卫星遥感技术的应用范例6篇

卫星遥感技术的应用

卫星遥感技术的应用范文1

关键词:卫星遥感技术;城乡规划;建设监察

中图分类号:TU984 文献标识码: A

一、遥感卫星系统组成

遥感卫星系统由卫星数据获取系统和数据反演系统组成,如图1所示。在遥感数据获取系统中完成的是遥感的正演过程,在反演系统中完成的是反演过程。卫星数据获取系统包括载有遥感器的遥感卫星系统和用于遥感数据接收和处理的地面系统,遥感卫星系统的输入是载有景物(实体)信息的电磁波,输出是景物包含的有关信息。这些信息再送入遥感数据反演系统以获取有关知识,以满足卫星遥感最终用户的任务需求。

图1遥感卫星系统组成

二、影响遥感卫星系统应用效果的要素

目前,遥感卫星系统在取得显著成就的同时,也面临着许多问题。集中表现在:一方面大量的遥感数据仍未得到真正有效的利用,另一方面遥感应用所需求的有效信息又十分匮乏。这两者实际上是从不同侧面反映了遥感数据应用的有效性问题,为此有必要从遥感信息链的角度分析影响遥感卫星系统应用效果的关键要素,指导后续遥感卫星系统应用效能的提升。

1、卫星平台要素

承载能力、供电能力、姿态稳定、轨道保持、微振动抑制、机动能力、温度控制等直接影响遥感卫星载荷的性能和应用效能。

2、有效载荷要素

安装在卫星平台上对地面或天体目标进行感知的精密光学或电子仪器。与卫星平台、星地链路都存在紧密的耦合关系,直接影响遥感卫星数据的质量。

3、传输链路要素

主要需考虑遥感卫星信号传递响应和衰减、大气影响、空间电磁环境影响、信息安全、信息压缩解压等影响因素。

4、地面系统要素

一般由地面数据接收系统、地面处理系统和应用系统组成。接收、处理和应用受到卫星平台、载荷、星地链路的综合影响,系统指标通常从服务能力、服务效率和应用精度等方面衡量。

上述各环节紧密耦合、相互作用,对遥感卫星应用效能产生直接影响。除此以外,在遥感卫星系统顶层设计时,还需要重点关注卫星系统、地面系统和应用系统之间技术指标的科学合理分配,进行多方案比较以实现更好的优化。目前遥感卫星系统顶层设计时,往往特别关注的是系统所获取的遥感数据的质量,但遥感卫星系统的最终产品是从应用系统输出的,因此需要特别关注遥感卫星系统输出产品质量与获取的遥感数据质量的关系,分清各自的贡献,使系统最终输出产品满足应用需求。

三、卫星遥感技术在城乡规划建设的监察流程

1、数据收集

数据方面大多是获得监察城市的高分遥感数据、城市整体规划图的城乡规划基础数据以及地形图等相应的辅助数据,来实现后续处理的需求,把所获得的数据通过整理后创建基础数据库。

1.1遥感数据要求

遥感数据的原则应当包含多光谱数据,最好还具备可见光波段以及近红外波段。遥感数据应当通过初步辐射校正以及几何校正。

1.2规划数据需求

规划基础数据通过电子媒介供应,包含图纸、文本,而图纸是通过DWG各式进行提供,也存在一些JPG以及TIFF格式,所提供的图纸要符合一定分辨率的需求。

1.3地形图数据的需求

地形图数据具备以下标准:比例尺>1∶10000;原则使用地方坐标系。如果收集不到地形图,可以使用通过坐标配准的高分辨正射遥感影像取代。

2、数据处理

数据处理包含了对高分遥感数据的几何校正、全色以及多光谱数据之间的配准、融合以及镶嵌,并且还包含了遥感数据以及规划数据之间的配准。而几何纠正透过计算机或者人工目测解释的方法找到影响地面控制点,通过多项式纠正的模型给遥感数据执行几何纠正。

配准,影响配准是把相同区域中的一个影像对另一个影像的校准,以便可以让两个影响力的同名像元配准。配准的误差通常要在0.5个像元中融合。把相同目标或者场景通过不同传感器获取,或者通过相同传感器用不同的成像形式,或者在不同的成像时间获取不同影像,融合成一个影像,在保证多光谱影像辐射信息时,提升影像的空间分辨率的遥感影像处理方式。

镶嵌,把被镶嵌图像相互间的几何位置对准,令其变成完整的图片,将多余的行、列像元去掉的过程。

3、信息归类

信息归类主要是使用不同的方法相结合的方式将城乡建设现状表现出来。运用的方式包含了源于结合规划图的信息分类法的自动提取方式以及源于目测解释的人工提取方式。而结合规划图的信息分类方式。使用结合规划图的自动归类方式将高分遥感数据的地物大类状况提取出来,然后使用目测解释对无法辨认的地物大类和地物大类下的各种小类别进行选取,最后获得土地利用现状的矢量数据,创建城乡建设现状的资料库。

4、变化监察

变化监察也使用了自动以及人工相融合的方式进行信息的提取。自动变化检查应用了多属性差值扩散变化监察的方式,人工提取变化监察信息主要通过目测解译方式进行,提取变化图斑,创建城乡建设变化的专用资料库。

5、业务应用

首先,城市规划监察。在提取变化图斑以后,要对变化图斑的属性进行核实。变化图斑的属性有变化前后的用地类型、涉及城市规划强制性内容、审批状况、处理方法、处理状态等。通过处理方法的差别,对变化图斑进行不同程度的审核,透过监察的基本状况,反馈的核查结论以及实地核查状况,透过汇总进行整理与分析,构成城市规划监察报告。其次,城市发展监察。城市发展监察主要通过多时相的城市土地利用现状的矢量图,以城市建成区面积、城市发展动向以及城市空间演替三方面指标为根据,对城市发展状况进行监察,把城市发展监察结论同过去所有城市规划监察结论进行整合,以此来获得年度监察报告。

四、遥感技术在城乡规划建设监察中的作用

1、城市用地规模的监察

在2010年―2013年,对我国36个城市建设用地面积进行监察后发现,所有监察城市在上一年度城市建设用地面积上都有所增长,而增长的方式主要呈现出均匀增长、单一方向增长以及城市规划建成区内部增长的几方面。城市建设用地的增长大多在城市规划建成区区域的控制范围之内,展现出内部增长的形势,由于城市总体规划确定的规划建城区面积较大,所以在城市扩张方面依旧需要较大的发展空间。

2、城市整体规划强制性内容的监察

在2010年―2013年期间,从我国36座城市的动态监察中可以看出,存在城市绿线内容的监察、城市蓝线内容的监察、城市黄线内容的监察及城市紫线内容的监察。

结束语

我国城乡规划正步入高速发展阶段。可是因为当前的城市规划理论与技术、计划经济形势下的城市政府行为和盲从的城市扩张及改造运动,令我国的程式化高速发展出现了许多问题。尤其是目前我国土地征用方式、国家当前的税制制度、企业改制转型方式、市场的定位发展等等重大政策的调控方面都会对城市规划的内容以及操控的方法有所影响。因为市场准入准则所提倡的公平开放竞争环境产生了不同的利益纷争,而且由于竞争的逐渐激烈,令竞争的方式也产生了各种变化,这也会促使城乡规划管理的要求逐渐提高。而且,因为城乡规划的重心也从过去的过于注重物质实体联系到目前的意识到社会、经济、政治以及空间相互联系对于城乡规划过程的重要性。所以,对城乡规划职能尤其是监督职能进行再次审视与定位,显得尤为重要。

参考文献

[1]王旭辉.遥感技术及在城市国土规划中的应用[J].上海国土资源,2014,01:88-91.

[2]胡艳,袁超,陈静.国产卫星遥感的城乡规划综合应用平台研究及示范[J].遥感信息,2014,01:55-60.

卫星遥感技术的应用范文2

【关键词】遥感技术现状趋势商业化

众所周知,近十年来全球空间对地观测技术的发展和应用已经表明,遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。

一、遥感信息技术基础

遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线结目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。这是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。从上个世纪六十年代提出“遥感”这个词,到1972年美国陆地卫星计划发射了第一颗对地观测卫星,经过几十年的发展,遥感技术已经广泛地应用在军事、国防、农业、林业、国土、海洋、测绘、气象、生态环境、水利、航天、地质、矿产、考古、旅游等领域,影响了人类生活的方方面面,它为人类提供了从多维和宏观角度去认识世界的新方法与新手段,遥感技术能够全面、立体、快速有效地探明地上和地下资源的分布情况,其效率之高是以前各种技术无法企及的。

二、我国遥感技术的应用现状

总体上说,遥感技术的应用已经相当广泛,应用深度也不断加强。目前,在地学科学、农业、林业、城市规划、土地利用、环境监测、考古、野生动物保护、环境评价、牧场管理等各个领域均有不同程度的应用,遥感技术也已成为实现数字地球战略思想的关键技术之一。

1.到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。

2.我国先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等部级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接21世纪空间时代和信息社会的挑战,打下了坚实的基础。

3.两大系统建立完成。一是部级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是部级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有部级遥感信息服务体系的国家之一。我国遥感监测的主要内容为如下三方面,分别是对全国土地资源进行概查和详查、对全国农作物的长势及其产量监测和估产、对全国森林覆盖率的统计调查。

三、遥感技术发展的作用及局限

遥感技术具有快速获取信息以便正确、有效、高速地进行相关决策。比如,灾害遥感技术能基于灾害遥感数据,更加客观地、全面地评估受灾前和受灾期间的地面情况,为灾害重建工作提供可靠的科学依据。遥感技术在快速掌握准确、全面、客观、直观的信息的基础上具备以下作用:

1.在灾害方面,遥感技术具有较强的预警、预测功能:对潜在灾害,包括发生时间、范围、规模等进行预测,为有效防灾做准备;同时,遥感监测技术具有实时监测各种灾害,特别是洪水、干旱、地震等重大灾害发生情况;另外,灾害遥感技术是灾后重建工作的重要科学依据,灾害遥感技术准确的灾情评估是灾后重建最主要的依据之一。

2.遥感技术为国民经济可持续发展提供科学的决策依据。中国目前经济发展和人口增长对国家资源环境的影响程度超过了历史上的任何时期。对国土资源进行动态监测是我国政府一贯重视的问题。

3.遥感技术可很好地辅助地质矿产资源的调查。中国的矿产资源丰富,遥感技术的应用前景十分广阔,遥感技术在区域地质填图方面的应用已比较成熟,并取得了很好的效果。

4.利用遥感技术可以进行农作物估产和林业资源调查。我国是农业大国,粮食问题是我国政府非常重视的问题。目前利用气象卫星进行农作物估产的应用已得到了普及和深化,并形成了一种业务化的手段,估产对象也从冬小麦扩展到玉米、水稻等其他作物。

由于当前卫星遥感技术本身的特点,因此遥感技术、不同的遥感卫星在各方面的应用还存在着一些不足。

1.卫星遥感现主要应用还集中在灾后评估和应急反应,灾害预测应用较少,而且因高分辨率数据获取困难,提供的空间信息因比例尺不够大,故仅能为宏观救灾和灾情评估提供参考。

2.由于数据提供部门和业务使用部门联系不够紧密,限制了空间技术发挥应有作用的能力。

3.遥感技术主要应用于地表的自然灾害的监测、预警、预报和灾害评估,对于由地表以下灾害及地底驱动引发的灾害无法有效地监测、预警和预报。

四、遥感技术的发展趋势

随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。

1.遥感影像获取技术越来越先进。

(1)随着高性能新型传感器研制开发水平以及环境资源遥感对高精度遥感数据要求的提高,高空间和高光谱分辨率已是卫星遥感影像获取技术的总发展趋势。遥感传感器的改进和突破主要集中在成像雷达和光谱仪,高分辨率的遥感资料对地质勘测和海洋陆地生物资源调查十分有效。

(2)雷达遥感具有全天候全天时获取影像以及穿透地物的能力,在对地观测领域有很大优势。干涉雷达技术、被动微波合成孔径成像技术、三维成像技术以及植物穿透性宽波段雷达技术会变得越来越重要,成为实现全天候对地观测的主要技术,大大提高环境资源的动态监测能力。

(3)开发和完善陆地表面温度和发射率的分离技术,定量估算和监测陆地表面的能量交换和平衡过程,将在全球气候变化的研究中发挥更大的作用。

(4)由航天、航空和地面观测台站网络等组成以地球为研究对象的综合对地观测数据获取系统,具有提供定位、定性和定量以及全天候、全时域和全空间的数据能力,为地学研究、资源开发、环境保护以及区域经济持续协调发展提供科学数据和信息服务。

2.遥感信息处理方法和模型越来越科学。

神经网络、小波、分形、认知模型、地学专家知识以及影像处理系统的集成等信息模型和技术,会大大提高多源遥感技术的融合、分类识别以及提取的精度和可靠性。统计分类、模糊技术、专家知识和神经网络分类有机结合构成一个复合的分类器,大大提高分类的精度和类数。多平台、多层面、多传感器、多时相、多光谱、多角度以及多空间分辨率的融合与复合应用,是目前遥感技术的重要发展方向。不确定性遥感信息模型和人工智能决策支持系统的开发应用也有待进一步研究。

3.推动3S一体化发展。

计算机和空间技术的发展、信息共享的需要以及地球空间与生态环境数据的空间分布式和动态时序等特点,将推动3S一体化。全球定位系统为遥感对地观测信息提供实时或准实时的定位信息和地面高程模型;遥感为地理信息系统提供自然环境信息,为地理现象的空间分析提供定位、定性和定量的空间动态数据;地理信息系统为遥感影像处理提供辅助,用于图像处理时的几何配准和辐射订正、选择训练区以及辅助关心区域等。在环境模拟分析中,遥感与地理信息系统的结合可实现环境分析结果的可视化。3S一体化将最终建成新型的地面三维信息和地理编码影像的实时或准实时获取与处理系统。

4.遥感技术应用逐渐商业普及化。

任何一项高新技术,它能否形成产业,或者它能否作为一种强大产业的必要组成部分,这是它能否长久生存发展下去的重要标志之一。一般说来,只有形成产业之后,有了雄厚的物质条件,这项技术才得以持续发展。通常,在高新技术发展的初期,总是通过商业化活动来加速其产业的形成过程。

遥感技术的应用是极其广泛的,包括凡是涉及地球科学的各门类的学科和技术种类,遥感技术都能为它们提供信息。这种广泛性必然会使对遥感数据的需求用户范围变广,因此除了社会公益型用户外,还存在部分商业应用型用户。虽然这些商业应用型用户由于遥感卫星正处于产业化初期,市场尚未形成规模的原因,目前数量较少,但随着将来技术的进步,商业化的发展,这部分的用户肯定会逐渐增多,最终成为用户群体中的主要成员。

五、小结

遥感技术经过几十年的发展和应用,尤其是近几年的突飞猛进,已经为其未来朝着商业化方向迈进奠定了坚强稳固基础――包括可靠的技术基础以及广阔的应用基础。只要国家在政策方面给予大力支持,使商业化发展在经营理念的指引下保证正确的方向,加上科技工作人员的勤奋努力使技术不断创新,我们坚信今后遥感技术的发展步伐会加快,遥感技术的作用必将能充分发挥。

参考文献

[1]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.

卫星遥感技术的应用范文3

遥感技术是指从远距离感知目标反射或自身辐射的电磁波、可见光、红外线等信息,对目标进行探测和识别的技术。

人类通过大量实践,发现地球上每一个物体都在不停地吸收、发射和反射信息和能量,其中有一种是人类已经认识到的形式就是电磁波,并且发现不同物体的电磁波特性是不同的。遥感技术就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。

二、遥感技术的分类

(一)按搭载传感器的遥感平台分类

1.地面遥感,是指把传感器设置在地面平台上。如车载、手提、固定或活动高架平台等。

2.航空遥感,是指把传感器设置在航空器上。如气球、航模、飞机及其它航空器等。

3.航天遥感,是指把传感器设置在航天器上。如人造卫星、宇宙飞船,空间实验室等。

(二)按遥感探测的工作方式分类

1.主动式遥感,即由传感器主动地向被探测的目标物发射一定波长的电磁波,然后收集从目标物反射回来的电磁波。其主要优点是不依赖太阳辐射,可以昼夜工作;而且可以根据探测目的不同,选择不同的波段和发射方式。比如,雷达和激光器。

2.被动式遥感,即由传感器直接收集目标物反射太阳光的反射或目标物自身辐射的电磁波。比如,常用的摄影机和多光谱扫描仪,热红外扫描等。

(三)按遥感探测的工作波段分类

紫外遥感,是指利用紫外波段的大气窗口进行探测的遥感技术。波长在0.01-0.4um。紫外遥感在地质调查中有特别重要的应用,主要用于探测碳酸盐岩分布。碳酸盐岩在0.4μm以下的短波区域对紫外线的反射比其它类型的岩石强。另外,水面飘浮的油膜比周围水面反射的紫外线要强烈,因此也可用于油污染的监测。

可见光遥感,应用比较广泛的一种遥感方式,波长为0.4--0.76μm的遥感技术。通常以摄影、摄像或扫描方式成像,是目前应用最普遍的遥感技术。可见光摄影遥感具有较高的地面分辨率,但只能在晴朗的白昼使用。

红外遥感,又分为近红外或摄影红外遥感,波长为0.7~1.5微米,用感光胶片直接感测;中红外遥感,波长为1.5~5.5微米;远红外遥感,波长为5.5~1000微米。中、远红外遥感通常用于遥感物体的辐射,具有昼夜工作的能力。常用的红外遥感器是光学机械扫描仪。

微波遥感,对波长 1~1000毫米的电磁波(即微波)的遥感。微波遥感具有昼夜工作能力,但空间分辨率低。雷达是典型的主动微波系统,常采用合成孔径雷达作为微波遥感器。

多光谱遥感,利用几个不同的谱段同时对同一地物(或地区)进行遥感,从而获得与各谱段相对应的各种信息。将不同谱段的遥感信息加以组合,可以获取更多的有关物体的信息,有利于判释和识别。常用的多谱段遥感器有多谱段相机和多光谱扫描仪。

三、遥感技术的特点

1.探测范围广、采集数据快

遥感卫星居高临下,视野开阔,侦察范围广,获得情报多。比如,卫星视角为20度的情况下,从3000米高度的飞机上可看到1平方千米的面积,而在300千米高度的卫星上看,可看到10000平方千米的面积。在近地轨道上的侦察卫星,每秒可以飞行七八千米, 绕地球一周只需一个半小时左右,一个比较长寿命的卫星,可以在太空持续工作两年以上,从而保证了侦察的及时性和连续性。卫星一天可绕地球飞几十圈,只要运行的轨道合适,几乎可以看遍全球。如果发射几颗卫星,构成卫星侦察网,可以在某些地区实施不间断几乎无遗漏的监视。

2.限制少,精度高

利用卫星进行侦察安全可靠,合理合法,有超越国境的自由,不存在侵犯领空、领海和受防空武器威胁的限制。国际公认离开地面高度100千米以上的空间,不属于地面国家的住宿范围。宇宙空间不受国界限制,卫星可以任意出入。因此,侦察卫星比任何高空侦察机有更大的安全性。同时,也不受地形、气象等条件的限制。同时,利用遥感卫星进行侦察,获得的图像清晰、准确、精度高。海湾战争中,美国"曲棍球"侦察卫星装有图像探测器,由雷达发射微波信号到地面,经回收识别后再反射到太空。它的活动不受云雾和夜暗的限制,可识别地面约0.3-1米的目标,尤其适用于干燥的沙漠地区拍摄卫星照片。它能分辨出坦克种类,计算出坦克、帐篷、甚至人员的数量。

3.信息量大、种类多

根据不同的任务,遥感技术可选用不同波段的遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线、红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。例如,地面深层,水的下层,冰层下的水体,沙漠下面的地物特性等。科索沃战争中,以美国为首的北约,在空袭南联盟的行动中,美国和欧洲至少使用15-20种不同的卫星。

四、遥感技术在武警部队遂行任务中的应用

(一)在执勤处突中的应用

随着我国经济建设的高速发展,武警部队遂行任务的地理环境变化非常迅猛,目前许多地区地图多数都比较陈旧,现势性较差,部队使用困难。传统的地理保障形式是以基础信息为主,不能满足部队行动的特殊保障要求,无法更好地为指挥人员提供决策咨询服务。武警执勤处突需要特殊的地理信息保障。部队行动时对点状、线状地理目标的信息要求更多、更具体。其中主要的道路、周边地形、制高点、市区街道、地下通道与管网、广场、桥梁、隧道等要素,对部队集结、机动及兵员和后勤保障物资的运输影响很大,必须重点保障。遥感卫星围绕地球运转,能及时获取任务区域的各种最新地形资料,根据不同的任务,遥感技术可选用不同波段的遥感仪器来获取信息。利用不同波段对物体不同的穿透性,还可获取地物内部信息。科索沃战争中,以美国为首的北约,在空袭南联盟的行动中,美国和欧洲至少使用15-20种不同的卫星。

卫星遥感技术的应用范文4

[关键词]测绘卫星 “资源三号”卫星 高分辨率对地观测系统 发展思路

中图分类号:P2 文献标识码:A 文章编号:1009-914X(2014)46-0120-01

1 引言

随着航天技术、计算机技术、通讯技术、信息处理技术的进步,现代空间遥感技术得到了前所未有的发展,高分辨率对地观测系统已成为地理空间信息获取的重要手段。基于全球对地观测空间信息的获取、空间信息控制权的分享、地理信息产业的巨大商机等全球战略思想考虑,世界各国纷纷发展本国的测绘卫星或者具有测绘能力的卫星,为本国的空间信息基础设施建设和全球化战略服务。从广义上讲,具备立体测图或者高程测量能力的卫星都可以称为测绘卫星。从狭义上说,目前一般把能从不同视角获取同一地区影像的光学遥感卫星称为测绘卫星。在近半个世纪的发展进程中,测绘卫星从最初的胶片返回式卫星,发展到目前的传输型卫星;从框幅式相机,发展到现在的单线阵、双线阵甚至三线阵航天返回与遥感相机;民用测绘卫星的空间分辨率从上百米提高到当前0.41m,时间分辨率和光谱分辨率也不断提高;测绘卫星的种类日趋完善,从光学卫星发展到干涉雷达卫星、激光测高卫星、重力卫星、导航卫星等;卫星测绘应用技术也不断进步,从过去有控制测图,发展到稀少控制点测图甚至无控制测图,从单机测图发展到协同无缝测图;测图精度也日益提高,从满足1∶250000地形图制图发展到满足1∶5000地形图制图;测绘应用也日益广泛,应用范围从军用向军民共用、从限于本国到全球共享,从单一的测绘产品生产扩展为全球各行业地理信息的获取与更新等。卫星传感器技术与测绘应用技术的巨大进步,为国民经济和社会的发展做出了重要贡献。

2 国外卫星测绘应用现状

近年来,地理空间信息产业迅猛发展,为测绘卫星的发展提供了广阔的空间。国外商业测绘遥感卫星如雨后春笋般涌现出来。从光学传感器类型上可以分为面阵传感器和线阵传感器,线阵传感器又分为单线阵、多线阵。但面阵传感器由于像元数受到较大的限制,地面覆盖宽度和像元分辨率的矛盾很难统一,尤其是基高比不好,因此这类卫星的发展受到一定限制。目前,高分辨率测绘卫星主要以线阵传感器为主,国外主要光学线阵测绘卫星的基本参数与测绘性能指标如表1所示。从表中可以看出,根据各国发展的重点、科技发展水平以及不同的地面应用需求,传感器设计也不一样。卫星立体定位精度特别是无地面控制条件下的几何定位精度是评价这些测绘卫星性能的重要指标之一。然而,卫星几何定位精度除与自身传感器参数(如分辨率)有关外,还与卫星基线误差、姿态误差、像点量测误差、相机主距、畸变等因素有关。

2.1 单线阵 CCD 传感器卫星及其测绘应用

为了获取立体影像,单线阵CCD传感器卫星一般采用轨道回归或左右侧摆成像,即同轨立体成像方式和异轨立体成像方式。

2.2 多线阵CCD传感器卫星及其应用

为了降低了卫星立体成像的成本,单个卫星平台可搭载多台相机。当前测绘卫星很多采用多线阵或多相机成像方式实现同轨立体成像能力,比较有代表性的有法国SPOT-5卫星、印度CartoSat-1卫星、德国MOMS-2P、日本ALOSPRISM等。目前,三线阵立体成像思想不仅获得了理论的证明,还成功地实践在测绘卫星上,并越来越显示出其独特的优势。

3 国内卫星测绘发展及其应用现状

3.1 国内遥感卫星现状“资源一号”卫星(CBERS)是我国第一代传输型地球资源卫星,星上3台遥感相机可昼夜观测地球,利用高码速率数传系统将获取的数据传输回地球地面接收站,经加工、处理成各种所需的图片,供各类用户使用。CBERS-02星是CBERS-01星的备份星,卫星的功能、组成、平台、有效载荷和性能指标的标称参数相同。CBERS-02B星也已发射成功。其中分辨率为2.36m高分辨率相机,获取了大量高分辨率卫星影像。

4 我国测绘卫星技术未来发展思路

“资源三号”测绘卫星的成功应用,为解决我国基础地理信息资源战略性短缺起到了非常重要的作用而现阶段我国测绘卫星数量少,类型单一,与国家发展的迫切需求仍不相适应。根据国家测绘地理信息局关于《测绘部门航天发展十二五规划》要求,在今后的10至15年内,除了发射“资源三号”后续星外,我国还将考虑陆续发射一系列测绘用途的卫星包括光学立体测图卫星、干涉雷达卫星、激光测高卫星、重力卫星、导航定位卫星等。针对我国测绘卫星未来的宏伟规划,需要考虑如下发展思路:1)加强高分辨率测绘遥感卫星关键技术的攻关。加紧开展卫星轨道和姿态的精密测定技术,研究星敏和陀螺高精度组合定姿技术,研究高精度测绘相机的制造和测试技术,研究实时和事后的高精度几何标定技术,形成卫星高精度几何处理技术体系。2)加强测绘卫星数据的应用研究。测绘是地理信息行业的基础,研究卫星影像数据的区域网平差、平面和立体测图、影像数据并行化处理、以及影像数据的网格化分发服务和应用。并结合各行业的典型示范,加强高分辨率测绘遥感卫星数据在各个行业的应用,从而保证在轨卫星资源的充分发挥。3)坚持政府主导,与产业化相结合的道路。我国高分辨率遥感对地观测系统应坚持走政府主导,并与产业化相结合的道路。在现阶段,卫星的研制与发射需要主要由政府投入,而卫星数据的接收、处理和应用,应鼓励走市场化道路,争取尽快形成面向国内外市场的我国卫星遥感运行系统。

参考文献

[1] 胡莘,曹喜滨.三线阵立体测绘卫星的测绘精度分析[J].哈尔滨工业大学学报,2008,40.

卫星遥感技术的应用范文5

天眼越来越好

遥感卫星也叫对地观测卫星,有光学成像卫星和雷达成像卫星2种,前者携带可见光、红外和多光谱等遥感器,最大优点是分辨率高;后者携带合成孔径雷达等遥感器,最大优点是可以全天候工作。

众所周知,评估遥感卫星性能的一个重要指标就是分辨率,它包括空间分辨率、时间分辨率和光谱分辨率等,其中空间分辨率最令人关注,其指标对卫星应用的深度和广度具有重要影响。空间分辨率一词来源于光学,是指2个点光源彼此接近到恰能被分辨出的最小距离,能显示遥感卫星分辨目标的能力。具体说来,它是指能从遥感卫星照片上辨别地面目标的最小尺寸,例如,如果某遥感卫星能够辨别的最小目标为2米,则这种遥感卫星的分辨率就是2米。

随着经济建设和社会发展,人类对遥感卫星的空间分辨率要求越来越高,所以高分辨率遥感卫星的发射数量和研制国家正日益增多。近年来,高分辨率遥感卫星的发射数量已占遥感卫星发射总数的约41%,而且其占有比例有继续增加的趋势,因此可以认为,人类对地观测已进入高分卫星时代。这些高分辨率遥感卫星已广泛用于精确制图、城市规划、土地利用、资源管理、环境监测、地理信息服务等领域,成为国家基础性、战略性资源。

对于采用光学成像的遥感卫星来讲,其运行轨道越高,分辨率就越低,所以,高分辨率遥感卫星通常运行在近地轨道,有时甚至采用临时性降低轨道高度的方法来取得短期的更高分辨率的图像,以满足特殊需要。另外,星载相机的焦距越大,分辨率越高。

对于采用雷达成像的遥感卫星来讲,可工作在略高的轨道上,但这就需要雷达成像卫星自身能提供足够高功率的雷达信号。提高其分辨率的方式主要有两种:一是采用短波长;二是增加天线口径。为此,可以提高雷达波的频率,缩短其波长,但当频率增加到一定程度时,大气对雷达波的衰减和吸收特性就会表现得非常明显,从而影响雷达的正常工作;同样,雷达的天线口径也不可能无限增加,因为加大雷达口径不仅会增加工艺难度和成本,而且对发射卫星的运载器提出了新要求。为此,提出了合成孔径雷达的概念。合成孔径雷达是利用雷达与目标的相对运动来把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达。

军用领跑高分

高分辨率遥感卫星在军用和民用方面都有广泛的用途。从原理上讲,军用遥感卫星与民用遥感卫星大同小异,主要差别是在使用的谱段和对地面分辨率的要求不同。军用遥感卫星主要在可见光或近红外谱段成像,分辨率优于1米,因此,军用遥感卫星大部分都是高分辨率卫星,只有少数用于普查的军用遥感卫星因运行轨道较高,以便提高时间分辨率,但空间分辨率会稍低;民用遥感卫星主要在多光谱成像,以便识别地面各种特征,其分辨率有高有低。

在军用高分辨率光学成像遥感卫星方面,美国锁眼12号卫星最牛,它采用了大面阵探测器、大型反射望远镜系统、数字成像系统、自适应光学成像技术、实时图像传输技术等,镜头口径3米,焦距27米,分辨率达0.1米。法国太阳神2号A、2号B卫星分辨率达0.5米,其军民两用光学成像遥感卫星“昴宿星”的分辨率为0.7米。以色列最先进的地平线9号小型:光学成像遥感卫星分辨率为0.5米。日本现役的第二代光学成像“情报收集卫星”分辨率为0.6米。

在军用高分辨率雷达成像遥感卫星方面,美国“长曲棍球”卫星是老大,分辨率达0.3米,其设计特点是装有巨大的合成孔径雷达天线和巨大的太阳能电池帆板,卫星装载的高分辨率合成孔径雷达能以多种波束模式对地面目标成像,使“长曲棍球”不仅能全天候、全天时工作,还可以发现伪装的武器和识别假目标,甚至能穿透干燥的地表,发现藏在地下一定深度的设施,并对活动目标有一定跟踪能力。德国有军用卫星

“合成孔径雷达·放大镜”,意大利有军民两用卫星“宇宙一地中海”,前者分辨率为0.5米,后者为1米。日本现役的第二代雷达成像“情报收集卫星”分辨率为1米。以色列的“技术合成孔径雷达”设计寿命为4年,质量只有300千克,其中所载的合成孔径雷达重约100千克,分辨率为1米。印度军民两用的雷达成像卫星1号是自制的,其雷达成像卫星2号由以色列研制,分辨率为1米。

今后,军用高分辨率遥感卫星的发展趋势更多地使用雷达成像卫星,并通过采用平板相控制雷达天线等措施进一步提高其分辨率,采用新的分布式星座来缩短卫星的重访周期;光学成像卫星在获得高地面分辨率的同时,将继续扩大视场宽度,以提高卫星的时间分辨率;组建可实现全球覆盖的小型卫星星座,实施对任何目标的实时或近实时的侦察;发展星载超光谱遥感器,进一步扩展成像侦察范围,增加对隐蔽和伪装目标的识别能力;开发新型战术成像侦察技术,提高侦察技术的传送能力,实现军用高分辨率遥感卫星从战略应用向战术应用扩展;发展小型、低成本和可应急发射的军用高分辨率遥感卫星,它也可军民两用;建造军用和民用高分辨率遥感卫星混编星座,以提高对地观测的效率;研制同时载有光学成像和合成孔径雷达成像2种遥感器的军用高分辨率遥感卫星。

多国角逐民星

一般来讲,分辨率约2米的民用遥感卫星可称为民用高分辨率遥感卫星。美国、德国、印度、以色列和俄罗斯等国都在积极发展民用高分辨率遥感卫星。美国高分辨率遥感卫星大多是小型商用卫星,有多个型号:“艾科诺斯”2号卫星的分辨率为0.82米,幅宽11.3千米;“快鸟”2号卫星的分辨率为0.61米,幅宽16.5千米;“地球之眼”1号卫星的分辨率为0.41米,幅宽15.2千米;“世界观测”2号卫星的分辨率为0.46米,幅宽16.4千米。它们也可以用于军事。

2012年9月9日,法国首颗第4代“斯波特”——“斯波特”6号入轨,它是光学成像卫星,具有质量轻、寿命长、分辨率高的优点。其分辨率为2.5米,幅宽60千米,并能同轨立体成像。该卫星运行在694千米高的太阳同步轨道,质量只有800千克,设计寿命达10年。该卫星上有两台高分辨率相机,每天成像范围250万平方千米。虽然其分辨率和幅宽与第3代“斯波特”一样,但更加敏捷,能执行快速反应任务,每天上传6个任务计划,获取无云图像。它们与2颗已上天的法国“昴宿星”形成互补,满足多样化任务需求,保持系统的宽覆盖能力和图像数据的连续性,因为“昴宿星”虽然分辨率达0.7米,但幅宽只有20千米。

德国“陆地合成孔径雷达-X”是民用和商用高分辨率雷达成像卫星,也是世界首个高精度干涉合成孔径雷达卫星系统,分辨率优于1米,现广泛用于农林管理、地质调查、海事监测等。

印度现有制图卫星1号、2号、2号A、2号B共4颗高分辨率卫星,其最高分辨率为1米。印度正在研制的制图卫星3号卫星的分辨率将达0.3米。

以色列地球资源观测系统一B卫星运行在距离地面540千米高的太阳同步轨道上,观测周期为4天,分辨率为约0.7米,设计寿命6年。其上的遥感器也是1台全色CCD相机,其每行像元数为20000,量化等级为8比特~10比特。星上相机的观测角变化范围为±45°,这是靠平台侧摆来实现的。由于相机观测角变化范围较大,故它有能力获得较多的立体像对。

俄罗斯新一代民用高分辨率光学成像卫星——“资源”-DK的分辨率为1米,其正在研制的“资源”-P卫星的分辨率为0.4米。

2012年,韩国阿里郎3号多用途卫星升空。它载有光学相机,能够拍摄0.7米高分辨率照片,运行在685千米高的轨道。2013年,韩国将发射1米分辨率的雷达卫星。

中国成为后起之秀

近年,我国也在积极研制高分辨率遥感卫星。例如,2012年4月18日,我国首颗民用宽幅带、高空间分辨率遥感卫星——资源一号O2C星正式在轨交付给国土资源部;2012年7月30日,我国首颗高精度民用立体测绘卫星资源三号正式投入使用;2012年9月29日,我国为委内瑞拉研制的委内瑞拉遥感卫星1号上天,这是我国首次向国际用户提供遥感卫星整星出口和在轨交付服务。

2012年投入使用的资源一号O2C星的发射质量约2056千克,设计寿命3年。它装有2台分辨率为2.36米的全色分辨率相机,1台分辨率为5米/10米的全色/多光谱相机,可采用2台全色高分辨率相机拼接的方式提供了54千米的成像幅宽,最大限度提升了高分辨率数据的观测幅宽。在轨测试表明,该卫星所拍图像质量接近或达到国际先进水平,数据质量满足1:2.5万~1:10万国土资源调查监测精度要求;最小监测图斑面积达到0.2亩,满足经济发达地区、重点关注区域资源现状高分辨率调查监测要求;融合影像的属性精度、面积精度、最小监测图斑等指标与常规使用的法国“斯波特”5号、德国“快眼”数据接近。

2012年投人使用的资源三号卫星质量约2650千克,运行在高度约500千米的太阳同步轨道,具有立体测图功能、测国精度高、影像数据量大、处理速度快等特点。它是我国首颗高精度民用立体测绘卫星,装载了一组分辨率为2.1米(正视)和3.5米(前后视)的三线阵立体测绘相机,以及1台空间分辨率为5.8米的多光谱相机,幅宽约50千米,可提供3.5米分辨率立体影像,2.1米全色/5.8米多光谱平面影像。该卫星集测绘和资源调查功能于一体,影像数据覆盖全球逾4.578×108千米,其中覆盖中国领土9.3242×108千米,使我国的测绘方式由大地测绘、航空测绘提升为航天测绘,使我国地图的更新率由过去的平均5年提升为60天。它第一次使我国卫星遥感图像质量达到国际先进水平,第一次实现我国低轨遥感卫星5年设计寿命,大大提升了我国对地观测卫星的应用效益。

2012年9月29日发射委内瑞拉遥感卫星1号采用中国空间技术研究院航天东方红卫星有限公司的CAST-2000卫星平台,装有2台全色/多光谱相机和2台宽幅多光谱相机,其中2台全色/多光谱相机在639千米高的分辨率为2.5米(全色)/10米(多光谱),幅宽为57千米;2台宽幅多光谱相机在639千米高的分辨率达到16米,组合幅宽为369千米,在轨寿命5年。该星具有±35°的快速侧摆机动能力,可保证全色,多光谱相机在4天内对全球任意目标实现重访,宽幅多光谱相机可在3天内实现对全球任意目标重访。它们成像清晰、图像层次丰富。据悉,其全色/多光谱相机是高性能光学小相机,在成像谱段数量、覆盖宽度、动态范围、轻小型化等指标方面,超过了国内外同类型的遥感相机,居国际先进水平。该卫星主要用于委内瑞拉国土资源普查、环境保护、灾害检测和管理、农作物估产和城市规划等。

卫星遥感技术的应用范文6

关键词:遥感技术 生态环境 监测

随着全球环境问题日益突出,环境灾害与环境事故频发,卫星遥感技术在环境监测与管理中得到大量应用,在环境保护中发挥的作用受到国际社会的高度重视。美国、日本及欧洲的一些国家近年来都在大力发展环境遥感监测技术。目前在轨运行的和计划发展的国内外卫星传感器提供数据的空间分辨率已从公里级发展到亚米级,重复观测频率从月周期发展到几小时,光谱波段跨越了可见光、红外到微波,光谱分辨率从多波段发展到超光谱,遥感数据获取技术正走向实时化和精确化,卫星遥感应用正在向定量化和业务化快速发展[1]。当前,我国环境监测任务十分繁重,特别是对基于卫星遥感技术的环境遥感监测有着迫切需求。

1、遥感技术简介

遥感技术(RemoteSensing,简称RS)是在现代物理学、空间技术、计算机技术、数学方法和地球科学理论的基础上建立和发展起来的边缘科学,是一门先进的、实用的探测技术,目前正进入一个能快速、及时提供多种对地观测及测量数据的新阶段。按遥感平台的高度大体上可分为航天遥感、航空遥感和地面遥感,按所利用的电磁波的光谱段分类可分为可见反射红外遥感,热红外遥感、微波遥感3种类型,按研究对象可分为资源遥感与环境遥感两大类。随着热红外成像、机载多极化合成孔径雷达和高分辨力表层穿透雷达和星载合成孔径雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波红外、热红外、微波方向发展。波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。高光谱遥感的发展,使得遥感波段宽度从早期的0.4μm(黑白摄影)、0.1μm多光谱扫描)到5nm(成像光谱仪),遥感器波段宽度窄化,针对性更强,可突出特定地物反射峰值波长的微小差异;同时,成像光谱仪等的应用,提高了地物光谱分辨力,有利于区别各类物质在不同波段的光谱响应特性。

2、环境遥感基础工作的应用技术

水环境遥感监测方面,初步开展了水环境可遥感指标体系研究,对叶绿素a悬浮物有色可溶性有机物溶解性有机碳水面温度透明度等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在水环境领域中的应用潜力分析研究;初步开展了水环境指标(如叶绿素a悬浮物水温)遥感反演与信息提取的技术流程研究大气环境遥感监测方面,初步开展了大气可遥感指标体系研究,对气溶胶悬浮颗粒物O3,SO2,NO2,CO2,CH4等监测指标的光谱特征和规律进行了研究;初步开展了环境一号卫星在大气环境领域中的应用潜力分析研究以及大气环境指标(如气溶胶光学厚度)遥感反演与信息提取的技术流程研究[2]。

2.1 可见光、反射红外遥感技术

用可见光和反射红外遥感器进行物体识别和分析的原理是基于每一物体的光谱反射率不同来获得有关目标物的信息。该类技术可以监测大气污染、温室效应、水质污染、固体废弃物污染、热污染等,是比较成熟的遥感技术,目前国际上的商业和非商业卫星遥感器多属此类。该类遥感技术用于环境污染监测,目前主要是要提高传感器多个谱段信息源的复合,发展图像处理技术和信息提取方法,提高识别污染物的能力。重点发展其在大气污染、温室效应、水质污染、固体废弃物污染、热污染等监测中的应用。

2.2 热红外遥感技术

自然界中的所有物质,无论白天或夜间,都以一定波长向外辐射能量。在热红外遥感中,所有被观测的电磁波的辐射源都是目标物。目前红外探测器所使用的电磁波段,主要有3~5μm和8~14μm两个波段,对地表常温物体的探测通常使用8~14μm波段。热红外遥感主要探测目标物的辐射特性(发射率和温度),鉴别出物质材料的类型,评价出各种现象根据热辐射特征。

2.3 高光谱遥感技术

高光谱遥感技术的发展是人类在对地观测方面所取得的重大技术突破之一,是21世纪的遥感前沿技术。高光谱遥感数据的特点高光谱分辨率和高空间分辨率,它将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息,从而实现依据地物光谱特征的地物成份信息反演及地物识别,因此在环境污染物监测中发挥主要作用。

3、遥感技术在生态环境监测与保护中的应用

我国的生态环境日益恶化,因此,如何在保护和改善生态环境的前提下发展生产已经提到了决策者们的议事日程上来。建立生态监测信息系统已经成为当务之急。这样的生态监测系统集生态环境信息管理、数据库管理、生态环境各要素的实时监测、时间和空间查询分析等多功能为一体,可满足实时动态、分时段监测、查询和分析的要求[3]。

目前,环境污染已成为一些国家的突出问题,利用遥感技术可以快速、大面积监测水污染、大气污染和土地污染以及各种污染导致的破坏和影响。近些年来,我国利用航空遥感进行了多次环境监测的应用试验,对沈阳等多个城市的环境质量和污染程度进行了分析和评价,包括城市热岛、烟雾扩散、水源污染、绿色植物覆盖指数以及交通量等的监测,都取得了重要成果。国家海洋局组织的在渤海湾海面油溢航空遥感实验中,发现某国商船在大沽锚地违章排污事件,以及其它违章排污船20艘,并作了及时处理,在国内外产生了较大影响。随着遥感技术在环境保护领域中的广泛应用,一门新的科学——环境遥感诞生了。

4、结语

总之,多种对地观测系统的发展,尤其是雷达遥感成倍地提高了信息的覆盖频率,从而大大增强了对资源环境的动态监测能力。随着科学技术的进一步发展,各项新技术不断地交叉融合,将使人们认识自然、改造自然的能力得到极大的提高。

参考文献

[1]聂洪峰,杨金中等.矿产资源开发遥感监测技术问题域对策研究[J].国土资源与遥感,2007.10(4):11~13.