前言:中文期刊网精心挑选了航天技术的定义范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

航天技术的定义范文1
高新技术在国外一般称之为高技术(HighTechnology),而在我国则有狭义和广义之分。狭义的高新技术是具有国际可比性的高技术的概念,广义的高新技术,则包括“高技术”和“新技术”。
高技术本身是一个动态的、发展的概念,国内外目前关于高技术、高技术产品和高技术产业的界定没有统一的定义,处于众说纷纭的状态。关于高技术,有以下一些代表性观点:
美国学者的定义。美国学者D.Crane指出:应用研究如果同科学有联系,那么它有时被称为高技术;如果没有联系,它就被称为低技术。美国的J.Utterback认为:高技术在不同时期有不同所指,冷藏技术、电器、汽车和航空技术,都曾是不同时期的高技术,高技术不局限于电子学、计算机、生物工程、材料、激光、海洋工程等六个领域。美国《韦氏第三版新国际辞典增补9000词》定义高技术是:使用或包含尖端方法或仪器用途的技术。
日本学者的定义:建立在当代尖端技术和下一代科学技术基础上的技术即为高技术。日本学者津曲辰一郎认为高技术是经济过程中的主导技术,他将高技术定义为下述技术的总称:①为提高现有商品功能的必要的中心技术;②具有能赋予产品以新功能的主导技术;③构成下一代产品基础的技术。
国内学者的观点。高技术是指能带来高效益、具有高增殖作用,并且能向经济和社会广泛渗透的技术,它是第二次世界大战以后涌现的新技术群的核心。王伯鲁提出枚举定义法,即当代高技术领域是指:微电子与计算机技术、信息技术、自动化与机器人、生物技术(包括制药技术)、新材料技术、新能源技术(包括核技术)、航空和航天技术(空间技术)、海洋开发技术。
从以上各种定义可以看出,高技术应是一个相对的动态的概念,不同时代的高技术内涵是不同的。现代高技术应反映如下3个方面的要求:
从技术的结构看,高技术是尖端技术,其主要原理建立于人类最新科学成就的基础上,是建立在现代科学技术基础之上的技术,这一点有别于传统技术,传统技术是经验的积累;从时间上看,高技术是新技术,是以最新成就为基础的技术;从与科学的关系来看,高技术是基于科学的发现而产生的技术,即高技术是Science-based技术。
因此,高技术是一种建立在科学基础上的最新尖端技术。必须强调,新技术不一定是高技术,新技术仅仅代表了技术发展过程中出现的相对新颖的技术形态,而不是技术内涵的革命。
综上所述,我们认为所谓高技术,是指运用当代最新科学知识和尖端技术而形成的技术群,它们构成新一代产品的基础技术和主导技术,对一个国家经济社会有重大影响,具高增殖作用和广泛的渗透功能。
2高新技术产品的界定
美国科学基金会的定义:高技术产品是指每1000名职工中有25名是科学家和工程师,并把3.5%以上的净销售额用于研究开发而生产的新产品。
美国商务部依据某类产品销售额中R&D支出的比重和科学家、工程师、技术工人占全部职工的比重为标准确定的高技术产品为:①导弹以及航空器;②无线电及电视接收设备;③通讯设备;④电子元器件;⑤飞机及零部件;⑥办公设备及计算、会计仪器;⑦军械用品;⑧医药制品;⑨工业用无机化工制品;⑩专用设备及科学仪器;(11)发动机及涡轮机;(12)塑料材料及其合成制品,合成纤维及其他人造纤维(不包括玻璃制品)。美国海关合作理事会在以往对高技术产品定义和分类进行研究的基础上,又增加了定性分析,对高技术产品进一步筛选,把满足以下两个条件的产品定义为高技术产品:①产品的主导技术必须属于所确定的高技术领域;②产品的主导技术必须包括高技术领域中处于技术前沿的工艺或技术突破。据此所确定的技术10大领域为:①生物技术;②生命科学技术;③光电技术;④计算机及通信技术;⑤电子技术;⑥计算机集成制造技术;⑦材料设备技术;⑧航天技术;⑨武器技术;⑩核技术。
广东省“高技术企业统计方法研究”课题组认为:符合下述条件的①、②、③、④中的任一项及⑤、⑥两项者,即为高技术产品:①(在国际或国内)首次应用新科学原理生产的产品;②(在国内或省内)首先应用我国独创的新工艺或国际上最新工艺,并使产品质量或功能或劳动生产率、成本有显著改进的产品;③采用新材料、新结构、新技术、新生物品种,并使质量或劳动生产率或成本或功能有显著改进的产品;④符合国家或有关部门公布的高技术产品目录;⑤符合国际标准或技术先进国家标准,若无国际标准,则应根据具体情况符合国家、专业、地方或企业标准;⑥达到本年代技术先进水平。
我们认为,所谓高技术产品,是以高技术为主导技术而生产的具有新的用途和性能,或质量、劳动生产率、成本有显著改进的产品。
3高新技术产业的界定
美国方面的研究。美国劳工统计局的定义:研究试制费和科技人员与职工总数的比例,比整个制造业高出1倍以上的产业,即为高技术产业。美国国立科学财团的定义为:研究和开发费用在销售额中所占的比重为3.5%以上,职工中每千人中有25人以上的科学家和高级工程师的产业,即为高技术产业。美国商务部的定义为:研究开发费用在总附加值中所占的比重为10%以上,而科学家和工程师在总职工中所占的比重为10%以上的产业,即为高技术产业。美国学者纳尔逊(R.Nelson)在《高技术政策的五国比较》一书中指出:所谓高技术产业是指那些以大量投入研究与发展资金,以及迅速的技术进步为主要标志的产业。美国学者戴曼斯叙(D.Dimancescu)在《高技术》杂志上指出:对高技术企业的定义,主要依据两大特点:一是专业技术人员的比重高;二是销售收入中用于研究与发展的投资比例高。这两大特点又反映了一个共同的东西,即知识密集,这是高技术产业的一个必要成份,也是技术持续创新的必需。美国学者杜迪(F.D.Doody)和芒塞(H.B.Muntser)认为,高技术部类可以被定义为是一类体现出高增长率、高额的研究与开发费用、高附加价值、强烈的出口导向和劳务密集(这里专指高技能的劳务)的生产技术公司。
在英国,高技术产业被认为是一组包含新信息技术、生物技术和许多位于科学和技术进步前沿的其它技术的产业群体。
法国经济学家认为,只有当一种产品使用生产线生产,具有高素质劳动力队伍,拥有一定的市场且已形成新分支产业时,才能称其为高技术产业。
在加拿大,高新技术产业被定义为是一种技术水平相对高的生产部门,这种相对高的技术水平通过劳动力的技术素质或用于研究与开发的经费来反映。
在澳大利亚,科学与技术部将高技术产业定义为投入大量研究与开发经费,与科学技术人员联系紧密,产生新产品并且有科学或技术背景企业的产业。
在日本,日本长期信用银行的定义为:能节约资源和能源,技术密度高,技术革新速度快,且由于增长能力强,能在将来拥有一定水平的市场规模,能对相关产业产生较大波及效果的产业。
经济合作与发展组织(OECD)把R&D密集度(R&D经费占工业总产值的比重)作为界定高技术产业的标准,将相对于其他制造业而言具有较高R&D密集度的产业定义为高技术产业。
《欧盟科学技术指标报告》把有很高的经济增长率和国际竞争能力,有较大的就业潜力,同时R&D投入高于所有部门平均水平的航空航天制造业、化工产品制造业、医药品制造业、汽车及零部件制造业、科学仪器制造业等产业作为技术密集型或先导产业。
在中国,目前采取的主要是概括法,也叫例举法,即按技术类型定义高技术产业。《中国科技产业》公布的目录包括:①微电子科学和电子信息技术(产业);②空间科学和航空航天技术;③光电子科学和光机电一体化技术;④生命科学和生物工程技术;⑤材料科学和新材料技术;⑥能源科学和新能源、高效节能技术;⑦生态科学和环境保护技术;⑧地球科学和海洋工程技术;⑨基本物质科学和辐射技术;⑩医药科学和生物科学工程;(11)其它的新工艺、新技术。
从以上各种定义可以看出,高技术产业具有以下4项特点:
它是技术密集型产业,生产所用的设备、材料涉及到现代技术领域的许多尖端成果;它是资本高度密集型产业,其科研费用和设备投资大,产品的附加值高;它是知识密集型产业,需要大量的科技开发人员和富有创新精神的经营管理人员;它的产品具有国际性和前景良好的市场需求。
综上所述,我们认为高技术产业是指由高技术成果转化形成的具有知识密集、R&D投入高、附加价值高、增长速度快、技术进步快等特征的先导型产业。
【参考文献】
1蔡莉,王新.高技术产业的划分及发展分析[J].科学学与科学技术管理,1997(12)
航天技术的定义范文2
关键词 遥感;应用;发展趋势
中图分类号TP75 文献标识码A 文章编号 1674-6708(2012)68-0209-02
1 遥感的定义与分类
1.1 遥感的定义
遥感,从广义来说泛指各种非接触、远距离探测物体的技术;而本文谈论的遥感是指电磁波遥感,即狭义的遥感,其定义是:从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测仪器,通过摄影扫描、信息感应、传输和处理等技术过程,识别地面物体的性质和运动状态的现代化技术系统。
1.2 遥感的分类
按照研究对象遥感可分为资源遥感与环境遥感两大类[1],资源遥感以调查自然资源状况和监测再生资源的动态变化为主。环境遥感则是对自然与社会环境的动态变化进行监测并做出评价与预报的统称。此外,按照应用空间尺度遥感可以把遥感分为全球遥感、区域遥感和城市遥感三种类型。
遥感是一门综合性的技术,它涉及地理学、测绘学、计算机科学与技术、规划管理等许多学科。它的概念和基础是物理学、测绘学、地质学、地理学;它的技术支撑是航天技术、计算机技术和图像处理技术。伴随着航天技术的不断进步,空间遥感对地观测获得了巨大的发展,可以预计,在今后的遥感发展过程中,全方位、全覆盖、多角度、高分辨及高时效的遥感观测系统,将会被广泛的应用在各个领域的调查研究工作中。
2 遥感应用
遥感的应用已从上世纪早期单纯的军事用途扩大到现代生活的各个方面,如土地管理、气象预报、全球变化研究、灾害监测、资源调查与动态变化监测、生态调查、旅游、交通等各行各业,成为服务人类现代生活的重要高科技手段之一。
2.1 遥感在土地资源中的应用
遥感技术是土地资源状况调查评价与动态监测的重要技术手段。随着遥感技术在空间识别、地物波谱识别和变化时间识别方面能力的提高,土地遥感正在成为遥感科学的重要分支。我国历来对国土资源十分重视[2],特别是自国土资源部成立以来,非常重视土地资源的动态监测工作,从1999年开始,遥感监测工作作为国土资源大调查的重要组成部分,连续16年,每年开展对全国重点地区的遥感监测。
土地遥感的应用领域包括[1]:监测建设用地变化趋势、布局及规模;为土地资源管理提供现势基础资料;辅助检查土地利用总体规划执行情况;复核土地变更调查;辅助开展土地变更调查;辅助开展土地利用现状图更新;基本农田保护区监测;配合土地执法检查。
2.2 遥感在矿产资源中的应用
不论用什么方法找矿,了解矿床形成过程和成矿原理都是非常重要的,遥感找矿也不例外。在漫长的地质年代里,沉积、岩浆及变质三大类岩石也在不停地进行转化,在地质构造等作用下,可以在不同类型的岩石中,形成由各种不同的金属矿物和非金属矿物富集而形成的各种矿床,而遥感影像能够真实
地记录地球表面三大类岩石的光谱与纹理特征。同时,采用遥感技术圈定各类构造形态、色异常等现象,对于矿产调查、圈定成矿远景区、成矿预测也有着重要的指导作用。遥感技术寻找油[3]是通过提取遥感影像的烃类微渗漏信息来预测油区的烃类微渗漏晕以其特有的波谱特性可以被遥感技术检测,从而实现油气预测,这也是遥感技术直接找油的原理。
2.3 遥感在城市建设中的应用
城市是一个时代经济、社会、科学和文化的汇聚点,在全面建设小康社会中,我国城市化速度还将加快。遥感在城市建设中应用主要为以下三个方面:1)城市景观结构调查。土地是城市赖以存在的物质基础,城市遥感首先就是调查城市土地利用状况,提供工商业、文化、交通、绿地和水体的分布和面积;2)城市道路规划与交通环境分析。低空航空摄影[4]对全市车流的瞬时调查,就可以几乎同时测出各个路段和交叉路口的机动车和自行车的车流密度,编绘出主要道路交叉口的车流量图,既简便易行,又准确可靠,在交通管理、道路拓宽和过街桥、立交桥选址等方面,都能够发挥作用;3)城市环境污染调查。受污染损害的植物[5],叶片叶绿素降低,在彩色红外像片上红的成分减少,污染程度通过影像色调的变化被记录下来,再参考树木缺株、形态或冠幅变小的程度,就可以绘制出分轻、中、重三级的污染程度。
2.4 遥感在海洋领域的应用
海洋遥感[6]是指以海洋及海岸带作为监测、研究对象的遥感,包括物理海洋学遥感、生物海洋学、化学海洋学遥感与海水监测、海洋污染监测等。海洋遥感大幅度提升了海洋调查技术水平,与其余调查手段相比,具有很明显的优势。如:不受恶劣自然条件的限制、拓展了海洋调查的广度、能够实时长效的进行检测、庞大的信息获取量以及应用范围的多样性。
2.5 遥感在气象中的应用
气象卫星的出现,为人类自上而下观测大气层和地表、生态的变化提供了一种新型可靠的手段,由此应运而生的卫星气象[3]成为大气科学发展史上又一新的里程碑。气象遥感的研究内容主要包括两个方面:一是寻找从卫星上探测和获取大气中主要气象要素和大气现象的理论和方法;二是研究卫星资料的处理技术和使用方法。例如利用红外通道和可见光通道中对比,可以很好解决大雾区、中高云区及地表的区分问题,区别出哪些是雾,哪些是云,哪些是地表,此外利用遥感还可以对沙尘暴有很好的监控作用。
2.6 遥感在地质灾害管理中的应用
传统的获取灾害损失评估信息方法主要依靠地面调查以及历史资料,耗费时间过长且因资料更新滞后,不能及时的体现地质灾害管理的作用。随着遥感技术及其他相关高新技术的高速发展,地质灾害遥感调查正处于逐步推广的阶段。卫星遥感技术的宏观性、全天候和全天时以及周期性,为地质灾害的研究提供了强有力的手段,并逐渐成为地球灾害监测系统工程中的主要技术。遥感技术已经应用于地质灾害管理的整个过程。在地质灾害调查、监测、预警、评估的四个阶段中,均能够及时准确的提供调查、评估、预警,为地质灾害管理工作的开展提供依据。
2.7 遥感在考古中的应用
考古工作,是探索人类文明发展的重要手段。随着考古研究工作的扩展,考古学家们从了解个别的考古遗址文化上升到对某一地区、某一国家,或者是更大范围的一个时空去认识人类文明的发展,这就需要考察更大的范围与空间,仅依靠地面的考古资料就显得不足,而且也很难使资料收集得完整,利用肉眼去观察分析考古遗迹现象受时间、地点、气候、光照等诸多因素影响,具有很大的局限性[8]。而高分辨率遥感图像、航拍像片的分辨率均可达到1m左右,同时可全球、全天候覆盖,加上特殊信号可以穿透地表,开展更加精确探测的探测工作,这些先进技术在考古研究、文物保护管理上可起到决定性的作用。
从考古的角度来看,人类遗产的挖掘是继承和弘扬古代文明的重要途经。利用遥感技术开展古遗址寻找、普查研究是最为有效的手段。遥感信息古遗址研究不仅可以填补或充实人类文明历史,而且对研究古代地缘政治,确定历史时期的军事和疆域争议十分重要,且将大大提高田野考古的效率和质量,把我国的考古学提高到一个新的高度。
3 遥感应用的发展趋势
随着遥感技术应用研究的深入发展,遥感数据分辨率不断提高,数据量持续增长,数据处理的方法和程序也日趋复杂,从而导致GIS系统所需要解决的问题也越来越多,GIS的发展也更加偏向于解决数据的存储、管理和处理,但这样并不能从根本解决问题。经过不断的总结,最终发现如果想要解决实际应用中出现的问题,就必须多技术、多方法、多角度、多渠道对数据进行搜集处理。遥感技术,是一种信息获取的技术,相对缺乏信息处理、提取以及解决问题的能力。因而科学家们将遥感技术与GIS、GPS、计算机、仿真、虚拟等多种信息技术紧密结合,共同应用解决复杂的综合问题。
“3S”技术集成就是在这样的背景下产生的,3S技术[10]即指遥感(RS)、地理信息系统(GIS)、全球卫星定位系统(GPS)3种技术集成的总称。“3S”集成技术的应用,是一个自然的发展趋势,RS和GPS为GIS进行空间分析提供了更新区域信息和空间定位信息,从RS和GPS提供的大量数据中提取有用信息,并进行综合集成,使之成为决策的科学依据。GIS、RS和GPS三者技术的集成,形成了一个更加完整、准确及实施的对地观测、分析及应用系统,从而推动了遥感技术的进步。
4 结论
综上,遥感应用既是系统科学又是系统工程,既是区域性的又是全球性的,既是边缘科学又是交叉科学。通过对以上土地监测、地质矿产调查、城市建设、环境与灾害监测、海洋、气象与考古遥感等几个主要方面遥感技术应用的介绍,可以看出遥感已经渗透到社会生活及科研领域的各个方面,3S技术的集成已经成为必然,我们应该进一步发掘遥感技术应用的潜力,开拓遥感技术应用的新局面,更加有效的保护和科学的利用好我国的资源与环境。
参考文献
[1]鞠建华,等.资源环境与遥感[M].北京:地质出版社,2005:39-141.
[2]郑丙辉,王桥.环境遥感应用现状与展望(上)[J].航天技术与国民经济,2000,9:1-3.
[3]王桂宏,张友焱,冉新权.油气勘探中遥感方法新进展与趋向[J].地学前缘,2000,7(3):282-289.
[4]王卫安,竺幼定.高分辨率卫星遥感图像及其应用[J].测绘通报,2000(6):20-32.
[5]徐冠华.遥感与资源环境信息系统应用与展望[J].环境遥感,1994,9(4):241-246.
[6]谢文君,陈君.海洋遥感的应用与展望[J].海洋地质第四纪地质,2001,21(3):123-128.
[7]王文杰,张建辉,李雪.遥感在生态与环境监测中的主要应用领域[J].中国环境监测,1999,15(6):48-51.
[8]刘建国,王琳.空间分析技术支持的聚落考古研究[J].遥感信息,2006(3):51-53.
[9]施益强,陈崇成,陈玲.遥感技术在环境资源中的应用进展与展望[J].国土资源遥感,2002(4):7-13.
航天技术的定义范文3
关键词:新材料 复合化 航空飞机 优势
中图分类号:V257 文献标识码:A 文章编号:1674-098X(2016)10(c)-0004-02
与铝合金结构、钢结构材料等传统材料相比,先进性复合材料在综合性能上更具优势,其用量成为了代表着航空航天先进性的一个标志,占据着重要的地位。我国若要在竞争激烈的世界市场中站稳脚跟并且不断向前发展,就要对先进性复合材料这一被全球强国重视的核心技术进行深入研究与重点发展。
1 先进复合材料的基本定义
先进复合材料,简称ACM,即是在进行主承力结构与次承力结构等加工过程中,可以运用的刚度性能以及强度性能≥铝合金等传统材料的一种复合材料,不但在质量的轻度上占据优势,其比强度、比模量都更加高,还具有抗腐蚀、耐高温与低温、减震隔音及隔热的良好性能,并且具有较佳的延展性,如今被大量地推广应用在建筑行业、机械制造行业、医学行业以及航空航天行业等领域中[1]。
2 先M复合材料的特点
作为当今时代的主导材料,复合材料有着以下一些特点:首先是可设计性与各向异性,根据构件的使用要求与环境条件,可以在设计环节进行合理的组分材料选择、材料匹配,并且通过界面控制尽可能地满足预期要求,达到工程结构所需性能的标准要求。传统材料的运用上常见的材料冗余问题也可以很好地避免,实现材料结构的效能最大化。其次,复合材料的构件和材料一起形成,提高了结构的整体性能,无需过多的零部件,实现了加工周期的缩短与成本的减少。然后,复合材料在其复合效应下形成新性能,并不存在单一材料或几种材料简单混合的性能缺陷问题。
再者,复合材料能产生很多功能,比如吸波和透波、防热和导电、透析和阻燃等等一系列功能,在结合其他先进技术的基础上,形成一种新复合材料,比如纳米复合材料、生物复合材料和智能复合材料等。最后,需要注意的是,在复合材料的成形过程中,其组份材料会发生物理变化与化学变化,使得复合材料构件性能在很大程度上依赖其复合工艺,难以准确地对工艺参数进行适当的控制,以至于性能具有较大的分散性。
3 先进复合材料在航空航天领域的应用
3.1 先进复合材料在无人机领域的应用
现代战争理念的改变,使无人机倍受青睐。无人机除在情报、监视、侦察等信息化作战中的特殊作用外,还能在突防、核战、化学和生物武器战争中发挥有人军机无法替代的作用。无人机的发展方向是飞行更高、更远、更长,隐身性能更好,制造更加简便快捷,成本更低等,其中关键技术之一就是大量采用复合材料,超轻超大复合材料结构技术是提高其续航能力、生存能力、可靠性和有效载荷能力的关键。
3.2 先进复合材料在民航客机的应用
复合材料在民机结构上的应用近年来取得较大进展。复合材料的优点不仅仅是质轻,而且给设计带来创新,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸/透波等其他传统材料无法实现的优异功能特性,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,复合材料可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后差别更明显。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目和紧固件数目,从而减小结构质量,降低连接和装配成本,并有效降低总成本。
3.3 先进复合材料在航空器领域的应用
功能材料在航天领域的应用更为广泛,其中最重要的是返回式航天器的表面热防护功能材料。中国材料研究学会学者唐见茂研究指出,航天飞行器(导弹、火箭、飞船、航天飞机等)以高超声速往返大气层时,在气动加热下,其表面温度高达4 000 ℃~8 000 ℃;固体和液体火箭发动机工作时,燃烧室产生的高速气流冲刷喷管,烧蚀最苛刻的喉衬部位温度瞬间可超过3 000 ℃。
4 结语
通过以上的研究可以发现,随着航空航天技术的飞速发展,对材料的要求也越来越高。一个国家新材料的研制与应用水平在很大程度上体现了其国防和科研技术水平,因此许多国家都把新型材料的研制与应用放在科研工作的首要地位。新型航空航天器的先进性标志之一是结构的先进性,而先进复合材料是实现结构先进性的重要基础和先导技术。我国将成为世界上先进复合材料的最大用户,笔者认为,我国应该针对国外技术封锁与国内技术储备不足的国情,不断地自主创新,努力探索原材料、设计问题,运用理论、低成本技术以及政策支持等一系列的解决方法,不断提高航空航天器的结构先进性,不断加强对先进复合材料先导技术的研究与发展。
参考文献
航天技术的定义范文4
关键词:电压串联;反馈电路;电路模型;计算方法
中图分类号:TN710文献标识码:B
文章编号:1004373X(2008)2002702
Derivation of the Calculating Formula on the Feedback Circuit Model with Cascade Voltage
DENG Kuanlin
(Shiyan College of Professional Technology,Shiyan,442000,China)
Abstract:Precise calculating formula is derivated to determine magnification ratio of voltage,input resistance and output resistance in amplifying circuits based on th feedback circuit model with cascade voltage.With th new calculating methods put forward by the author,it is possible to solve the problems in terms of calculation in amplifying circuits,the key problem being low level of exactness.The research shows the influence of components′ parameters of basic amplifying circuits and feedback circuits on feedback amplifying circuits.The results of the research may contribute to design amplifying circuits and electronic instrument with higher performance,due to the simpler calculation in the design of feedback circuit with cascade voltage.
Keywords:cascade voltage;feedback circuit;circuit model;calculating method
1 引 言
在对模拟线性电路分析中,反馈电路分析是电路分析中的一个难点。对于这部分内容教材中涉及得比较少,而且都是只对深度反馈电路做近似的计算,使反馈电路中各个元器件参数对电路性能及它们之间相互影响关系被掩盖。 对于反馈电路参数的计算有电路电压增益、输入和输出电阻的计算。但传统的方法在分析和计算中,由于反馈类型的不同,增益的意义也各不相同。同时,对电路做了近似的处理,给电路计算带来一定的误差,这种近似方法的计算结果,比较接近实际情况。但对于在要求很高的控制方面,如航天技术,空间技术的控制造成比较大的误差,要减小误差的问题,又对放大器件提出了更高的要求。
通过分析和研究,可提高计算精度,同时也可看到,对于器件的精度并不是要求太高,而其核心是器件的稳定性。
2 电压串联反馈电路的电路模型
对于电压串联反馈电路而言,都可以用图1所示电路模型来表示。
图1 电压串联反馈电路模型
3 电压串联反馈电路参数的计算
(1) 电压放大倍数(电压增益)的计算
定义放大器件的开环电压增益为:
uo=o/id(1)
由图1中输入回路可得,电压方程为:
i=id+f
=GidGf2uoo+Gf1Gf2(of-f)+id(2)
s=(1/Gs+1/Gid)・i+f
=(1/Gs+1/Gid)・id・Gid+f(3)
在输出回路中,当RL下端虚地时,电流方程为:
(o-of)Go=(of-f)Gf1+ofGL(4)
式(2),式(4)联解分别导出f与of和o与of之间关系式为:
f=Gf1Gid(Go+Gf1+GL)+uoGf22GoGf1(Gf1+Gf2)Gouo+GidG2f1of(5)
o=uo(G2f1+Gf1Gf2)(Go+Gf1+GL)-Gf22Gf1Gf1 (Gf1+Gf2)Gouo+GidG2f1of(6)
根据闭环电压放大倍数定义,同时对有关物理量进行替换,经化简得:
uof =ofi=uoGoGf1(Gf1+f2)+GidG2f1(G2f1+Gf1Gf2+Gf1Gid)(Go+Gf1+GL)+(uoGo-Gf1)G2f2(7)
(2) 源电压放大倍数
suof=ofs=ofidGid/Gs+i
将式(6)、式(7)式代入上式,其源电压放大倍数为:
suof=Gs\uoGoGf1(Gf1+Gf2)+GidG2f1\〗\(Go+Gf1+GL)+(uoGoGs-Gf1Gs-Gf1Gid)G2f2(8)
(3) 输入电阻的计算
输入电阻的表示为:
rif=ii=id+fi
将i用id替换,同时把式(5)、(6)代入后,经变换有:
rif=1Gid\uoGf22Go(G2f1+Gf1Gf2)(Go+Cf1+CL)-G2f2Gf1\〗(9)
(4) 输出电阻的计算
对于图1电路中,输出电阻表示为:
rof=Δof/ΔL
其中Δof为RL开路时的输出电压与负载时输出电压的变化量。
对于式(8)当取GL=0时可得′of,
有:
Δof=′of-of
=ouo\uo+GidG2f1(G2f1+Gf1Gf2)(Go+Gf1)-G2f2Gf1-Gf1(Gf1+Gf2)Gouo+GidG2f1(G2f1+Gf1Gf2)(Go+Gf1+GL)-G2f2Gf1]
而ΔL=-ofGL。将上2式代入输出电阻计算公式,经变换及化简后有:
rof=-1GL(of′of-1)
=-(Gs+Gid)(G2f1+Gf1Gf2)+GsGf1Gid[(Gs+Gid)(G2f1+Gf1Gf2)+GsGf1Gid](Go+Gf1)-(uoGoGs-Gf1Gs-Gf1Gid)G2f1(10)
其中负号是由于输入电流方向选取造成的。
4 结 语
通过上述的分析,反馈放大电路的各种指标参数均与构成放大电路所选元器件的参数有关。也就是说,在反馈电路中,对电路中元器更换均会影响电路的性能,严重时,可能使电路无法满足工作中的需要,特别是对放大电路高求比较高的应用场合。
参考文献
[1]童诗白.模拟电子技术[M].北京:高等教育出版社,1999.
[2]邓宽林,王建华.等效法在单环无法负反馈电路计算中的应用\.现代电子技术,2003,26(13):54-55.
[3]康华光.电子技术基础.模拟部分[M].4版.北京:高等教育出版社,1999.
[4]邓宽林,郭振义.电压并联反馈电路模型的建立及计算公式推导\.十堰职业技术学院学报,2008,21(2):111-112.
[5]董平.放大电路中负反馈类型的讨论\.河北大学学报:自然科学版,2000(3):292-296.
[6]杨潮,韩英铎,马维新.单相串联电压质量补偿器控制器的研究\.电力系统自动化 ,2002(15):45-48,65.
[6]宋举.电子放大电路反馈类型的简单判断方法\.雅安职业技术学院学报,2008(1):10-11.
作者简介
航天技术的定义范文5
关键词:全球定位系统;工程测绘;应用分析
全球定位系统(G P S )作为一种新的测绘测量手段,其广泛的应用为工程测绘提供了一个崭新的定位测量手段。由于G P S定位技术的高精度、快速度、低成本,使得其在城市与工程控制网的建设中得到广泛的应用。其在工程测绘中的应用主要有:地图测绘、建立和测定大地控制网点、建立地理信息系统、研究地球动力学现象等等。本文针对G P S在工程测绘中的应用做详细综述。
1 全球定位系统的定义和特点
1.1 全球定位系统的定义
所谓全球定位系统(GPS),其全称是“卫星授时测距导航/全球定位系统”。该系统于19 73年由美国国防部开始研制,经过近20年的耗资约300亿美元研发,于1993年建设成功并投入使用。GPS的基本原理是使用卫星发射的无线电信号进行导航定位,为人们提供军事导航和定位服务。G P S已经成为了美国导航技术现代化的重要标志,被称为是本世纪一个重大的航天技术之一。GPS主要包括空间卫星星座、地面监控系统和用户设备三部分组成。经过20多年的发展,GPS已经渗透到经济建设和科学发展的诸多领域,发挥着重要的作用。
1.2 GPS的特点
G P S 可为用户提供连续的动态目标的三维位置、三维速度以及时间信息。其主要特点有:
1.2.1 定位精度高。通过不断技术的跟新和系统的建设,目前来讲GPS测量精度已经从以前的10-7提高到10-6,而且静态定位精度也提高到毫米级甚至亚毫米级,动态定位精度可以达到厘米级,很好的满足工程测绘的要求。而且随着数据处理的改善,定位精度有望达到或优于10-8。
1.2.2 功能用途广。由于GPS强大的技术,其不仅可以用于测量、导航,还可以进行测速、测时。其测速的精度为0.1m/s,测时的速度可以达到几十毫微秒。
1.2.3 测量时间短。通过GPS系统的完善和软件的升级,观测时间已经从几个小时缩短到几分钟,目前通常采用的静态相对定位模式其观测20km以内的基线仅仅需要16-20min;采用动态定位模式,每站观测只需要几秒钟。
1.2.4 操作较简单。越来越先进的接收机的使用,使得GPS操作逐渐“傻瓜化”。采用智能型的接收机,在测绘中仅仅需要安装并开关仪器、量取天线高、采集环境数据,其他工作如卫星的捕获、跟踪、观测和记录都由仪器自动完成。测绘结束后,关闭仪器即可。还可以进行无人值守测绘,自动化程度高。
1.2. 5 全天候全球定位。由于组成GPS系统的卫星数量很多且分布均匀,这样就保证了全球地面的连续有效覆盖,地球上的任何地点的任何用户在任何时间内都由至少4颗卫星相伴,随时进行测绘工作。而且测绘受限较少,除了雷电时候不宜进行测绘,其他时间都不受影响。
1. 2.6 全球统一三维地心坐标。传统的大地测量主要是将平面和高程选用不同的方法进行分别测量,而在GPS测量中,在精确测量观测站平面位置的时候精确测量大地高程。这一特点,不仅对于研究大地水准面的形状和确定地面点高程开辟了新途径,同时也提供了重要高程数据确保其在航空探物和航空摄影中的应用。
2 GPS在工程测绘中的应用
工程测绘技术是一个重要的应用技术,他与国民经济建设和国防建设息息相关,发挥着重要的作用。跟其他学科一样,他的发展主要显现在测绘技术的数字化、自动化、实时化以及数据管理的标准化、规格化和科学化。从20世纪8 0年代以来,陆续出现了很多先进的地面测量仪器,也出现了大量的先进测绘技术和手段,比如:光电测距仪、电子水准仪、激光准直仪,精密的测绘逐渐代替了传统的基线丈量,使得测绘更加精确、精准。
2.1 GPS在工程测绘中应用原理
G P S 采用的是交互定位原理,利用几何与物理学科的一些基本原理,并且利用G P S系统空间分布的卫星以及与其他地面接收装置实现测量物体的多角度定位。通过已知的几个点的距离,来求得未知点的位置。G P S中已知点是卫星,位置点是地面某一目标。卫星的距离根据传播时间和光速进行确定,距离= 光速×传播时间。该方法最基本的条件就是需要有精确的时钟,记录所需时间。一个G P S接收机需要同时接收4 颗卫星才能进行三维准确定位,对于不同要求精度则卫星需要数量也不同,如果要达到厘米级定位精度,则需要5颗以上。但是如果有山或者高达建筑物的遮挡,所能观测到得卫星会减少,定位就会出现困难。
2.2 GPS在工程测绘中的应用
工程测绘按照设备手段不同分为普通测绘法、航测法和综合法;按照工程成图方法分为解析法、部分解析法和图解法。工程测绘的内容主要包括:工程平面控制测绘、工程细部测绘、工程原图测绘等等。工程测绘内容相对复杂,因此需要借助GPS的精确性和技术性。
2.2.1 虚拟现实技术的应用。传统测绘,由于大部分的测绘工作需要人工进行,容易导致安全事故。对于那些地质条件复杂的地区进行实地测绘时,利用GPS技术创建的工程测绘具有逼真、交互作用的特点。应用GPS技术可以快速、有效地显示工程测绘的全部流程。为了解决工程测绘中测量技术应用效果不太理想的问题,测量前需要进行模拟流程分析,从而保证测量方案可操作性、技术性和安全性的增强。
2. 2.2 在工程细部测绘和房屋地形测图中的应用。工程细部测绘是工程调查的重要组成部分,以确保测定的土地权属界址点、线、位置、形状和数量等。利用G P S技术可以在街坊界址点以及街坊内界址点间距误差缩小,确保测绘的准确;地形测图一般是首先根据控制点加密图根控制点,然后再图根控制点上用经纬仪测图法测绘地形图。尽管近几年该方法已经发展到采用全球仪和电子手薄利用测图软件绘制地形图,但是需要2 - 3 人操作。采用G P S进行测图时,仅需要一个人背着仪器把一个区域内的地形地物点测定然后利用绘图软件绘制,极大的提高了工作效率,降低了人工成本。
3 GPS在工程测绘中应用展望
G P S 应用于工程测绘是一次伟大的技术突破,随着技术的不断革新,会导致测绘行业发生根本性变革。未来,在工程测绘方面,将会建立区域性GPS网,主要包括城市或矿区GPS网,各种GPS工程网等,这类网是专为工程项目不测采用GPS静态相对定位技术、精密度高的网,用于地面沉降监测、大坝变形监测、高层建筑物监测,能够达到高精度、使用频繁的要求,为国民经济建设服务。
4 结束语
与传统测绘手段比较,G P S 测绘具有速度快、成本低、测试简单、不受限制等优点,将G P S技术用于工程测绘中,能够极大提高工程测量的可靠性和准确性,并且降低了作业强度保证了作业安全,适应时代的发展和要求。相信伴随着G P S技术的进一步发展,其在工程测绘中的作用会更加重要!
参考文献:
[ 1 ] 李成丰.提高G P S 测量精度的分析及措施[ J ] . 改革与开放,2012,(05).
航天技术的定义范文6
关键词:超重 失重 牛顿第二定律
超重、失重现象是常见的物理现象,是牛顿第二定律应用的一个方面,是重要和典型的应用知识点。但是,由于学生们对超重和失重缺乏直接的感性认识,因而不容易建立正确的超重和失重的概念,笔者结合自身的教学实践和体会对超重和失重概念作如下理解。
一、超重和失重的概念
也许大家都见过“激流探险”——从很高的坡顶滑下的,颇为刺激的娱乐游戏。滑下时,人会感到整颗心悬于空中,事实上并不是心脏位置提高,而是自身的重心位置相对于平衡位置提高,产生了向下的加速度,出现“失重现象”。反之,若物体具有向上的加速度(可以是竖直向上,也可以是某加速度的竖直向上的分量)就产生“超重现象”。当人造卫星做匀速圆周运动时,其向心加速度等于卫星所处高度的重力加速度,则其处于“完全失重状态”。下面给出教材的定义:
视重:人们习惯上用物体对支持面的压力或对悬挂物的拉力反映物体重力的大小,称为物体的视重。
实重:物体的真实重力,G=mg。
超重现象:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力,即视重大于实重的现象称为超重现象。
失重现象:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力,即视重小于实重的现象称为失重现象。
完全失重:物体对支持物的压力(或对悬挂物的拉力)为零,即视重=0的现象称为完全失重。
二、对超重和失重理解
相当一部分学生容易按照字面意思去理解超重和失重,被超重和失重字面意思所误导,想当然地认为超重就是物体的重量增加了,此时物体很重,应该向下运动。失重就是物体的重量减少了,此时物体很轻,应该向上运动。实际上处于超重和失重状态的物体其重力没有变化,处于超重和失重状态的根本原因是物体处于不平衡的状态造成的。如果物体处于平衡状态,支持力(拉力)大小等于重力。如果物体处于不平衡状态,就是说物体具有加速度,按照牛顿第二定律,物体所受的合力不为零,这样支持力(拉力)大小不再等于重力,如果支持力(拉力)大小大于重力,物体处于超重状态,如果支持力(拉力)大小小于重力,物体处于失重状态。
有学生认为太空舱里的宇航员处于完全失重状态是因为不受到任何力的作用。这种观点是完全错误的,太空舱里的宇航员不是不受任何力,而是受到地球对他的万有引力,这个万有引力指向地心,产生一个向心加速度也指向地心。在地面上的人看来,宇航员具有向下的加速度,处于失重状态!因为物体处于超重或者失重状态与物体的运动方向无关,只与加速度的方向有关。加速度向上,物体处于超重状态;加速度向下,物体处于失重状态。
有学生认为当书静止放在桌子上,用手去压书本,此时书本对桌面的瞬间压力大于书本自身的重力,这是手压书本的结果,但是实际上书本仍然处于平衡状态,并不是处于超重状态。物体处于不平衡的状态是造成超重和失重的根本原因,其他原因导致的支持力(或者拉力)不等于物体所受重力的现象不是超重和失重现象。
三、超重和失重的条件及实质
1.超重、失重、完全失重的本质
物体处于超重、失重、完全失重状态时,并不是指物体所受的重力增大、减小、完全消失了,而是物体对支持物或悬绳的拉力大于重力、小于重力、等于0,物体所受重力并没有发生变化。因此,超是假超,失是假失。
2.由物体的运动状态可看出物体处于超重、失重、完全失重
第一,物体向上加速或向下减速运动时,物体的加速度方向向上(a>g),物体处于超重状态。
第二,物体向上减速或向下加速运动时,物体的加速度方向向下(a<g),物体处于失重状态。
第三,物体向上减速或向下加速运动时,物体的加速度方向向下(a=g),物体处于完全失重状态。
(物体发生超重和失重现象时,只与物体的加速度方向有关,而与物体的速度方向无关。)
大多数学生对超重和失重现象都只有模糊认识,要真正理解超重和失重的本质,是有一定困难的。对教学过程而言,教学重点应该是引导学生在惯性系中正确分析物体的受力情况和运动情况,并结合牛顿运动定律作出推导。对教材及平时所说的超重和失重概念,要引导学生正确理解并作出正确判断。
参考文献:
[1]王显忠.新编高中同步导学教程:《物理》高一年级上[M].济南:济南出版社,2003.
[2]漆安慎,杜婵英.普通物理学教程力学[M].北京:高等教育出版社,2005.