重金属土壤污染的危害范例6篇

重金属土壤污染的危害

重金属土壤污染的危害范文1

关键词:土壤;重金属;污染特征;污染评价;果蔗地

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2017)07-1262-05

DOI:10.14088/ki.issn0439-8114.2017.07.015

Content Characteristics and Risk Assessment of Heavy Metals in Chewing Cane Soils

WANG Tian-shun, YANG Yu-xia, LIAO Jie, FAN Ye-geng, YA Yu, ZHU Jun-jie, MO Lei-xing

(Research Institute of Agro-products Quality Safety and Testing Technology, Guangxi Academy of Agriculture Sciences/Quality Supervision and Testing Center for Sugarcane, China Ministry of Agriculture, Nanning 530007, China)

Abstract: The contents of soil heavy metals,such as Cd,Pb,Cr,Cu,Zn,As and Hg,in surface soil(0~20 cm) from the main chewing cane production farmland in Guangxi Zhuang Autonomous Region,were investigated. Pollution characteristics of heavy metals in soils were observed on the basis of environmental quality secondary standard values of single factor pollution index method and comprehensive pollution index method. Potential ecological risk assessment was evaluated by using the geoaccumulation index(Igeo) and potential ecological risk index(RI). The results indicated that the average concentrations of Cd,Pb,Cr,Cu,Zn,As and Hg were 0.81,30.4,54.5,29.8,107.4,16.69 and 0.28 mg/kg,respectively. According to the comprehensive pollution index,the pollution degree was middle degree with PN was 2.03. According to the geoaccumulation index,the pollution degree of Cd was middle degree with Igeo was 1.02,and Hg ranged from light to middle degree with Igeo was 0.30. The potential ecological risk index indicated that the heavy metals in the soils from research area were at the moderate ecological hazard level. The rate of contribution for Cd was the highest to potential ecological risk index. Thus,effective farmland soil management is necessary to ensure security production, control soil pollution sources,and implement standard agricultural production.

Key words: soils; heavy metals; contaminant characteristics; risk assessment; chewing cane soil

土壤是人类赖以生存的自然资源,也是人类生态环境的重要组成部分。重金属在自然环境中广泛存在,因其持久性、积累性等特性及其对生态环境存在的潜在风险,受到国内外学者的高度关注[1,2],土壤重金属污染已经成为当前人类面临的重要环境问题,也是目前环境科学领域的研究热点之一[3-6]。土壤重金属污染来源包括矿山采选冶炼、大气沉降、污水灌溉、固体废弃物堆存与处置、交通运输等[7,8]。当土壤中重金属达到一定的累积程度时,会通过食物链传递到动物和人体内,给生态环境及人体健康造成很大危害[9,10]。

近年来,果蔗生产中大量使用农药、磷肥、污水,使得果蔗地土壤-植物系统中重金属污染更为复杂与多样化。土壤是植物生长的载体,其清洁程度直接影响着食物中有毒有害物质的浓度,目前对果蔬、粮食产地[11,12]中重金属的污染评价己有不少报道,但针对果蔗地土壤重金属污染的系统研究鲜有报道。为了解广西壮族自治区横县果蔗种植区土壤质量状况,本研究以果蔗地土壤为对象,利用单因子污染指数法、综合污染指数法、地积累指数法和潜在生态风险指数法对土壤重金属的污染特征及生态风险进行评价,同时探讨了各重金属元素之间的相关性和聚类状况,以期为广西壮族自治区果蔗地土壤重金属的污染防治和治理提供科学依据。

1 材料与方法

1.1 样品采集与分析

土壤样品全部采自广西壮族自治区果蔗地0~20 cm表层土壤。于2014年11月选取36个采样点,每个样点600~1 300 m2内采用W形布点采集5个子样,现场剔除植物根系、碎石等杂物后充分混合组成一个混合样品,用四分法缩分至约4.0 kg,装入聚乙烯塑料袋,贴好标签,带回实验室备用。把采集的土壤置于宽敞、干净、透气的室内,均匀摊开,自然风干,去除石块、植物根系及其他的杂物后用玛瑙研钵研磨后过2 mm尼龙筛,再用玛瑙研钵继续研磨后过100目筛。

称取0.200 0 g经风干处理的土样于聚四氟乙烯罐中。加5 mL HNO3、3 mL HCl、1 mL H2O2和1 mL HF,密封消解罐后放入微波消解炉。消解程序分3步,步骤1为160 ℃、90%功率消解10 min;步骤2为200 ℃、90%功率消解25 min;步骤3为100 ℃、40%功率消解5 min。消解完室温放置后,转移消解罐中的溶液于聚四氟乙烯烧杯中,加热蒸发去除氮氧化物。剩余液体做如下处理:①转移至100 mL容量瓶,用1%硝酸稀释至刻度线,混合均匀后用石墨炉原子吸收仪(MKⅡ MQZ,美国Thermo)测定溶液中Cd、Pb的含量、用火焰原子吸收仪(AA240,美国Varian)测定Cr、Cu、Zn的含量;②转移至50 mL容量瓶,加入5 mL 50 g/L硫脲和50 g/L抗坏血酸溶液作掩蔽剂,用5%盐酸稀释至刻度线,混合均匀,室温下静置30 min后用原子荧光光谱仪(AFS-230E,北京海光仪器公司)测定As和Hg的含量。

试验所用试剂均为优级纯试剂,用水均为超纯水。

1.2 土壤重金属污染评价

土壤评价标准采用GB 5618-1995《土壤环境质量标准》[13]中的二级标准和广西土壤背景值[14],采用单因子污染指数、内梅罗综合污染指数法、地积累指数法以及潜在生态危害指数法分别对土壤重金属污染状况进行评价。采用Excel 2007和DPS软件对数据进行统计分析。

1.2.1 单因子污染指数法 单因子污染指数法是用来评价单个污染因子对土壤的污染程度,污染指数愈小,说明该因子对环境介质污染程度愈轻[15,16]。其计算公式如下:

Pi=Ci/Si

式中,Pi为土壤中重金属的污染指数,具体反映某污染物超标倍数和程度;Ci为土壤中重金属含量的实测值(mg/kg);Si为土壤中重金属的标准限定值(mg/kg)。当Pi≤1时,表示样品未受污染;当Pi>1 时,表示样品已被污染。Pi的值越大,说明样品受污染越严重。Pi评价标准见表1。

1.2.2 综合污染指数法 综合污染指数法[17,18],即内梅罗污染指数,是将目标单个污染指数按一定方法综合起来考虑对环境介质的影响程度,采用兼顾单元素污染指数平均值和最大值的一种评价方法。其计算公式如下:

PN=■

式中,Piave为土壤中各重金属污染指数的平均值;Pimax为土壤中单项重金属的最大污染指数;PN为采样点的综合污染指数,其评价标准见表1。该方法突出了高浓度污染物对土壤环境质量的影响,能反映出各种污染物对土壤环境的作用,将研究区域土壤环境质量作为一个整体与外区域或历史资料进行比较。

1.2.3 地积累指数法 地积累指数(Igeo)是德国海德堡大学沉积物研究所的科学家Müller[19]提出的一种研究沉积物中重金属污染的定量指标,在欧洲被广泛采用。该方法在考虑自然地质过程造成背景值影响的同时,充分考虑了人为活动对重金属污染的影响,因此该指数不仅可以反映沉积物中重金属分布的自然变化特征,而且可以判别人为活动对环境的贡献[20,21]。其计算公式为:

Igeo=log2[Cn/(1.5×Bn)]

式中,Cn为样品中元素n在沉积物中的实测值;Bn为沉积物中该元素的地球化W背景值,本研究采用广西壮族自治区土壤环境背景值作为参照标准;1.5为修正指数,用于校正区域背景值差异。地积累指数划分为7级,Igeo≤0,为1级,无污染;0

1.2.4 潜在生态危害指数法 重金属元素是具有潜在危害的重要污染物,与其他污染物的不同之处在于它们对环境危害的持久性、生物地球化学的可循环性及潜在的生态危害。潜在生态危害系数法是瑞典科学家Hakanson[22]提出的一种沉积物中重金属的评价方法,为了使区域质量评价更具有代表性和可比性,该方法从重金属的生物毒性角度出发,反映了多种污染物的综合影响[23,24]。土壤中多种重金属元素潜在生态危害指数是各单一重金属元素的潜在生态危害指数之和。其计算公式如下:

RI=■Eri

Eri=Tri×Csi/Cni

式中,Csi为表层土壤重金属元素i的分析测量值;Cni为土壤重金属元素i的参比值,本研究采用广西壮族自治区土壤环境背景值作为参照标准;Tri为重金属元素毒性系数[25],各重金属的毒性系数分别为Cd=30,Pb=Cu=5,Cr=2,Zn=1,As=10,Hg=40[26]。Eri为单个重金属的潜在生态危害指数;RI为多种重金属综合潜在生态危害指数。重金属污染的生态危害指数分级标准见表2。

2 结果与分析

2.1 研究区土壤重金属含量特征

研究区36个土壤样品的重金属元素的含量范围、均值、标准差等特征参数见表3。需要说明的是,有32个土壤样品土壤呈酸性,4个土壤样品土壤呈弱碱性。研究区土壤中Cd、Pb、Cr、Cu、Zn、As和Hg的平均含量分别为0.81、30.4、54.5、29.8、107.4、16.69、0.28 mg/kg,除了Cr和As外,其他5种重金属平均含量均超过广西土壤背景值,分别为土壤背景值的3.03、1.27、1.07、1.42、1.84倍。

7种重金属的标准差除Cd和Hg外,其他均较大;Cr、Zn的标准差在15以上,Pb的标准差为9.37,As的标准差为5.97,Cu的标准差为5.20。说明重金属的分布不均匀,甚至有的重金属分布极不均匀。土壤中7种重金属的变异系数从大到小的顺序依次为Hg、Cd、Cr、As、Zn、Pb、Cu,其中,Hg、Cd变异系数分别为48.3%、46.1%,说明Hg和Cd受人为活动干预强烈,其次为Cr、As、Zn,Cu的变异系数最小,表明在整个研究区域Cu含量相对比较均一。

2.2 土壤重金属污染评价

2.2.1 单因子污染指数与综合污染指数评价 研究区土壤重金属单因子污染指数见表4。结果表明,研究区土壤中重金属Cd、Pb、Cr、Cu、Zn、As和Hg单因子污染指数的平均值分别为2.73、0.61、0.36、0.55、0.53、0.44和0.88。按照土壤环境质量二级评价分级标准,土壤样品中重金属元素Cr、Cu、Zn、As单因子污染指数均小于1,属于安全等级。重金属元素Cd、Pb和Hg单因子污染指数达到轻污染水平的样本占样本总数的19.4%、2.8%和30.6%;Cd和Hg单因子污染指数达到中污染水平的样本分别占样本总数的11.1%和2.7%;Cd单因子污染指数达到重污染水平的样本占样本总数的58.3%。

采用综合污染指数法对采样点土壤中Cd、Pb、Cr、Cu、Zn、As和Hg 7种重金属元素污染状况进行综合评价,由各单因子污染指数计算可知,采样点的综合污染指数值为2.03,污染等级属于中污染。

2.2.2 地积累指数法评价 地积累指数法是从地球化学的角度出发来评价土壤中重金属的污染。它除了考虑到人为污染因素、环境地球化学背景值外,还考虑到由于自然成岩作用可能会引起背景值变动的因素,它所采用的背景值一般为未受人类活动影响的沉积岩中的地球化学背景值,因此该方法更多的强调了土壤中重金属污染的历史累积作用。由表5可知,果蔗地土壤中Cd的污染程度相对比较严重,污染等级为3级,污染程度达中等污染;其次是Hg,污染等级为2级,其污染程度达轻-中等污染;Pb、Cr、Cu、Zn和As均属于无污染。7种重金属的污染程度顺序依次为Cd>Hg>Zn>Pb>Cu>As>Cr。

2.2.3 潜在生态危害评价 潜在生态危害指数法是从沉积学角度出发,它不仅考虑了土壤重金属含量,而且将重金属的生态效应、环境效应与毒理学联系在一起,因此其评价结果主要反映了人类活动对土壤的潜在生态危害。由表6可知,从单个重金属的潜在生态危害系数来评价,果蔗地土壤的主要潜在生态危害重金属为Cd和Hg,Cd污染达到强生态危害程度,Hg污染达到中等生态危害程度,其他5种重金属均为轻微生态危害程度,其潜在生态危害顺序为Cd>Hg>As>Pb>Cu>Zn>Cr。综合潜在生态危害指数达到187.27,处于中等生态危害程度。

2.3 研究区土壤重金属含量相关分析

研究区土壤中重金属之间的相关性可以推测重金属的来源是否相同,若它们之间存在相关性,则它们的来源可能相同,否则来源可能不同[16]。利用DPS软件对各重金属进行相关性分析,在0.05和0.01 显著性水平下,所有变量间相关系数如表7所示。As与Cd、Cr、Cu、Zn之间存在极显著正相关,表明As和Cd、Cr、Cu、Zn之间紧密相关;Zn与Cr、Cu之间存在极显著正相关;Cu与Cr之间存在极显著正相关,Cu与Pb之间存在极显著负相关;Cd与Cr之间存在极显著正相关。相关性结果可以说明研究区域土壤重金属As与Cd、Cr、Cu、Zn同源性很高,与果蔗栽培管理过程中污水的灌溉、污泥的施用及重金属农药的施用有关,Hg与其他重金属元素之间没有明显的相关性,说明研究区域Hg含量受人为活动的影响强烈,有外源污染M入。

2.4 研究区土壤重金属聚类分析结果

利用DPS软件对研究区各重金属进行聚类分析,结果如图1所示。由图1可知,7种重金属共分为5组,第一组为Pb和Cu;第二组为As;第三组为Cr;第四组为Cd和Hg,它们的潜在生态危害指数分列前2位;第五组为Zn。Pb和Cu、Cd和Hg是距离较近且潜在生态危害指数值接近,分别被聚为一类。

3 结论

研究区域土壤重金属Cd、Pb、Cr、Cu、Zn、As和Hg的平均含量水平分别为0.81、30.4、54.5、29.8、107.4、16.69、0.28 mg/kg。利用《土壤环境质量标准》二级标准进行评价,结果显示Cd污染最严重,单因子污染指数最高为4.93;Hg污染次之。

重金属地积累指数评价结果表明,果蔗地土壤中Cd的污染程度相对比较严重,污染等级为3级,污染程度达中等污染;其次是Hg,污染等级为2级;潜在生态危害综合指数评价结果显示,果蔗地土壤中重金属污染处于中等生态危害程度,其土壤的主要潜在生态危害重金属为Cd和Hg,Cd污染达到强生态危害程度,Hg污染达到中等生态危害程度。

土壤中7种重金属的相关性分析表明,研究区域土壤重金属As与Cd、Cr、Cu、Zn具有同源性,与果蔗栽培管理过程中污水的灌溉、污泥的施用及重金属农药的施用有关;聚类分析表明,Pb和Cu、Cd和Hg距离较近且污染指数值接近,分别被聚为一类。

广西壮族自治区果蔗地土壤重金属污染来自多种污染源,笔者认为土壤重金属累积的原因主要是各种含重金属农用物资的投入、污水灌溉及污泥施用等。对被污染土壤应采取一些农业、生物及施用一些改良剂等措施进行综合修复、治理,以确保生态环境及果蔗产品的安全。

参考文献:

[1] NIU L L,YANG F X,XU C,et al. Status of metal accumulation in farmland soils across China:From distribution to risk assessment[J].Environmental Pollution,2013,176:55-62.

[2] MAPANDA F,MANGWAYANA E N,NYAMANGARA J,et al. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare,Zimbabwe[J].Physics Chemistry of the Earth,2007,32(15-18):1399-1405.

[3] 胡国成,张丽娟,齐剑英,等.贵州万山汞矿周边土壤重金属污染特征及风险评价[J].生态环境学报,2015,24(5):879-885.

[4] 麻冰涓,王海邻,李小超,等.豫北典型农田作物中重金属污染状况及健康风险评价[J].生态环境学报,2014,23(8):1351-1358.

[5] 张洪伟,张国珍,张克江,等.黄河兰州段黄灌区蔬菜大棚土壤重金属含量分析及污染评价[J].土壤通报,2012,43(6):1497-1501.

[6] 韩 平,王纪华,冯晓元,等.北京顺义区土壤重金属污染生态风险评估研究[J].农业环境科学学报,2015,34(1):103-109.

[7] 陈 涛,常庆瑞,刘 京,等.长期污灌农田土壤重金属污染及潜在环境风险评价[J].农业环境科学学报,2012,31(11):2152-2159.

[8] 郭 伟,赵仁鑫,张 君,等.内蒙古包头铁矿区土壤重金属污染特征及其评价[J].环境科学,2011,35(10):3099-3105.

[9] HE B,YUN Z J,SHI J B,et al. Research progress of heavy metal pollution in China: Sources,analytical methods,status,and toxicity [J].Chinese Science Bulletin,2013,58(2):134-140.

[10] KHAN K,LU Y L,KHAN H,et al. Heavy metals in agricultural soils and crops and their health risks in swat district, northern Pakistan [J].Food and Chemical Toxicology,2013,58:449-458.

[11] KHAN S,CAO Q,ZHENG Y M,et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing,China[J].Environmental Pollution,2008, 152(3):686-692.

[12] 秦普S,刘 丽,侯 红,等.工业城市不同功能区土壤和蔬菜中重金属污染及其健康风险评价[J].生态环境学报,2010,19(7):1668-1674.

[13] GB 15618-1995,土壤环境质量标准[S].

[14] 广西环境保护科学研究所.土壤背景值研究方法及广西土壤背景值[M].南宁:广西科学技术出版社,1992.

[15] 胡 明.大荔县农田土壤重金属分布特征与污染评价[J].干旱区资源与环境,2014,28(1):79-84.

[16] 程 芳,程金平,桑恒春,等.大金山岛土壤重金属污染评价及相关性分析[J].环境科学,2013,34(3):1062-1066.

[17] 张鹏岩,秦明周,陈 龙,等.黄河下游滩区开封段土壤重金属分布特征及其潜在风险评价[J].环境科学,2013,34(9):3654-3662.

[18] YUAN G L,SUN T H,HAN P,et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing,China[J].Journal of Geochemical Exploration, 2014,136(1):40-47.

[19] M?BLLER G. Index of geoaccumulation in sediments of the Rhine River[J].Geological Journals,1969,2:109-118.

[20] 范拴喜,甘卓亭,李美娟,等.土壤重金属污染评价方法进展[J].中国农学通报,2010,26(17):310-315.

[21] 孔慧敏,左 锐,滕彦国,等.基于地球化学基线的土壤重金属污染风险评价[J].地球与环境,2013,41(5):547-552.

[22] HAKANSON L. An ecological risk index for aquatic pollution control:A sedimentological approach[J].Water Research,1980, 14(8):975-1001.

[23] 朱兰保,盛 蒂,戚晓明,等.蚌埠龙子湖底泥重金属污染及生态风险评估[J].安全与环境学报,2013,13(5):107-110.

[24] 王大洲,胡 艳,李 鱼.某陆地石油开采区土壤重金属潜在生态风险评价[J].环境化学,2013,32(9):1723-1729.

重金属土壤污染的危害范文2

关键词土壤污染;现状;危害;治理措施

1土壤污染概念

土壤是指陆地表面具有肥力、能够生长植物的疏松表层,其厚度一般在2 m左右。土壤不但为植物生长提供机械支撑能力,并能为植物生长发育提供所需要的水、肥、气、热等肥力要素。近年来,由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤中渗透,汽车排放的废气,大气中的有害气体及飘尘不断随雨水降落在土壤中。农业化学水平的提高,使大量化学肥料及农药散落到环境中,导致土壤遭受非点源污染的机会越来越多,其程度也越来越严重,在水土流失和风蚀作用等的影响下,污染面积不断扩大。因此,凡是妨碍土壤正常功能,降低农作物产量和质量,通过粮食、蔬菜、水果等间接影响人体健康的物质都叫做土壤污染物[1-2]。

当土壤中有害物质过多,超过土壤的自净能力,引起土壤的组成、结构和功能发生变化,微生物活动受到抑制,有害物质或其分解产物在土壤中逐渐积累,通过“土壤植物人体”,或通过“土壤水人体”间接被人体吸收,达到危害人体健康的程度,就是土壤污染。

2我国土壤污染现状与危害

2.1土壤污染的现状

目前,我国土壤污染的总体形势严峻,部分地区土壤污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土壤重污染区和高风险区。土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土壤污染途径多,原因复杂,控制难度大。土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。由土壤污染引发的农产品质量安全问题和群体性事件逐年增多,成为影响群众身体健康和社会稳定的重要因素[3]。

2.2土壤污染的危害

2.2.1土壤污染导致严重的直接经济损失。初步统计,全国受污染的耕地约有1 000万hm2,有机污染物污染农田达3 600万hm2,主要农产品的农药残留超标率高达16%~20%;污水灌溉污染耕地216.7万hm2,固体废弃物堆存占地和毁田13.3万hm2。每年因土壤污染减产粮食超过1 000万t,造成各种经济损失约200亿元。

2.2.2土壤污染导致生物产品品质不断下降。因农田施用化肥,大多数城市近郊土壤都受到不同程度的污染,许多地方粮食、蔬菜、水果等食物中镉、砷、铬、铅等重金属含量超标或接近临界值。每年转化成为污染物而进入环境的氮素达1 000万t,农产品中的硝酸盐和亚硝酸盐污染严重。农膜污染土壤面积超过780万hm2,残存的农膜对土壤毛细管水起阻流作用,恶化土壤物理性状,影响土壤通气透水,影响农作物产量和农产品品质。

2.2.3土壤污染危害人体健康。土壤污染会使污染物在植物体内积累,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。

2.2.4土壤污染导致其他环境问题。土壤受到污染后,含重金属浓度较高的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。

3造成土壤污染的原因

3.1过量施用化肥

我国每年化肥施用量超过4100万t。虽然施用化肥是农业增产的重要措施,但长期大量使用氮、磷等化学肥料,会破坏土壤结构,造成土壤板结、耕地土壤退化、耕层变浅、耕性变差、保水肥能力下降、生物学性质恶化,增加了农业生产成本,影响了农作物的产量和质量;未被植物吸收利用和根层土壤吸附固定的养分,都在根层以下积累或转入地下。残留在土壤中的氮、磷化合物,在发生地面径流或土壤风蚀时,会向其他地方转移,扩大了土壤污染范围。过量使用化肥还使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧气的输送,使其患病,严重导致死亡[4]。

3.2农药是土壤的主要有机污染物

全国每年使用的农药量达50万~60万t,使用农药的土地面积在2.8亿hm2以上,农田平均施用农药13.9 kg/hm2。直接进入土壤的农药,大部分可被土壤吸附,残留于土壤中的农药,由于生物和非生物的作用,形成具有不同稳定性的中间产物或最终产物无机物。喷施于作物体上的农药,除部分被植物吸收或逸入大气外,约有1/2左右散落于农田,又与直接施用于田间的农药构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在植物根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。

3.3重金属元素引起的土壤污染

全国320个严重污染区约有548万hm2土壤,大田类农产品污染超标面积占污染区农田面积的20%,其中重金属污染占80%,粮食中重金属镉、砷、铬、铅、汞等的超标率占10%。被公认为城市环境质量优良的公园存在着严重的土壤重金属污染。汽油中添加的防爆剂四乙基铅随废气排出污染土壤,使行车频率高的公路两侧常形成明显的铅污染带。砷被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂,硫化矿产的开采、选矿、冶炼也会引起砷对土壤的污染。汞主要来自厂矿排放的含汞废水。土壤组成与汞化合物之间有很强的相互作用,积累在土壤中的汞有金属汞、无机汞盐、有机络合态或离子吸附态汞,所以,汞能在土壤中长期存在。镉、铅污染主要来自冶炼排放和汽车尾气沉降,磷肥中有时也含有镉[5]。

3.4污水灌溉对土壤的污染

我国污水灌溉农田面积超过330万hm2。生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,有增产效果。未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有毒有害的物质,会将污水中有毒有害的物质带至农田,在灌溉渠系两侧形成污染带。

3.5大气污染对土壤的污染

大气中的二氧化硫、氮氧化物和颗粒物等有害物质,在大气中发生反应形成酸雨,通过沉降和降水而降落到地面,引起土壤酸化。冶金工业排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2~3 km范围的点状污染。

3.6固体废物对土壤的污染

污泥作为肥料施用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业固体废物和城市垃圾向土壤直接倾倒,由于日晒、雨淋、水洗,使重金属极易移动,以辐射状、漏斗状向周围土壤扩散。

3.7牲畜排泄物和生物残体对土壤的污染

禽畜饲养场的厩肥和屠宰场的废物,其性质近似人粪尿。利用这些废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可引起土壤和水域污染,并通过水和农作物危害人群健康。

3.8放射性物质对土壤的污染

土壤辐射污染的来源有铀矿和钍矿开采、铀矿浓缩、核废料处理、核武器爆炸、核实验、燃煤发电厂、磷酸盐矿开采加工等。大气层核试验的散落物可造成土壤的放射性污染,放射性散落物中,90sr、137cs的半衰期较长,易被土壤吸附,滞留时间也较长。

4我国土壤污染的治理措施

4.1施用化学改良剂,采取生物改良措施,增加土壤环境容量,增强土壤净化能力

向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。针对有机物污染,用植物、细菌、真菌联合加速有机物降解。针对无机物污染,利用植物修复可以把一部分重金属从土壤中带走。

增加土壤有机质含量、砂掺粘改良性土壤,增加和改善土壤胶体的种类和数量,增加土壤对有害物质的吸附能力和吸附量,从而减少污染物在土壤中的活性。发现、分离和培养新的微生物品种,以增强生物降解作用。

4.2强化污染土壤环境管理与综合防治,大力发展清洁生产

控制和消除土壤污染源,组织有关部门和科研单位,筛选污染土壤修复实用技术,加强污染土壤修复技术集成,选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复。重点支持一批部级重点治理与修复示范工程,为在更大范围内修复土壤污染提供示范、积累经验。合理利用污染土地,严重污染的土壤可改种非食用经济作物或经济林木以减少食品污染。科学地进行污水灌溉,加强土壤污灌区的监测和管理,了解水中污染物的成分、含量及其动态,避免带有不易降解的高残留污染物随机进入土壤。

增施有机肥,提高土壤有机质含量,增强土壤胶体对重金属和农药的吸附能力。强化对农药、化肥、除草剂等农用化学品管理。增施有机肥同时采取防治措施,不仅可以减少对土壤的污染,还能经济有效地消灭病、虫、草害,发挥农药的积极效能。在生产中合理施用农药、化肥,控制化学农药的用量、使用范围、喷施次数和喷施时间,提高喷洒技术,改进农药剂型,严格限制剧毒、高残留农药的使用,大力发展高效、低毒、低残留农药。大力发展生物防治措施。

大力推广闭路循环、无毒工艺,以减少或消除污染物的排放。对工业“三废”进行回收净化处理,化害为利,严格控制污染物的排放量和浓度。大力推广和发展清洁生产。

针对土壤污染物的种类,种植有较强吸收能力的植物,降低有毒物质的含量,或通过生物降解净化土壤,通过改变耕作制度、换土、深翻等手段,施加抑制剂改变污染物质在土壤中的迁移转化方向,减少农作物的吸收,提高土壤ph值,促使镉、汞、铜、锌等形成氢氧化物沉淀。

根据土壤的特性、气候状况和农作物生长发育特点,既要防治病虫害对农作物的威胁,又要把化肥、农药对环境和人体健康的危害限制在最低程度。利用物理、物理化学原理治理污染土壤。大力开展植树造林,提高森林覆盖率,维护森林生态系统平衡。

4.3调控土壤氧化还原条件

调节土壤氧化还原电位,使某些重金属污染物转化为难溶态沉淀物,控制其迁移和转化,降低污染物的危害程度。调节土壤氧化还原电位主要是通过调节土壤水分管理和耕作措施实现。

4.4改变耕作制度,实行翻土和换土

改变耕作制度会引起土壤环境条件的变化,消除某些污染物的危害。对于污染严重的土壤,采取铲除表土和换客土的方法;对于轻度污染的土壤,采取深翻土或换无污染客土的方法。

4.5采用农业生态工程措施

在污染土壤上繁殖非食用的种子、种经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物较快地吸走或降解土壤中的污染物质,从而达到净化土壤的目的。

4.6工程治理

利用物理(机械)、物理化学原理治理污染土壤,是一种最为彻底、稳定、治本的措施,但投资大,适于小面积的重度污染区,主要有隔离法、清洗法、热处理、电化法等。近年来,把其他工业领域,特别是污水、大气污染治理技术引入土壤治理,为土壤污染治理研究开辟了新途径。

5参考文献

[1] 徐月珍.防止土壤污染和地下水污染的措施[j].环境与可持续发展,1989(1):29-31.

[2] 任旭喜.土壤重金属污染及防治对策研究[j].环境保护科学,1999,25(5):31-33.

[3] 陈晶中,陈杰,谢学俭,等.土壤污染及其环境效应[j].土壤,2003,35(4):298-303.

重金属土壤污染的危害范文3

关键词:土壤污染;调查;潜在生态危害系数法;生态健康风险评估

中图分类号:X825文献标识码:A文章编号:0439-8114(2017)21-4031-04

老化工厂搬迁遗留下来的土壤污染问题日益引起人们的关注,使得土壤污染修复研究成为当今环保领域的研究热点之一[1,2]。改革开放初期,随着经济发展的需求,乡镇化工厂大量兴建,由于环保意识薄弱、环保措施不当,大量工业废渣、废水直接被掩盖于场址土地之下[3]。随着国家环保监察力度不断加大,一些小工厂被关闭,对场址土地重新利用时,其造成的土壤污染日益显现出来。

本研究通過对江苏省某地某生产农药的废弃化工厂进行实地走访调查,采集土样、水样,送检,根据测得的数据确定了调查区域污染物种类以及污染程度,通过潜在生态危害系数法[4-7]和毒性风险评估法[8-10]对数据进行分析处理,为该污染场地土壤修复治理提供依据。

1材料与方法

1.1区域概况

调查区域地处某化学工业园新材料产业园北部。该区域原为丘陵,随着周边用地规划调整作为工业用地开发,形成了目前工业园区、村庄、农田与工厂混杂分布的局面。该厂区南边濒临河流,北边绿山工业大道经过,交通发达,占地约28000m2,主要生产乙烯利、2,4-滴、敌敌畏。目前调查区域内相关企业已经全部停产搬迁,厂房空置,煤渣浅埋在土壤表层,污染严重,空气中能闻到明显的刺鼻气味。

1.2样品采集与处理

通过走访现场和企业老员工确定采样点分布,按采用厂内和厂外相结合的原则设置了11个采样点,用便携式手持GPS定位,样点分布如图1所示。1-5号点在主要污染区,9号点在生产区域边上,其余点在厂外路边。采样时间为2016年4月和12月共2次,用螺旋钻采样器采集表层和浅层土壤于密封袋中,贴好样点标签,保存待用。

土壤放于风干盘中,去除沙石和杂草等杂物,研磨过18目筛,风干后进一步研磨,过60目筛,保存于密封袋中待测。

1.3检测方法

挥发性有机污染物采用便携式光离子化检测器(PID),现场测定挥发性有机污染物(VOC)含量;土壤于密封袋中2h,传感器进入密封袋中2s,读取数值。半挥发性有机污染物采用气相色谱-质谱(GC-MS)联用检测法,委托南京索益盟环保科技有限公司检测。重金属污染物采用X射线荧光光谱仪(XRF),委托常州大学理化中心检测。

1.4数据分析方法

1.4.1潜在生态危害指数计算法[11]某地多种重金属综合潜在生态危害指数(RI)计算如式(1)所示。

RI=Eri=Tri×Cri=Tri×(1)

式中,Ci实测为重金属i的实际测量值;Cni为该重金属元素的评价标准;Cri为重金属i的污染系数;Tri为重金属i的毒性响应系数,参考Hakanson数值[12],即Hg=40,Cd=30,Pb=Cu=Ni=5,Cr=2,Zn=1。

潜在生态危害指数RI为某一点多个重金属潜在生态危害系数的综合值,分为4个等级,分别为RI<150为轻微生态危害;150≤RI<300为中等生态危害;300≤RI<600为强生态危害;RI≥600为很强生态危害。

1.4.2暴露风险评估法[11,12-17]

1)经口摄入土壤的致癌风险公式为:

CRois=OISERca×Csur×SFo(2)

式中,CRois为经口摄入土壤途径的致癌风险,无量纲;OISERca为经口摄入土壤暴露量(致癌),0.4187×10-6kg土壤/(kg体重·d);Csur为表层土壤中污染物浓度,mg/kg,现场实地测量获得;SFo为经口摄入致癌斜率因子,(kg·d)/mg。

2)皮肤接触土壤的致癌风险公式为:

CRdcs=DCSERca×Csur×SFd(3)

式中,CRdcs为皮肤接触土壤途径的致癌风险,无量纲;DCSERca为皮肤接触土壤暴露量,0.2289×10-6kg土壤/(kg体重·d);SFd皮肤接触致癌斜率因子,(kg·d)/mg。

3)吸入土壤颗粒的致癌风险公式为:

CRpis=PISERca×Csur×SFi(4)

式中,CRpis为吸入土壤颗粒途径的致癌风险,无量纲;PISERca为吸入土壤颗粒暴露量,0.0049×10-6kg土壤/(kg體重·d);SFi为呼吸吸入致癌斜率因子,(kg·d)/mg。

4)经口摄入土壤的非致癌风险公式为:

HQois=(5)

式中,HQois为经口摄入土壤途径的非致癌风险,无量纲;OISERnc为经口摄入土壤暴露量(非致癌),1.2059×10-6kg土壤/(kg体重·d);RFDo为经口摄入参考计量,(kg·d)/mg。

5)皮肤接触土壤的非致癌风险公式为:

HQdcs=(6)

式中,HQdcs为皮肤接触土壤途径的非致癌风险,无量纲;DCSERnc为皮肤接触土壤暴露量,0.6594×10-6kg土壤/(kg体重·d);RFDd为皮肤接触参考计量,(kg·d)/mg。

6)吸入土壤颗粒的非致癌风险公式为:

HQpis=(7)

式中,RFDi为呼吸吸入参考计量,mg/(kg·d);PISERnc为吸入土壤颗粒暴露量,0.0143×10-6kg土壤/(kg体重·d)。

2结果与分析

2.1场地土壤主要污染物识别

对污染场地的样品检测,所测主要结果如表1、表2所示。检出挥发、半挥发性污染物23种,污染物检出率28.04%,污染物主要有2,4-二氯苯酚、邻苯二甲酸二甲酯、菲、荧蒽、苯并(b)荧蒽等。其中污染最严重的是2,4-二氯苯酚,因为废弃化工厂生产除草剂的主要成分就是2,4-二氯苯酚,苯酚类污染物有刺激性气味,对眼睛、黏膜、呼吸道有刺激作用,对身体危害大;多环芳烃大多具有致癌的危险,因此要对其进行生态风险评估。污染土壤中主要包含锌(Zn)、铜(Cu)、铅(Pb)、镍(Ni)、铬(Cr)、镉(Cd)和汞(Hg)等重金属,可能是废催化剂倾倒掩埋所致,样品中检测的重金属含量如表2所示。由表2可以看出,4号点Zn,2号点Cu,4号、7号和9号点Ni,2号、3号、4号和6号点Cr等都超出国标二级限值(GB15618-1995),对地下水的污染和人们身体的健康都存在着严重的安全隐患。

2.2便携式光离子化检测器分析

PID可以现场快速测定土壤挥发性有机气体浓度,对于土壤现场调查及采样选择有指导意义。以mg/kg为单位的有机气体浓度数据读数作为污染评价指标(PI),判断标准为PI<10,场地无挥发性有机污染物;10≤PI<100,场地存在轻度挥发性有机污染物;100≤PI<200,场地存在中度挥发性有机污染物;PI≥200,场地存在严重挥发性有机污染物。由表3可以看出,编号为2的样品PI最高,为826.7,场地存在严重挥发性有机污染物;编号为6到11的样品PI均小于10,场地无挥发性有机污染物。因此,厂房所在区域存在严重挥发性有机污染物,随着距离的增加,PI减小,厂房外的PI均小于10,场地污染程度极度轻微,可能是汽车尾气或者附近居民喷施农药残留影响所致。

2.3重金属潜在生态危害指数法分析

根据污染场地重金属的实际测量值(表2)以及公式(1),计算出单一元素的污染系数(表4),由表(4)以及公式(2)、(3)计算出土壤中某一重金属的潜在生态危害系数和RI(表5)。

由表4可以看出,6号至11号样点的Zn、Cu、Pb和Cr的单一污染指数都小于1,属于无污染;2号至4号样点Cr的单一污染指数在1~2,属于轻度污染,Hg的单一污染指数大于3,属于重污染。废弃工厂内的重金属污染明显比工厂外的污染严重,重金属可能来自于工厂掩埋的催化剂。

由表5可以看出,1号、2号、4号和5号样点的300≤RI<600,属于强生态危害。工厂内大量使用的催化剂、煤渣等废弃物直接掩埋在厂区,重金属转移到土壤和地下水中,遗留下难以解决的土壤污染问题;路边上的样点RI基本上都小于300,属于中等生态危害,可能主要来自于汽车尾气中的重金属。

2.4暴露评估

调查区域附近有河流和居民区,污染物可能会经口摄入土壤、皮肤接触土壤和呼吸吸入土壤等3种暴露途径进入人体并危害人体健康。污染物Cr、苯并(b)荧蒽和2,4-二氯苯酚浓度取1号至5号点的平均值,分别为0.1502、0.1504和1.6416mg/kg。由表6可以看出,不同暴露途径的致癌和非致癌风险差异明显。重金属Cr经口摄入土壤、皮肤接触土壤和呼吸吸入土壤的致癌风险分别为3.14×10-8、6.88×10-7和2.45×10-7,均低于可接受的风险水平1.0×10-6,不会给附近居民带来潜在的致癌风险;非致癌风险也均低于非致癌的风险水平1。苯并(b)荧蒽的致癌和非致癌风险也低于可接受的风险水平,表明重金属和苯并(b)荧蒽不会给附近居民带来致癌和非致癌风险。2,4-二氯苯酚的非致癌风险为6.60×10-4、3.61×10-4和4.59×10-7,低于非致癌的风险水平1,不会带来非致癌风险,但是在检测的样品中2,4-二氯苯酚的浓度最高且易挥发、高毒性,长期生活在这种环境中易造成严重的身体健康问题。

3结论

经采样及检测确定该农药厂污染场址土壤中的污染物主要包括2,4-二氯苯酚、多环芳烃和Cr等。厂区内大部分调查样点都属于强生态危害,厂区外调查样点基本上属于中等生态危害,以厂区为中心点,向外辐射,危害逐渐减小。2,4-二氯苯酚、苯并(b)荧蒽和Cr的非致癌风险均低于可接受的风险水平1,苯并(b)荧蒽和Cr的致癌风险也低于可接受的风险水平1.0×10-6,但是长期生活在这种低毒性的环境中也会带来严重的健康问题。本研究对该场地及类似农药污染场地污染调查、风险评估及土壤修复有一定的指导意义和修复设计参考价值。

作者:陈冬

参考文献: 

[1] 宋宛桐.我国农业土壤污染现状及其成因[J].农业与技术, 2016(8):245. 

[2] 庄国泰.我国土壤污染现状与防控策略[J].中国科学院院刊,2015, 30(4):477-483. 

重金属土壤污染的危害范文4

关键词:土壤污染危害性修复技术

中图分类号:C35文献标识码: A

当前,土壤污染的研究工作比较侧重与修复运用方面,而对土壤污染的主要来源和危害方面的认识还不充足。经过对国内土壤污染现状和案例的分析与研究发现,土壤污染已经严重影响到人类与动植物的健康,因此,必须加强环保意识,研究与创新土壤污染处理措施。

一、土壤污染的危害与分类

(一)土壤污染的分类

污染土壤在很早时期就发生了。许多工厂建立在城市的周边区域,由于工艺设备比较落后,在经营管理方面也相对粗放,环保设备不足。对此,土壤污染情形比较严重。部分场地的污染物浓度十分高,甚至有些已经超出相关监管标准的几百内,而污染深度有的甚至可以达到低下十几米,部分有机污染物会以非水相的液体方式在地下土层中进行大量聚集,转变为新的污染源。土壤污染依据有关污染物的类型可以分成重金属污染和有机物污染及放射性污染等许多类型。其中,重金属污染一般是钢铁冶炼企业和尾矿企业,另外化工企业中的固体废弃物也是重金属污染,具有代表性的重金属污染物包铅、镉和铬。而石油、化工和焦化等的污染土壤中主要以有机物污染作为主体,一般是有机物污染。而污染物通常是有机溶剂类,例如苯系物和卤代烃等。同时还存在其他有关污染物,比如重金属等。我国以前生产与利用国的有机污染物主要是滴滴涕和六氯苯及灭蚁灵等多种,部分农药虽然已禁止利用许多年,可是土壤中依然残留有机污染物。

(二)土壤污染的危害

1.土壤污染造成事物品质下降

国内许多城市郊区土壤都受到各种程度上的污染,部分地区的粮食和蔬菜及水果等有关食物中含有的重金属严重超标,甚至接近临界值。另外,土壤污染不仅严重影响食物的有关卫生品质,还影响着农作物的其他有关品质。

2.土壤污染造成环境污染

土壤遭受污染之后,在含有高浓度重金属的土壤中比较容易在风力与水力作用下会进入大气与水体中,造成大气污染和地表水污染及地下水污染等,从而严重影响生态系统。

3.土壤污染造成的经济损失

农药与有机物污染及放射性污染等形式的土壤污染所造成的经济损失是无法估计的。单单以土壤的重金属污染作为案例,国内每一年由于重金属污染就造成粮食减产1000多万吨。除此之外,粮食遭受重金属污染每一年也有1200万吨,大致每一年的经济损失就会达到200亿元。

二、土壤污染的深入分析

(一)重金属污染的分析

在所有污染中,其中重金属污染土壤是最为关注的。近些年,国内各个区域血铅超标事故非常严重。重金属污染的土壤对人类和植物造成的危害十分严重。

汞是从收到污染的粮食和鱼肉及蔬菜等进入人体,通常情况下,人体的汞含量在13mg,一旦人们摄入的汞达到130至150mg时,就会造成死亡。而汞在土壤中通常以化合物的方式存在,此类化合物与汞会直接损坏土壤中的微生物活性,造成农作物的根系生产较为缓慢,同时吸收能力下降。

镉一旦被长时间食用,就会严重影响到身体肾小管功能,这样人们就会比较容易出现自发性骨折与软骨症。而镉还会严重影响植物的繁殖与酶的活性,如果含量过多,就会在一定程度上降低植物的生化速度,甚至造成植物死亡。

在铬离子中,三价铬与六价铬对人们造成的伤害是比较大的,其中三价铬能够造成人体畸变与残疾,而六价铬要比三价铬的毒要高许多,人体在吸收过后比较同意出现鼻咽癌与肺癌。另外,土壤中铬含量的增多会造成植物中植株变矮和主茎叶的数量变少,同时开花结果也会延迟,其产量就会明显下降。如果和其他有关重金属形成负荷污染,导致的危害就更大。

人体中铅的含量到某一程度时,就会对人体的肾脏与智力造成伤害,同时对人体骨髓的造血系统与神经系统也会造成一定伤害。长时间食用被铅污染的农作物,也会造成人类畸变与癌变。另外,铅还会造成植物的吸收能力下降,耗氧量进一步增大,严重影响植物的生产,从而引发植物死亡。由于重金属的污染造成粮食减产可以达到数十亿吨,同时重金属污染的土壤也会降低益菌含量,进而导致土壤自身拥有的自净能力降低。目前,国内所有的污染事故,其中重金属污染已经占据40%左右。

(二)其他土壤污染造成的影响

尽管重金属污染已经成为国内土壤污染的主要污染物,可是其他有关污染物造成的伤害也存在。

1.有机污染物

土壤中许多有机污染物都是来自农药或是过度施肥,然而大量利用化学材料,就会导致土壤的原有结构破坏,进而严重影响农作物的质量与产量,在一定程度上加大生产资本。另外,人体长时间处在有机物严重污染的环境下,会发生许多反应,从而引发多种严重疾病,例如癌症和糖尿病等。

2.放射性污染物

放射性污染物虽然不会对植物和土壤造成致命的影响,但用污染了的土壤种植植物或蔬菜,污染物通常是吸附于植物体中进入人体,参与生命循环。进入人体过后会对人体的组织细胞带来一定伤害,从而使人们患上白血病和肿瘤及遗传等方面的疾病的可能性大大增加。

3.病原微生物的污染物

病原微生物如果从外界进入到土壤中就会大量繁殖,从而导致土壤的质量下降,打破土壤结构平衡,造成植物病变或是死亡。另外,如果病原微生物所污染的土壤生产出的蔬菜和水果等被人类所食用,就会直接影响人类的身体健康。

结束语:

综上所述,土壤污染主要来自工业、农业等方面,其中重金属对土壤的污染十分严重。遭受污染的土壤具有隐蔽性与滞后性等特点,所以一定要在最大程度上防止重金属土壤污染的发生。另外,土壤是不可再生的资源,污染了片就少了一片干净的绿地。遭受污染的土壤对植物和人类造成的伤害比较严重,同时污染对植物与人类造成的影响也是不同的,严重的时候甚至会影响人类生命安全。对此必须坚强人们的环保意识,进而降低污染事故的出现。

参考文献:

[1]刘丽敏,杨淑娥.生产者责任制度下企业外部环境成本内部化的约束机制探讨[J].河北大学学报: 哲学社会科学版,2011,(3):79-82.

[2]齐美福,桂双林,刘俭根.持久性有机污染物( POPs)治理现状及研究进展[J].江西科学,2012,26(1):92-96.

重金属土壤污染的危害范文5

关键词:土壤污染现状危害治理措施

一、土壤污染的定义

土壤污染是指进入土壤中的有害、有毒物质超出土壤的自净能力,导致土壤的物理、化学和生物学性质发生改变,降低农作物的产量和质量,并危害人体健康的现象。土壤污染源主要可分为:生活性污染源,生产性污染源和放射性污染源:工业、科研和医疗机构排放的液体或固体放射性废弃物。

二、土壤污染的特点

1、土壤污染具有隐蔽性和滞后性。土壤污染不同于大气、水和废弃物污染等污染比较直观,它要通过对土壤样品进行分析化验和农作物的残留检测来确定。土壤污染从产生污染到出现问题通常会滞后较长的时间,所以土壤污染问题不太容易受到重视。

2、土壤污染具有不可逆转性。受到重金属污染的土壤基本上得需要较长的时间才能降解恢复。

3、土壤污染的累积性。土壤污染不同于被污染的大气和水,不容易扩散和稀释,土壤污染是由于不断的积累而导致超标,土壤污染同时具有很强的地域性。

4、土壤污染难治理性。治理污染土壤通常成本较高,治理周期也很长。土壤污染仅依靠切断污染源的方法是行不通的,需要靠换土、淋洗土壤等方法才能解决问题。

三、当前我国土壤污染的现状与危害

目前,我国部分地区土壤污染非常严重,土壤污染类型呈现多样化,土壤污染途径多,原因复杂,控制难度大。每年由于土壤污染导致的农产品质量安全问题层出不求,严重影响了百姓的身体健康和社会稳定。土壤污染产生的危害主要表现为以下几种:

1、土壤污染导致的直接经济损失严重。当前相当一部分农产品的农药残留超标率高达16%-20%;每年有超过1000万t粮食因土壤污染而减产,造成了巨大的经济损失。

2、土壤污染对人体健康造成危害。土壤污染会使植物在体内积累污染物,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。

3、土壤受到污染后,含有较高重金属浓度的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水和地下水污染以及生态系统退化等多种生态环境问题。

四、导致土壤污染的原因

1、过量施用化肥和农药

化肥及农药的使用能大大提高粮食作物的产量,但是氮、磷等化学肥料的长期大量使用却能破坏土壤结构,造成土壤板结、耕地土壤退化、致使耕层变浅、耕性变差、保水肥能力下降、增加了农业生产成本,影响了农作物的产量和质量。

2、污水灌溉对土壤的污染

使用生活污水和工业废水灌溉农田是导致土壤污染的直接原因之一。重金属、酚、氰化物等许多有毒有害的物质来自于未经处理或未达到排放标准的工业污水,它们会将污水中有毒有害的物质带至农田,在灌溉渠中形成污染带。

3、大气污染对土壤的污染

大气中的氮氧化物、二氧化硫和颗粒物等有害物质,可以在大气中发生反应形成酸雨,通过降水和沉降而落到地面,导致土壤酸化。冶金工业排放的金属氧化物粉尘,由于重力作用会以降尘形式进入土壤中。

4、生物残体和牲畜排泄物对土壤的污染

利用禽畜饲养场的厩肥和屠宰场的废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可导致土壤和水域污染,并通过水和农作物危害人群健康。

5、重金属元素引起的土壤污染

汽油中添加的防爆剂四乙基铅随废气排出污染土壤,造成铅污染;各种大量使用杀虫剂、杀菌剂、杀鼠剂和除草剂导致砷污染;铀矿开采和浓缩、钍矿开采、核实验、核废料处理、燃煤发电厂、磷酸盐矿开采及加工等是土壤辐射污染的来源。

五、我国土壤污染的治理措施

1、施用化学改良剂,增加土壤环境容量,增强土壤净化能力。

将石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂施用到土壤中,加速有机物的分解,使重金属在土壤中固定,促使重金属在土壤及土壤植物体的迁移能力降低,并转化成为难溶的化合物,减少农作物的吸收,以减轻重金属对土壤中的毒害。

2、强化污染土壤环境管理与综合防治,大力发展清洁生产。

选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复;加强土壤污灌区的监测和管理,科学地进行污水灌溉;了解水中污染物的成分、含量及其动态,避免带有不易降解高残留污染物随机进入土壤;增施有机肥,提高土壤有机质含量;大力推广和发展清洁生产。

3、改变耕作制度,实行翻土和换土。

要采取铲除表土和换客土的方法来改变污染严重的土壤,对于轻度污染的土壤,采取深翻土或换无污染客土的方法。

4、采用农业生态工程措施

在污染土壤上繁殖非食用的种子、种植经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物吸走或降解土壤中的污染物质,从而达到净化土壤的目的。

重金属土壤污染的危害范文6

关键词:矿产资源;土壤污染;陕西省

矿产资源指经过一系列地质活动形成的,赋存于地下或地表,可供人类开发利用的矿物或元素的集合体。矿产资源作为社会发展的重要物质基础,在现代社会其利用已经遍布生活的方方面面,但是矿产资源的勘探、开发和利用过程中对土壤造成了严重的污染。土壤作为人类赖以生存的基础,一旦污染将严重威胁人类的生命健康。据统计,我国因工矿业、农业等人类活动造成了全国16.1%的土壤或轻或重受到污染[1]。陕西省因其独特的地理位置,含有各种不同类型的地质构造带,成矿条件良好,矿产资源丰富[2]。根据1999年的统计结果,陕西省共发现矿产资源137种,其中金属矿产包括:黑色金属5种、有色金属10种、贵金属2种、稀有以及放射性矿产10种。煤、石油、天然气的保有储量分别位居全国的第四位、第五位、第四位。矿产资源分布与土壤污染具有紧密的联系,往往矿产资源分布区,也是土壤严重污染分布区[3]。

1陕西省矿产资源的分布特征

陕西省位于我国西北地区,地理位置独特,从南至北分为陕北黄土高原、关中盆地和陕南秦巴山区,地跨扬子、华北、和秦岭3个构造单元,区内包含各种地貌类型,地质构造复杂,地层发育齐全,构造活动强烈,具有良好的成矿条件[4]。能源矿产主要以煤、石油以及天然气为主。煤矿主要分布在渭北地区,特别是铜川、韩城、合阳以及澄城一代,素有渭北“黑腰带”之称。石油主要分布在陕北鄂尔多斯盆地,包括靖边、定边、延长、延川、字长等县;天然气主要分布在靖边县与衡山县[5]。非能源矿产主要分布在陕西中部和陕南地区,主要包括4个矿产资源分布区。①小秦岭矿产资源开发区,主要分布在渭南市、潼关、华阴、华县、临潼以及蓝天等县市,区内矿产包括以金为主的贵金属矿产和以钼为主的有色金属矿产。②山柞镇旬矿产资源分布区,主要分布在山阳、柞水、镇安、旬阳4地,区内分布有大量铁矿和钒矿。③凤太矿产资源分布区,主要分布在凤县和太白县,有铅、锌、金等金属矿产。④汉中矿产资源分布区的黑色金属矿产齐全,包括铁、锰、钛以及金、银、铅等矿产[6]。

2土壤污染的分布特征

根据陕西省矿产资源的分布特点,土壤污染可以分为3个区:陕北石油污染地区、渭北金属矿产污染区(主要是小秦岭地区)以及城市周边和工业分布区。

2.1陕北石油污染区

陕北地区以黄土为主,黄土对石油具有较强的吸附拦截能力,是石油污染的主要宿体之一[7],石油在黄土中的传播分为点源传播和非点源传播,但以点源传播为主[8]。进入土壤的石油主要富集在20~30cm处,石油烃大部分是大分子,黏附力较强,会在土壤中形成一层油膜,降低土壤的通透性,影响土壤作物根系的呼吸作用,导致根系腐烂,同时石油污染物可以被植物吸收进入果实,污染粮食作物。陕北地区历史上存在私人开采石油现象,在私人开采过程中,因设备陈旧、不注意保护环境、追求利益最大化,一般采用掠夺式开采方式,造成土壤石油污染严重。李小利等人在2009年通过采样对比私人开采地区巴家河油区和国有延长燕沟油田的土壤污染情况,发现两处油田附近都存在石油土壤污染,私人开采地区的土壤石油污染更严重[9]。

2.2渭北重金属污染区

渭北地区分布有大量的煤矿和金属矿产,这些矿产在开采的过程中会造成不同程度的重金属污染。在开采煤矿和金属矿产的过程中,选矿、洗煤等会产生大量含有重金属离子的矿山酸性废水,堆积的尾矿经过雨水淋漓重金属离子也会被释放出来,随着河流水系扩散,会污染河流生态环境以及河岸的土壤。矿产资源开采过程中首先引起水体重金属污染,然后污染物通过水体进行传播进而污染流域内的土壤。陕西省矿产资源开采造成的环境污染最典型和最严重的是小秦岭潼关金矿区。1990年,潼关区域大气汞浓度监测全部超标,最大超标38倍。2002年,潼关县蒿岔峪河水上段的铅、汞、铁超过Ⅰ类水标准;下游河段铅、汞分别超过Ⅳ类水标准[10]。农田土壤主要受到Hg、Cd、Pb的污染,超标率分别为89.8%、57.1%和12.2%,研究区83.6%的土壤已经受到不同程度的重金属污染。小麦和玉米中3种重金属Hg、Cd、Pb的超标率分别为39.1%和44.4%,39.1%和33.3%,47.8%和33.3%[11]。在研究区农田土壤中,Hg、Cd和Pb的污染严重。综合污染指数分析表明,研究区受污农田土壤面积达83.6%,重污染面积达30.6%。农田土壤Hg的生态危害最大,Cd的生态危害次之,Pb只具有轻微的生态危害。从潜在生态危害指数来看,有55.1%的土壤样品具有中等及更强的生态危害,有44.9%的土壤样品具有轻微的生态危害。生态危害较强的农田土壤主要分布在南部。小麦和玉米均受到Hg、Cd、Pb的污染,并且小麦的污染较玉米严重。经相关性分析得到,小麦、玉米籽粒中的重金属含量与土壤中重金属含量之间仅在Hg元素表现出显著的相关性。潼关县金属矿冶炼厂周边农田也受重金属污染严重,在冶炼厂区的0~120cm内,土壤中的Cd含量超出国家土壤质量三级标准,Cd浓度为7.91~361.76mg/kg。矿区土壤中的Cd、Hg、Pb污染严重,堆料场附近和生产区的Zn含量超出国家土壤质量三级标准,周边农田中的Cd含量较高,超出国家三级标准[12]。

2.3城市周边和工业分布地区

城市土壤是城市环境的重要组成部分,其污染主要来自工业三废、城市生活垃圾以及汽车尾气排放等。产生的重金属污染物进入土壤中,会导致土壤的重金属污染日益严重。以西安市为例,城市路边土壤中Co、Cr、Cu、Mn、Ni、Pb和Zn的平均含量均高于陕西省土壤的背景值,其中Cu、Pb和Zn严重超标,Co和Cr次之,As、Mn和Ni轻度超标。其中,As、Mn和Ni主要有自然源和交通源两种,Cu、Pb和Zn主要来自交通源,Co和Cr主要来自于工业源[13]。同时,工业分布区土壤也容易受到污染。宝鸡市作为西北电力的重要枢纽,电厂周边土壤受重金属污染严重[14]。附近农田土壤中Cu、Pb、Zn、Co、Cr、Mn、Ni和V的含量均高于陕西省表层土壤的背景值[15]。而且污染物会进入河流,并污染河流沉积物。在渭河宝鸡河段沉积物中,Zn、Co、Cd和Hg的平均含量均高于陕西省土壤元素的背景值,其中Cd和Hg分别是陕西省土壤元素背景值的4倍和16倍[16]。