决对通信上行链路的干扰问题,但由于民用卫星通信受成本效益的限制,不可能完全采用军事技术,因而在国际上还没有特别好的解决办法。

目前对抗上行链路干扰,主要是在卫星天线上作文章,通常采取空间隔断抗干扰的手段,包括:(1)多波束天线。采用多波束天线,当某一波束受到干扰时,关闭这一波束,而其他波束不受影响,这样既阻止了干扰,也不影响卫星接收地面信号。原理如图1:

自适应调零天线(系统结构如图2)。天线系统利用方向图的变化,自适应地调整波束的零点位置,使之对准干扰源方向并降低副瓣波束电平来抑制干扰。

图2数字调零天线系统结构

卫星通讯是信号传输的重要工具,只有了解掌握干扰类型,采取合适的措施,才能有效地保证通讯卫星信号的不扰,确保卫星通讯信号的有效传输。

参考文献:

[1]柴焱杰.孙继银.李琳琳.胡寅 卫星通信抗干扰技术综述—现代防御技术2011(3)