粉末冶金法的优缺点范例6篇

粉末冶金法的优缺点

粉末冶金法的优缺点范文1

关键词:粉末冶金 温压工艺技术与发展 。

引言:近十年来,粉末冶金工业发展迅速。1989~1999年中国大陆与世界铁基粉末主要生产地区的铁基粉末年发货量比较。铁基粉末的市场需求在总体上有明显的增长,特别是北美市场已保持了连续9年的高速增长。日本虽然受到国内长期经济不景气的拖累,但铁基粉末的产量仍然较高。中国大陆的铁基粉末产量缓慢增长。1994~1998年亚洲部分地区粉末冶金件的年产量。1997年亚洲金融风暴令日本和韩国的粉末冶金工业蒙受挫折,但在中国(包括大陆和台湾省),粉末冶金制品的产量明显增长。

  粉末冶金制品的用途广泛,但主要用于机械零件,其中以铁基材料为主。过去十多年,全球粉末冶金制品大部分用于汽车工业,一直占粉末冶金件的70%左右。目前,每部欧洲汽车中约有7kg重的粉末冶金件。而每部美国汽车中粉末冶金件重达16kg[1],相对于1991年的10kg增幅超过50%。各大汽车制造商预言,未来10年每部汽车中将有重达25kg的粉末冶金件,美国汽车中或许更高。因此,在未来10年,汽车工业仍将是推动粉末冶金工业发展的主要动力。高性能铁基粉末冶金件已普遍用于传动装置、发动机、通用机械和工具等产品,其市场前景非常广阔。

  一温压技术的特点

     基于安全和耐用等理由,对汽车零部件的性能要求很高。近年我国快速发展的汽车工业必然会带动高性能粉末冶金材料特别是铁基材料的发展。因此,开发高性能特别是高力学性能的粉末冶金材料,是粉末冶金的发展方向和研究重点。提高粉末冶金材料的密度,是实现这一目的的最有效途径。

 传统一次压制,一次烧结生产的铁基粉末冶金制品,其密度一般在7 1g/cm3(相对密度约90%)以下,力学性能远低于同类材料的全致密件。生产高密度、高性能粉末冶金件一直是粉末冶金行业追求的目标之一。在众多的高密度粉末冶金生产方法中,温压是最为经济的一种新工艺。温压技术在90年代中期发展成熟并成功用于工业生产。

    温压工艺是在传统粉末冶金工艺的基础上改进而来。工艺过程是将混有温压专用剂(和粘结剂)的粉末加热至130~155℃,然后在加热到上述温度的模具里压制成形。与传统工艺相比,温压成形的压坯密度约有0 15~0 30g/cm3的增幅,对于提高粉末冶金制品的性能特别是力学性能具有重要作用。温压工艺的特色是工艺简单、成本低廉,在传统的粉末冶金设备上稍加改装,经一次温压压制,一次烧结即可生产出高密度、高性能且质量稳定的产品,其密度可达7 45g/cm3[9],经复压复烧更可高达7 65g/cm3 

    在比较了以温压工艺和传统复压复烧工艺生产齿轮的成本。在零件性能相当的情况下,温压生产的成本比复压复烧生产的成本低10%左右。温压能以低于复压复烧的成本生产出性能相当的产品。值得注意的是,其产品在某些方面可以和锻造产品相竞争。温压工艺成本低廉、产品密度高而均匀、力学性能优越,兼有弹性后效小、脱模力低等工艺特点,其生坯强度超过20MPa[10],可在烧结工序前作机加工处理,以节约机加工工时和减少刀具磨损。

 二 温压技术发展现状

     自1994年温压技术的成果被正式公布到1996年年底为止,在短短的两年时间就有大约36种温压产品在批量生产或准备批量生产,其中包括重达1 2kg,用在福特卡车变速箱上的转矩涡轮毂。国外多家公司也利用温压技术开发出高密度、高强度的斜齿轮。温压工艺除使齿轮整体密度增大外,齿的密度也大为增加,使齿的强度提高约30%,从而省去了用滚压工艺来局部提高齿部密度的工序。日本日立粉末金属公司采用温压技术生产粉末冶金小节锥半角斜伞齿轮,成功取代过去以机加工锻钢坯的昂贵生产工艺[19]。法国以温压技术为汽车工业制造了使用性能与锻造和粉末锻造相近,但成本较低的连杆,表明了温压技术有了重大突破,该公司计划到2002年生产350~600g重的各种连杆1500万件。瑞典采用温压工艺共同开发出一种用于重型卡车变速器的大型零件。该零件长期以来都是用精密锻造或粉末锻造方法生产的。由此可见,温压工艺具有工艺简单和较高性能价格比的优势是完全可以和锻造工艺竞争的。

     在国内,引进温压工艺的粉末冶金零件生产厂有宁波东睦粉末冶金公司和扬州保来得工业有限公司。两家工厂都是从国外引进技术、生产线与购买专用温压粉末进行生产。 三 温压技术的发展及在我国的应用前景 

    由于长期缺乏数量较大和附加值较高的零件需求,没有机会让粉末冶金行业发挥它特有的优势,因此我国粉末冶金工业基础较为薄弱,一直都未受到重视。1989年粉末冶金轴承占我国粉末冶金零件总产量的60%(质量分数),其中大部分是低附加值的普通轴承。90年代中期,汽车工业发展较快,为高性能铁基粉末冶金件的生产发展提供了良好的机遇,用于汽车和摩托车工业的粉末冶金零件按质量计算在10年间几乎翻了一番。与此同时,用于附加值较低的农机工业粉末冶金零件则几乎减少一半。由此可见,发展高性能粉末冶金零件是大势所趋。目前,国产轿车只维持在年产几十万辆的水平,预期到2010年将会达到年产100万辆左右。届时,对高性能铁基粉末冶金件的需求将会达到万吨以上。这无疑是发展我国粉末冶金工业的一次难得的机遇。根据对我国粉末冶金零件市场的预测,在2000年生产规模的基础上,粉末冶金零件在各行各业的应用都将有所增长。到2005年,摩托车行业和小型制冷压缩机行业将有40%的增幅,而汽车行业的预期增幅更达70%。目前,国产汽车平均每辆使用3~6kg粉末冶金零件,而国外则多达16kg,两者的差距反映出我国粉末冶金工业相对比较落后。但是,随着中国汽车工业迈向大规模生产,这一差距将很快缩小。以桑塔纳轿车为例,每辆用粉末冶金件仅15种,重3kg,而去年投放市场、以美国技术生产的别克轿车则每辆用粉末冶金件35种,重12 5kg。从生产普通粉末冶金件向生产高性能粉末冶金件过渡不是一朝一夕的事,特别是为汽车提供零件不是接了订单就能组织生产这么简单,必须通过一连串的试验、试制、台架试验、装机试验、定型、批量生产等相当长的过程。尽管未来汽车用粉末冶金件大量需求,但在国内推广温压技术的工业化还有不少困难。除少数几家拥有雄厚财力和技术实力的大型粉末冶金厂外,一般生产厂是不太可能投入大量的资金进口昂贵的温压设备和专用粉末。因此,温压技术的国产化非常重要。     性能优良、质量稳定的粉末是高性能粉末冶金工业的基础,我国的铁基粉末生产无论在产量、性能或质量的稳定性等方面都与世界发达地区有着明显的差距。适用于生产高密度、高性能零件的雾化铁粉其产量长期偏低,90年代以前年产量一直徘徊在几百吨,1995年起开始快速增长,目前雾化铁粉的产量已占铁基粉末总产量的1/4左右。雾化铁粉的年产量节节攀升,充分说明我国铁基粉末冶金件的产品结构正向高性能方向发展。目前,温压专用粉末尚未有批量生产。如果完全依赖进口,不但成本高昂,而且还将制约粉末冶金产品的自主开发。因此,大批量生产压缩性能优良和质量稳定的铁粉和预合金粉末,并研制适合我国国情的温压专用粉末加热装置是当务之急,以免过分依赖昂贵的进口产品。可喜的是华南理工大学已成功开发出有自主知识产权的温压专用粉末及其加热装置,为温压原材料及设备的国产化打下了基础。     目前,对粉末冶金结构件的密度要求一般在7 0g/cm3以上,有些甚至高达7 6g/cm3。而温压成形正好是生产密度此范围零件的工艺。我们可以利用温压技术只需较小成形压力等优点开发较大型的零件。我们亦可以利用温压成形的零件具有较高力学性能的优势,在免除诸如热处理等后续工序的基础上生产强度达800MPa以上、精度达IT6~IT5的粉末冶金零件以增强粉末冶金零件的竞争力。     德国在温压工艺的基础上,开发出一种称为“流动温压工艺”的技术。通过加入适量较微细的粉末、加大及调节剂的含量以提高粉末的流动性、填充能力和成形性,可以制造带有垂直于压制方向上的凹槽、孔和螺丝孔等制件。制造此类粉末冶金件过去一直被认为是非常困难甚至是不可能的,利用程控压机复杂和精准的动作也只能生产出较为简单的此类零件[32]。该工艺不但适用于铁基材料,还适用于诸如钛等其他材料。由此可见,温压工艺具有非常广阔的发展前景。目前,温压技术还远远没有发挥出其潜在的和应有的作用,其发展前途是不可低估的。     利用计算机进行温压成形过程的模拟是提高产品开发效率的有效工具,可充分利用温压的优点开发新零件或重新设计零件,扩大粉末冶金件的应用,并突破只凭经验摸索的瓶颈,大量减少试验次数,缩短产品开发周期,使企业能更快速地对市场作出反应。高密度、高性能零件是未来几年的高增长点,掌握此方面的技术对夺取潜在的市场具有积极意义。     利用粉末冶金技术开发无需油脂的耐磨件,以适应某些特殊行业的要求,如纺织机械等行业。在纺织机械和缝纫机上的某些零件,目前是采用复压复烧法生产,其密度达7 5g/cm3,抗拉强度达500MPa[33]。这些产品的性能正好是温压工艺所能达到的范围,问题是产量的大小,因为粉末冶金的低成本是建立于大批量生产的基础上,所以开发非汽车用的粉末冶金零件还要耐心地解决有关问题。所幸我国市场庞大,以缝纫机为例,1995年的产量就达970万台。只要不发生恶性竞争,开发非汽车用零件是大有可为的。     大力发展和推广温压工艺这种低投入、低成本的高密度粉末冶金生产技术,能为我国粉末冶金工业在新世纪里挤身国际市场打下坚实的基础。我国的汽车工业目前还处于初级发展阶段,在未来的十多年里随着汽车工业的发展,一定能提供一个庞大的市场消化我国粉末冶金工业为国产汽车研制的高性能粉末冶金件,形成一个以市场带动新技术,又以新技术开发新产品、开拓新市场的良性循环。

四 结束语:

国外温压技术从实验室到产业化大致用了5年左右的时间。与其它先进技术相比,温压技术产业化的速度是快的。其中一条成功的经验是,该技术从一开始就是以“研究―企业集合”的面貌出现的。粉末冶金工艺人员、压机制造商、化工、化学研究人员,组成一个集合体来突破技术的各个环节。在这方面行业协会或学会应当发挥更大的作用。 温压技术产业化的根本出路在于,真正理解和掌握温压―烧结工艺系统的各个环节,在有可能持续发展的骨干粉末冶金企业的牵头和带动下,组成一个各方均可受益的粉末、制件、压机、化工厂商和研究团体的“研究―企业集合”体,以典型的温压系列产品开拓钢铁粉末内冶金高密度、高强度零件的新市场。

参考文献:

粉末冶金法的优缺点范文2

【关键词】粉末冶金;球磨粉末;Ti-45Al-5Nb合金

【中图分类号】TH 【文献标识码】A

【文章编号】1007-4309(2013)07-0055-1.5

TiAl金属间化合物具有低密度、高强度、优异的高温抗蠕变和抗氧化性等优点,在航空航天以及汽车工业等领域具有广泛的应用前景。高Nb含量TiAl合金保持了TiAl合金上述一系列优点,同时高含量难熔元素Nb的加入提高了合金的熔点及有序温度,降低了扩散系数,改善了高温抗氧化性能,被视为最具有开发潜力的新一代高温结构材料之一。然而,该合金存在严重的室温脆性,断裂韧性和裂纹扩展抗力也很低,且该合金属于难塑性加工材料。这些缺点阻碍着该合金的广泛应用。目前,该合金制备的工艺主要是铸锭冶金,该工艺存在成分偏析和组织粗大等缺点,且成本高,工序复杂。近年来,粉末冶金制备技术引起广泛关注。与铸态合金相比,粉末冶金合金的组织更均匀细小,而且,由于粉末冶金工艺可以实现近净成形,从而避免对合金的后续塑性加工,成为国内外学者制备TiAl基合金广泛关注的工艺。本文采用元素粉末冶金法制备高Nb-TiAl合金,对组织性能进行了研究。

一、实验

将平均颗粒尺寸小于48μm的高纯Ti、Al粉以及平均颗粒尺寸小于45μm的高纯Nb粉,按Ti-45Al-5Nb(at.%)成分配比,在行星式球磨机中进行机械球磨,球磨参数为:球料质量比为20∶1,转速为400r/min,球磨罐和磨球材料均为不锈钢,球磨时充高纯氩气保护,球磨时间为8h。随后,利用真空热压烧结系统对球磨获得的Ti/Al/Nb复合粉末进行反应烧结,烧结工艺参数为:烧结温度分别为1250℃、1300℃、1350℃,压制力为40MPa,保温保压时间为2h,整个烧结过程中真空度不低于10-2Pa,最后得到Φ60×13mm的三种烧结块体材料。

应用XRD分析材料物相组成,利用光学显微镜(OM)和配有能谱(EDS)分析系统的场发射环境扫描电子显微镜Hitachi S4700(SEM)观测粉末的颗粒形貌演变、烧结块体试样组织。为选择典型粉末形貌,球磨粉末试样首先在烧杯中用酒精分散振荡,用滴管滴到钢制载物台,风干使酒精挥发制得粉末扫描样品。

二、实验结果与分析

1.球磨粉末特性

图1为复合粉末随球磨时间增长形貌演变的扫描和背散射图像。从中可以看出,球磨时间累计至4h,Ti、Al颗粒均为明显片状形貌,部分片状颗粒已发生破碎和粘合。随时间进一步延长,片状颗粒不断破碎,8h时片状颗粒破碎基本完成,形成了大量的碎小颗粒。通过背散射图像对比可以发现,Ti和Al的粉末颗粒在变形过程中形成明显的片状结构,而Nb元素颗粒则更多以碎小颗粒存在,并粘附在其他两种粉末上。这是由于Ti和Al的塑性比Nb较好,特别是低温环境下Nb有很严重的脆性。在巨大外力的快速作用下应力集中严重,从而直接破碎成细小颗粒。

图1 不同球磨时间下Ti-45Al-5Nb粉末形貌(BSE)

(a)4h;(b)6h;(c)(d)8h

Ti-45Al-5Nb复合粉末经8h球磨得到的XRD分析结果如图2所示。从图中可以发现,复合粉末中并未产生新相,说明机械球磨过程中Ti、Al、Nb三种元素粉末仅实现机械结合,并未发生合金化反应。在球磨过程中,由于采用间隙球磨方式,粉末和罐体的温度得到很好的控制,这也限制三种元素之间的扩散速度,而且粉末的能量不足以推动Ti、Al元素之间的扩散反应,另外,Nb元素在低温环境中的扩散系数非常低,基本不考虑其反应。利用XRD结果计算复合粉末中三种元素的平均晶粒尺寸为19.7nm,三种粉末的晶粒均得到明显的细化。

2.烧结坯物相分析

利用X射线衍射仪分析三种烧结坯所得结果如图3所示。从图谱可以看出,三种烧结温度下合金中单质元素相完全消失,表明Nb元素完全固溶于TiAl合金中。同时,三种合金新生成的物相均以γ-TiAl为主,α2-Ti3Al次之,同时都有少量的B2相形成。对比发现,随着烧结温度提升,α2相含量有所减少,γ相含量增加。另外,1300℃和1350℃烧结合金的衍射峰相对于1250℃烧结合金向左有小角度偏移。这可能是由于Nb元素在更高烧结温度下扩散更加充分,其分布更加均匀,使三种物相的晶格常数变化引起的。

图2 Ti-45Al-5Nb合金烧结XRD图谱

三、结论

1.采用元素粉末+机械球磨工艺制备Ti-45Al-5Nb复合粉末,充分的细化和均匀了三种元素粉末,Ti、Al粉末发生塑性变形成细小片状,而Nb则破碎成细小颗粒。经过8h球磨可以得到较好的复合粉末。经过球磨的复合粉末未发生合金化反应。

2.采用真空热压烧结工艺制备高致密的Ti-45Al-5Nb合金材料,在1250℃和1300℃烧结得到细小的近γ组织,在1350℃烧结得到的是近片层组织,同时三种烧结坯组织中均有B2相颗粒生成。

【参考文献】

[1]APPEL F,OEHRING M,WAGNER R.Novel design concepts for gamma-based titanium aluminide alloys[J].Intermetallics,2000,8.

[2]DUAN Qin-qi,LUAN Qing-dong,LIU Jing,et al.Microstructure and mechanical properties of directionally solidified High Nb containing TiAl alloys[J].Materials & Design,2010,31(7).

[3]王衍行,等.高Nb-TiAl合金粉的制备及其特性[J].航空材料学报,2007,27(5).

[4]LIU B.,LIU Y,ZHANG W,et al.Hot deformation behavior of TiAl alloys prepared by blended elemental powders[J].Intermetallics,2011,19(2).

[5]胡连喜,王尔德.粉末冶金难变形材料热静液挤压技术进展[J].中国材料进展,2011,30(7).

粉末冶金法的优缺点范文3

关键词: 高强高导;TiB2Cu基复合材料;研究现状;展望

中图分类号: TB331文献标识码: A

Research Situation and Prospects for High Strength and High

Electrical Conductivity TiB2Cu Matrix Composites

HE Daihua, LIU Ping, LIU Xinkuan, MA Fengcang, LI Wei,

CHEN Xiaohong, GUO Kuixuan, LIU Ting

(School of Materials Science and Engineering, University of Shanghai for

Science and Technology, Shanghai 200093, China)

Abstract: The TiB2Cu matrix composites with excellent performances of high strength and high electric conductivity have extensive application prospects.In the paper,we focus on the fabrication techniques of TiB2Cu matrix composites.The prospects for the composites are also presented.

Key words: high strength and high electric conductivity;TiB2Cu matrix composites;research situation;prospect

0前言

高强度导电材料在航空、航天、电工及电子等行业有着极为广泛的用途,如电车及电力火车架空导线、大容量触头开关、电阻焊电极、电触头、集成电路引线框架等,都需要既具有高导电导热性又具有高强度的耐热稳定性材料[1].铜基复合材料具有高耐热稳定性和高强高导的特点,克服了传统铜合金的某些不足,大大提高了使用温度范围,能较好地满足以上需求,因此,铜基复合材料近年来得到了较大的发展.

利用弥散耐热稳定性好的陶瓷粒子强化铜基体是一种很好的方法.其中TiB2陶瓷颗粒具有高熔点、高硬度、高弹性模量,耐磨性好,热膨胀系数较低和高导电导热等特性,同其他陶瓷增强材料相比,它使金属的导电率、热导率下降量较小,使得TiB2Cu基复合材料具有较高的导电率和高的软化温度,因而TiB2作为铜基增强相的研究,已成为复合材料研究领域的一大热点[23].TiB2Cu基复合材料既具有优良的导电性,又具有高的强度和优越的高温性能,被认为是极有发展潜力和应用前景的新型功能材料,已逐渐受到各国的高度重视[45].

TiB2增强铜基复合材料的力学性能,主要取决于铜基体、增强体的性能以及增强体与铜基体之间界面的特性.用于制备TiB2Cu基复合材料的传统方法,主要是非原位复合方式,即直接添加陶瓷强化粒子到熔融或粉末基体中,强化相与陶瓷金属基复合材料的合成不是同步完成.但外加的增强颗粒往往比较粗大,增强体与基体润湿性差,颗粒/基体界面反应始终是影响传统搅拌铸造和粉末冶金的技术难题[6].本文主要介绍了目前较有发展前途的、能使第二相弥散分布于基体中、甚至具有纳米级颗粒增强铜基复合材料的原位复合制备方法.

上海有色金属第34卷

第1期何代华,等:高强高导TiB2Cu基复合材料的研究现状及展望

1纳米级颗粒增强铜基复合材料的制备方法1.1机械合金化法

机械合金化法(MA)是Benjamin[7]等于20世纪60年代为解决TiB2Cu基复合材料中的浸润性问题而最先提出的,其原理是利用固态粉末直接形成合金的一种方法,后来为广大学者接受并广泛使用.

Biselli[7]等在1994年利用机械合金化法球磨Cu、Ti和B粉,经适当的热处理制取出TiB2Cu复合材料.X射线衍射和EDS分析表明,球磨粉只有加热到600℃附近才反应生成TiB2,到800℃附近反应完成.TEM观察发现,Cu5%(体积百分比)TiB2合金700℃挤压后在晶粒内部和晶界上分布有5~15 nm的TiB2粒子.球磨粉在退火初期,硬度不断增加,到600℃附近达峰值,这是由于Ti和B粉发生反应生成稳定的硼化物所致,更高温度时硬度稍有降低,但降幅很小.西安交通大学董仕节[89]等研究了烧结工艺和TiB2含量对TiB2增强铜基复合材料性能的影响.提出TiB2/Cu复合材料导电率定量计算公式如下[10]:σ=σ01-11+0.87/c(1)σ为铜基复合材料导电率,σ0为基体铜的导电率,c为TiB2体积含量.

李京徽[11]采用机械合金化方法,先球磨制备CuTiB2复合粉末,然后通过压制烧结方法制备CuTiB2复合材料.提出了机械合金化法制备CuTiB2复合材料的合理工艺是:球磨时间60 h,压制压力400 MPa,烧结温度900℃,保温时间2.5 h.

机械合金化法是在固态下实现合金化,不经过气相、液相,不受物质的蒸汽压、熔点等物理特性因素的制约,使过去用传统熔炼工艺难以实现的某些物质的合金化、远离热力学平衡的准稳态、非平衡态及新物质合成等成为可能;增强相与基体具有很好的结合性;增强相颗粒分布均匀,尺寸细小.唯一的缺点是制备过程中可能带入杂质,纯度不够高.

1.2自蔓延高温合成法

自蔓延高温合成法(SHS)是1967年由前苏联学者Merzhannov等发明的,是利用放热反应使混合体系的反应自发地持续进行,生成金属陶瓷或金属间化合物的一种方法.刘利[12]等采用自蔓延高温燃烧合成技术研究了材料体系对合成过程中产物特性(温度、燃烧速度及产物等)的影响.研究结果表明,在体系中添加一定的金属钼或铁,明显改善了体系的润湿性;钼或铁的加入使产物中金属分布更加均匀,大大降低了产物孔隙率.同时钼的加入还明显降低了晶粒尺寸.

SHS法制备金属基复合材料有生产过程简单、反应迅速、反应温度高以及易获得复杂相或亚稳定相和应用范围广等特点.但缺点是反应难以控制,产品空隙率高,难以获得高密度的产品,不能严格控制反应过程和产品的性能,所用原料往往可燃、易爆或有毒,需要采取特殊的安全措施.

1.3粉末冶金法

粉末冶金法是生产铜及铜基复合材料结构件、摩擦材料和高导电材料的重要方法[13].制备TiB2Cu一般采用直接混合法和包覆混合法制取[14].主要工艺过程包括:(1)制取复合粉末;(2)复合粉末成型;(3)复合粉末烧结.吴波[1516]等以Cu、Ti、B4C合金粉末为原料,制备了TiB2Cu复合材料,得出最佳工艺参数为:以TiB2理论生成量为5%(质量分数)配料,在800 MPa压力下对球磨后的合金粉末进行模压,在1 273℃经4.5 h保温烧结,经原位反应可获得TiB100弥散增强的铜基复合材料.试样的导电率为:20.2%IACS,硬度(HV)为161.张剑平[6]等采用粉末冶金法制备了TiB2Cu复合材料,研究了真空加热烧结和微波烧结两种不同烧结方式对该复合材料组织和性能的影响.

粉末冶金法是最早用来制造金属基复合材料的方法,虽然有很多优点,如可实现多种类型的复合,充分发挥各组分材料的特性,是一种低成本生产高性能复合材料的工艺技术.但由于基体和增强相在尺寸、形状和物理化学性能上有很多差别,提高TiB2增强相与铜基体的润湿性,提高基体与增强相之间的界面结合强度,从而提高复合材料的综合性能,将依然是TiB2Cu基复合材料的研究方向.

1.4喷射沉积法

喷射沉积法制备TiB2Cu基复合材料,主要包括传统喷射沉积法和反应喷射沉积法.传统喷射沉积法是熔炼好含反应元素的合金后再进行喷射沉积[17].此方法是在铜合金熔体内反应元素间发生化学反应生成弥散粒子,然后利用喷射沉积法使强化粒子均匀分布在铜基体内.反应喷射沉积法是利用液滴与反应气体、注入的粒子或不同合金的液滴间发生原位化学反应合成弥散强化铜合金[1819].在反应喷射沉积过程中,由于液滴的比表面积大和处在高温状态,能使反应元素间在液滴飞行过程中或在沉积后,能在铜基体内部原位合成细小的弥散强化相.喷射沉积法的优点主要是:晶粒细小,无宏观偏析、颗粒均匀分布于基体中;一次性快速复合成坯料,生产工艺简单,效率高.

2高强高导TiB2Cu基复合材料的研究展望随着复合材料技术的发展,原位复合法得到了迅速发展,该材料以其独特的优点,在高强高导电性TiB2Cu基复合材料的制备方面显示出巨大的应用潜力和良好的发展前景.高强度导电TiB2Cu基复合材料是综合性能优良的新兴材料,这类材料在现代国防和民用工业领域有着很大的应用潜力.自20世纪70年代以来,高强度导电铜基材料的开发研究一直非常活跃,除了开发出多种高强度导电铜基复合材料外,还派生和创造出许多新的制备技术,对此类材料的基础理论也开展了广泛的研究.现有的高强度导电TiB2Cu基材料的开发及制备技术还存在诸多难题,我国在这方面的研制与发达国家相比还存在较大差距.因此,借鉴国外经验,今后的研发工作主要着眼于以下几个方面:

(1) 对现有制备工艺的研究和改进.如在传统的粉末冶金法中引入由微波加热与基座辐射加热相结合的新型工艺;原位合成技术与粉末冶金技术的综合运用等,由单一的制备方法向几种工艺相复合的方向发展.

(2) TiB2增强相向超细化、纳米化方向发展.纳米增强相尺寸较小,容易聚集,所以可使纳米增强相的表面改性;TiB2纳米粒子与基体的界面相互作用机制,可优化界面结构,充分发挥界面的增强效应;纳米TiB2增强相在铜基体中更加均匀弥散地分布等是研究的热点.

(3) 增强相也由单一的TiB2颗粒向复合陶瓷颗粒方面发展.如增加TiB2和Al2O3两相颗粒进行复合增强.

(4) 充分发挥材料的设计自由性,探索高性能、低成本和容易大规模生产的TiB2Cu铜基复合材料的制备工艺,推进高强度导电材料的产业化应用,将成为今后研究的重要课题.

3结束语

基于TiB2Cu基复合材料优良的导电性、高强度和耐高温等一系列优异性能,今后围绕其导电性和强度展开研究仍是一个热点,进而简化工艺流程、降低生产成本,逐渐工业化也是今后的研究方向.特别是随着我国高铁系统的发展,TiB2Cu基复合材料的需求缺口很大,所带来的市场经济效益相当可观.

参考文献:

[1]Hysmans P.An initiation into copper master alloys[J].Metall,2000,54(4):184185.

[2]Wu Y,Lavernia E J.Interaction mechanisms between ceramic particles and atomized metallic droplets[J].Metall Trans,1992,23A:29232937.

[3]Ye J,Ulrich S,Sell K,et al.Correlation between plasma particle fluxes,microstructure and propertied of titanium diboride thin films[J].Surface and Coatings Technology,2003,174/175:959963.

[4]雷静果,刘平,井晓天,等.高速铁路接触线用时效强化铜合金的发展[J].金属热处理,2005,30(3):15.

[5]李周,郭明星,程建奕,等.原位复合法制备高强高导CuTiB2复合材料[J].金属热处理,2006,25(3):5964.

[6]张剑平,艾云龙,左红艳,等.烧结方式对TiB2/Cu 复合材料组织和性能的影响[J].特种铸造及有色合金,2012,32(5):469472.

[7]Biselli C,Morris D G,Randall N.Mechanical alloying of high strength copper aIloys containing TiB2 and A1203 dispersoid particles[J].Scr Metal Mater,1994,30(10):13271332.

[8]董仕节,史耀武,雷永平.烧结工艺对TiB2增强铜基复合材料性能的影响[J].西安交通大学学报,2000,34(7):7377.

[9]董仕节,史耀武,雷永平,等.TiB2含量对TiB2/Cu复合材料性能的影响[J].热加工工艺,2002,31(3):4749.

[10]董仕节.点焊电极用TiB2增强铜基复合材料的研究[D].西安:西安交通大学,1999.

[11]李京徽.机械合金化制备CuTiB2复合材料的工艺及性能研究[D].合肥:合肥工业大学,2009.

[12]刘利,张金咏,傅正义.TiB2Cu体系的自蔓延高温合成及致密化[J].复合材料学报,2005,22(2):98102.

[13]Kima C K,Lee S,Shin S Y,et al.Microstructure and mechanical properties of Cubase amorphous alloy matrix composites consolidated by spark plasma sintering[J].Materials Science and Engineering,2007,A44945l:924928.

[14]Yih P,Chung D D L.Titantum diboride coppermatrix composites[J].J Mater Sci,1997(32):17031709.

[15]吴波.TiB2颗粒增强高强高导铜基复合材料研制[D].南昌:南昌大学,2008.

[16]吴波,张萌,张剑平,等.粉末冶金法与电弧熔炼法制备TiB2/Cu复合材料[J].热加工工艺,2008,37(22):15.

[17]Lee J,Kim N J,Jung J Y,et al.The influence of reinforced particle fracture on strengthening of spray formed CuTiB2 composites[J].Scr Metal Mater,1998,39(8):10631069.

粉末冶金法的优缺点范文4

【关键词】TiAl合金;抗氧化性能;高温结构材料

随着科学技术日新月异的发展和航空航天以及汽车工业对结构材料的需求,促进了新材料的诞生。作为传统的高温结构材料-钛基合金和镍基合金,其工作温度分别为600℃和1100℃,密度分别为4.5g/cm3和8.3cm3,他们的潜力已基本挖掘殆尽。因此,高温金属间化合物引起了人们的关注,金属间化合物因其金属键和共价键的存在,以及原子的长程有序排列,使其具有陶瓷不可比拟的韧性和一般金属无法达到的比刚度与比强度。其中最具有代表性的是TiAl基金属间化合物,其密度仅为镍基合金的一半,而且其抗氧化性能和抗蠕变性能优异。通过控制显微组织可以优化合金的综合力学性能,但TiAl合金的低室温塑性仍是一个问题关键,以及800℃以上的长时间应用,其抗氧化性能还不足。目前改善室温塑性的方法有:改善微观组织,细化晶粒尺寸;微合金化;合适的制备工艺等。

1、合金的成分设计研究进展

自20世纪50年代中期TiAl合金出现以来,其室温脆性这个难题一直难于解决。直到20世纪80年代,TiAl合金被美国宇航局定为优先发展的高温结构材料,并决定将此材料应用于军用飞机的发动机中,从而引起了TiAl合金研究的热潮。到目前为止,TiAl合金已经历了四代合金。第一代由美国空军材料研究所和Pratt-Whiney公司共同研发,但其断裂韧性和冲击韧性无法满足要求;第二代合金(Ti-48Al-2Cr-2Nb)由美国GE公司开发并应用到了压气机低压叶片;第三代与第四代合金是研究者近十年来的发展成果。但综合来看,微合金化主导者TiAl合金的发展方向,但是在制备方面没有出现很大的改变。经研究,现将合金元素对TiAl合金性能作用总结如下:

1)提高合金塑性:V,Mo,Cr,B,Mn,RE,Si,Ni;

2) 提高合金的抗氧化性能:Nb,Cr,W,Mo,Ta,Si,Sb;

3) 提高合金的抗蠕变性能:Si,Er,Nb,W,Ta,C,N,O;

4) 提高合金的强度:Nb,Mo,W,B,C,N;

5) 提高合金的断裂韧性:Cr,C,N;

6) 提高合金的显微硬度:W,Si,Nb;

目前所研究的TiAl合金均指的是α2-Ti3Al和γ-TiAl双相合金,因为它的综合机械性能均优于任何一种单相合金。娄贯涛等人通过实验研究了Al、Mo含量对钛合金的影响,发现Al、Mo含量的协同作用使得合金塑性得到了提高。魏强等人通过原子嵌入的方法研究了第三组元W、Cr、Mo对TiAl合金脆性的影响,发现掺杂后的TiAl合金其延展性得到了很好的改善;Cr的加入替代了Ti晶位,减弱了Mo和W对合金硬度的影响。林均品等人利用铸锭冶金方法制备了名义成分为Ti45Al8Nb(0,0.1,0.3,0.4,0.6,0.8,1.0)Y(at%)的合金,经多次熔炼后获得铸锭试样,然后对试样进行循环热处理发现,Y元素的加入,细化了合金晶粒,使氧化膜颗粒更加致密,提高了表面氧化膜和基体的结合性能;并且确定了当合金成分为Ti45Al8Nb0.3Y时,其抗氧化性能最佳。他的另一实验研究中,以Ti45Al8Nb,Ti45Al12Nb,Ti52Al8Nb, Ti52Al12Nb四种成分为研究对象,发现这四种含Nb合金的抗氧化性能均优于不含Nb的合金;高Al含量的合金氧化膜更为稳定,而且氧化膜下为贫Al区;Al和Nb协同作用提高着TiAl合金的抗氧化能力。自此以后,TiAl合金成分朝着高Nb低Al的方向发展。

我国的高Nb-TiAl合金研究已独具风格,国内几所高校重点实验室已全面彻底地对Ti-Al-Nb系合金展开了研究,如科技大学重点实验室、西北有色金属研究院等通过实验为高Nb-TiAl合金的发展提供了坚实的理论基础。北京科技大学重点实验室通过实验发展了Ti-45Al-10Nb和Ti-45Al-18Nb两种合金,其强度高于普通TiAl合金,比强度更是优于传统的镍基合金。而且他们还系统的分析了合金成分对高Nb-TiAl组织与性能的影响,还详细研究了W、Cr与合金组织的关系。中南大学与美国国家实验室联合研究了Ti-Al-Nb-W-B系合金,分别通过熔铸和粉末冶金工艺制备了综合力学性能良好的高Nb钛铝合金,并通过热处理进一步细化了合金晶粒,提高了合金性能。

2、TiAl合金的制备方法研究进展

TiAl合金的制备方法与传统的镍基很近相似,主要方法有铸锭冶金、铸造和粉末冶金。随着粉末冶金理论与技术的发展,这种制备方法有着巨大的潜力。TiAl合金制备方法如图2.1所示。

图2.1 TiAl合金制备方法

2.2.1铸锭冶金

合金通过熔炼,通常使用感应凝壳炉,也采用等离子冷坩埚炉来熔炼。然后对其进行锻造、挤压、热等静压或是热处理,均能得到成分均匀、组织细小的TiAl合金,然后经过轧制、塑性成形来获得所需要的合金材料。因合金中Nb、W的偏析严重,往往组织中含有β相的存在,又因Ti、Al在高温下活性极高,对间隙元素H、C、O、N等极为敏感,所以选择合适的熔炼工艺也极为重要。为了得到所需的微观组织,研究学着往往通过多种工艺进行复合处理,代替传统的加工手段,来获取均匀细小的组织。

2.2.2铸造

铸造作为一种传统的材料制备方法,有着成本低,甚至可实现近净成形的优点,但是铸造TiAl合金组织粗大,成分偏析严重,所以此成形方法发展前景有限。

2.2.3粉末冶金

粉末冶金方法主要有:真空热压烧结、热等静压、注射成形和无压烧结等,它可以解决熔铸中产生的成分偏析、组织粗大、铸锭中心孔洞等缺陷,而且粉末冶金的原材料为单质元素分或是预合金粉,所以这与TiAl微合金化的发展是极为适合的。但是,粉末冶金所需的合金粉制备工艺要求严格,成本高,很难实现大规模的工业生产。这就要求学者寻求一种最为合适的粉末制备工艺和合金的冶金工艺。

无论是微合金化或是先进的成形制备工艺,对制备出的TiAl合金进行适宜的热处理,在细化合金组织,稳定合金结构方面有着不可忽视的作用。根据人处理工艺的不同,可以得到四种不同的显微组织形貌:全片层组织(FL)、近全片层组织(NF)、双态组织(DL)和近γ(NG)组织。经学着分析,全片层组织的合金晶粒粗大、塑性差,但具有良好的断裂韧性和高温抗蠕变性能;近全片层组织的合金,其强度高,但塑性中等;双态组织的合金,除拉伸塑性优异外,其他性能均较差;近γ组织合金,各项性能均较差,科研学者已很少关注。

3、展望

TiAl作为航空航天领域及其重要的高温结构材料,学者们已定出了合金成发展方向为高Nb低Al,但是关于多数的单合金元素对其性能的影响,尤其是多种合金元素的协同作用对合金性能的影响机理还不够完善,需在这一方面进一步研究。另一方面,在TiAl合金的成形方面,需提高铸锭的质量,或通过合适的热处理工艺来使其组织均匀化;进一步研究粉末冶金在TiAl合金中的应用,有其是注射成形方面,寻求合适的成形工艺。

参考文献

[1]沈勇,丁晓非,王富岗,谭毅,Jenn-Ming Yang.高铌TiAl基合金高温抗氧化性能研究[J].中国腐蚀与防护学报,2004,24(4):203-207.

[2]林有智,傅高升,曹睿,陈剑虹,胡大为.γ-TiAl 基合金压缩损伤与断裂行为的研究[J].稀有金属,2014,38(2):334-339.

[3]王刚,郑卓等.TiAl预合金粉末的表征和后续致密化显微组织特点[J].金属学报,2011,47:1263-1269.

[4]赵晓红.粉末冶金TiAl基合金的制备与高温压缩变形行为研究[D].哈尔滨工业大学硕士学位论文,2008:14-17.

[5]李志强,韩杰才,郝晓东等.烧结合成TiAl金属间化合物的反应机制[J].稀有金属材料与工程,2002,1(1):4-7.

[6]刘咏.元素粉末冶金TiAl基合金制备工艺及成形技术[D].湖南:中南大学,1999:38.

粉末冶金法的优缺点范文5

关键词:冶金;技术;风险

一、冶金行业的技术优化选择

近几十年来,冶金技术取得了重大突破和明显进步,下面对其中典型几种进行介绍

1、炉外炼钢技术

炉外精炼的主要任务是脱碳、脱氧、脱硫、去气、去杂质、调整温度和化学成分等。炉外精炼可大幅度地提高钢的质量、缩短冶炼时间、简化工艺流程和降低产品成本等。常用的方法有:DH法,也称真空脱气脱氧法,它是在钢液冶炼完毕后,再进行脱氧的一种方法;RH法,也称真空循环脱气法,钢液在重力、真空和吹氩三个因素的作用下不断进入真空室内,使其充分脱气;ASEA法,它是将加热、搅拌、真空等综合在一起的一种炉外精炼法,还有较强地脱硫能力和去除杂质的效果;VOD法,有很强的脱碳能力,在冶炼不锈钢时很容易把碳含量降低到0.02%-0.08%,而铬几乎不被氧化,该方法也有良好的去气去杂质能力,可以生产出非常纯净的钢;AOD法,利用氩气稀释方法使 6W 分压降低,而不需要真空设备,AOD法能顺利地冶炼低碳和超低碳不锈钢,脱硫和降低杂质的效果也很明显,为了保证炉外精炼效果,还可以对铁水进行预处理,即预先对铁水进行脱硫、脱磷、脱硅等处理,最常见的是脱硫处理,向铁水包中加入脱硫剂,主要成分是钙、镁、稀土等,它与铁水中的硫作用生成稳定的化合物后进入渣相,达到使铁水脱硫的目的。

2、轧钢技术

在轧钢方面,最重大的进展是热控轧制技术的成熟和应用,和以往同样强度级别的钢材相比较,热控轧制技术生产的钢材降低了碳含量和其它合金成分含量,因而使钢的焊接性及接头的力学性能得到很大改善。这种技术生产的钢也被称为TMCP钢。TMCP钢包括控制轧制钢、经CR处理后加速冷却钢和直接淬火钢,现在一般的TMCP钢多指控制轧制钢,如果采取了加速冷却则称为水冷型钢。另外,加速冷却还改变钢的最终组织―――铁素体、珠光体、贝氏体和马氏的比例,也能提高钢的抗拉强度。总之,通过控制轧钢过程中的加热温度、轧制温度、变形量、变形速率、终轧温度和轧后冷却工艺等参数,使轧件的塑性变形与固态相变相结合,可以获得细小的晶粒和良好的组织,提高钢的强韧性,使其成为具有优异综合性能的钢。

3、粉末冶金技术在冶金中的应用

粉末冶金是制取金属或用金属粉末作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金技术可以最大限度地减少合金成分偏聚,消除粗大、不均匀的铸造组织。是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。由于粉末冶金技术的优点,它已成为解决新材料问题的钥匙,在新材料的发展中起着举足轻重的作用。

4、生物技术在冶金中的应用

生物冶金被认为是本世纪最有前景的技术,对于生物冶金存在的反应时间长、生产周期长、温度要求高等缺点,生物技术在冶金工业中发展潜力很大,随着对矿产资源的大量开采,高品位、易选矿产资源已日趋减少,开发利用低品位矿产资源以及回收利用矿山的废渣、矿渣已成为人们的共识,而生物冶金在这些方面有独到的优势。它不仅能经济地处理低品位、难处理矿石以及矿渣,而且还具有对环境危害小、投资少、能耗低、药剂消耗少等优点。尽管它存在生产周期长、温度要求严格等缺点,但是在矿产资源日益贫乏和环保要求越来越严格的情况下,它还是具有其独特的作用,代表了冶金技术发展的一个重要方向。

二、冶金项目中的技术风险分析

正如上文分析,近年来,冶金技术取得了重大突破和明显进步,但是技术先进应不一定意味着风险的减少,现实中一些冶金企业不适应市场经济的要求,经营机制不活、技术创新能力不强,主要表现为:有些企业的领导人对创新的重要性认识不足,科技创新意识淡薄或缺乏前瞻性。部分企业从事科研、技术开发、创新的人才严重不足,有专长的青年科技人才留不住,技术创新缺乏内在的动力机制,致使企业难以根据市场变化进行技术改造和新产品开发。投入技术创新的研究和开发经费严重不足。多数企业对技术创新的有效需求不足,对高新技术的开发、消化、吸收功能弱。由于市场竞争的非规范性,缺乏知识产权的保护,假冒伪劣和盗版现象严重,企业研究成果得不到有效保护,极大地挫伤企业研究开发的积极性。比如 TG 公司与德国米尔实验室联合研制的轧管新技术,也就是取得了 5 年的保护期,目前,各大冶金企业新上的轧管机组均是该技术,使 TG 公司的技术优势猛然消失。冶金企业中,由于受市场需求的产品技术含量比较固定,使相当比例的产品创新程度低,如:钢板、螺纹钢以及线材等产品。这些企业更多的是在独立进行本企业的技术创新活动。这些问题的产生都给冶金项目带来巨大的风险隐患。

三、降低冶金项目风险的技术措施

1、运用企业自身研发的新技术方法和工艺最大限度的缩短工期,减少台班的使用以降低承包项目单位的风险。施工企业在承担冶金工程项目时可以根据施工现场的条件和所施工的项目,从施工工艺入手采用新技术来提高工作效率。这种方法在迁钢大包转台安装时曾成功的应用。

2、投标报价阶段利用技术分析生产工艺和工程图纸,仔细核对分析工程量清单中的工程量,确定哪些项目能早日结;哪些项目工程量预计今后会增加;哪些图纸中不明确,根据经验预计修改后工程量可能增加,针对这些项目,在投标报价时,将其综合单价适当提高,而对那些工程量可能减少的项目可适当降低单价。这样既不提高投标总报价,又不影响中标,又能在结算时得到更理想的经济效益。以规避低价中标所带来的风险。

3、已中标工程给定的工程量清单中,利用技术分析生产工艺和工程量中的材料,利用对生产工艺的研究,对工程量清单中部分项目内容归类采用统一综合单价,来降低高风险材料在子项目中的比例达到降低或消除已存在的风险目的。

4、建立完善技术创新的执行系统

建立一把手领导下的总工程师技术负责制和总经济师效益负责制,作为企业技术创新的两条并行的执行系统,在总经理和总工程师、总经济师的直接指挥下,加强企业的技术中心经济信息工作,建立完善企业技术创新信息系统,及时为总经理、总工程师、总经济师和企业的技术创新工作服务。根据总经理的设计和决策,总工程师主要负责领导技术开发方面的工作,包括市场调查、具体设计、产品开发、工装改进、质量保证、人员培训及科技管理等。总经济师主要负责领导市场开发方面的工作,包括市场调查、成本核算、营销策略、售后服务、信息反馈及财务管理等。这两条线原则上分工不分家,要及时通气,协同作战。

5、建立目标约束和重奖激励的机制

粉末冶金法的优缺点范文6

模具使用寿命取决于抗磨损和抗机械损伤能力,一旦磨损过度或机械损伤,须经修复才能恢复使用。目前可采用的修复技术有电镀、电弧或火焰堆焊、热喷涂(火焰、等离子)等。电镀层一般很薄,不超过0.3mm,而且与基体结合差,形状损坏部位难于修复,在堆焊、热喷涂或喷焊时,热量注入大,能量不集中,模具热影响区大,易畸变甚至开裂,喷涂层稀释率大,降低了基体和材料的性能。

利用激光熔覆的方法可实现对模具的修复。用高功率激光束以恒定功率p与热粉流同时入射到模具表面上,一部分入射光被反射,一部分光被吸收,瞬时被吸收的能量超过临界值后,金属熔化产生熔池,然后快速凝固形成冶金结合的覆层。激光束根据cad二次开发的应用程序给定的路线,来回扫描逐线逐层地修复模具。由于激光束的高能密度所产生的近似绝热的快速加热,对基体的热影响较小,引起的畸变可以忽略,特别是经过修复后的模具几乎不需再加工。

1 激光修复系统

激光修复技术是集高功率激光、计算机、数控机床、cad/ cam、先进材料、数控技术等多学科的应用技术。修复系统主要由硬件设备和制造过程软件组成。硬件设备包括激光器、数控系统及工作台、送粉装置、光路系统、水冷装置、保护气系统和在线控制所涉及的数据采集装置。软件系统包括制造零件成型软件擞据通讯和在线控制软件。激光修复过程如图2所示。co2激光器发出的激光经cnc数控机床z轴(垂直工作台)反射镜后,进入三维光束成形聚焦组合镜,再进入同轴送粉工作头,组合镜和工作头都固定在机床z轴上,由数控系统统一控制。载气式送粉器将粉末均匀输送到分粉器的同轴送粉工作头。

模具位于cnc数控工作台x-y平面上,根据cnc指令,工作台、组合镜和送粉头按给定的cad程序运动。同时加入激光和粉末,逐层熔敷。在温度检测和控制系统作用下,使模具恢复原始尺寸。为保证熔覆材料(金属粉末)和基体(模具)材料实现冶金结合,以及模具的尺寸精度、表面光洁度和材料性能,需将φ50mm圆形多模1kw-5kw高功率激光束变换成强度均匀分布的圆形光束,光斑尺寸可调(光路系统),并配有水冷系统和光束头气体保护系统,同时需重点考虑同轴送粉装置和现场控制系统的设计。

1.1 同轴送粉装置

稳定可靠的粉末输送系统是金属零件修复质量的重要保证。粉末输送的波动将影响修复的质量。激光修复对送粉的基本要求是连续、稳定、均匀和可控地把粉末送入激光熔池。送粉装置由送粉器和同轴送粉嘴组成。在送粉器的粉斗下部,由于平衡气压的作用形成气固两相流化,并从导管开孔,随载气输送粉末。送粉量由输送气体的压力调节,拓宽了送粉范围,实现从5g/min-150g/min均匀连续可调送粉,送粉精度高达±5。设计的载气同轴粉嘴,消除了气体压力波动引起的4路送粉不均匀,并使工作距离加大,且连续可调。

1.2 模具修复过程的控制

在理论上,熔池温度场决定修复过程的宏观与微观质量,因此在激光熔覆层质量控制过程中,表征熔覆层熔池温度场的实时检测非常重要。采用红外测温技术来检测激光加工区域的温度场,结合温度场标定结果推导出实际的温度场信息,来控制激光器功率输出值以及cnc机床的运动速度,以保持熔池温度稳定,避免零件由于过热或温度不均产生裂纹气孔等缺陷。虚线范围内所示的是比色测温仪,光路系统选用单台相机,切换不同滤色片的单通道图像记录方式。滤光片及其控制保证两个滤光片(804.5nm和894.6n m)交替置于数字相机图像记录光路中,移动响应时间<10ms,由计算机控制的高精度步进电机实现准确定位。软件包括三部分:①控制滤光片转入记录光路机械控制部分;②进行实时的同步图像采集、处理以及温度场标定和计算;③用测量温度变化量所得到的过程参数,调节激光功率和机床运动速度。

1.3 激光修复模具工艺参数

激光修复伴随着传热、辐射、固化、分子取相及结晶等物理和化学变化,是个多参数过程。激光功率p、扫描速度、送粉量、熔池温度等都会对其产生影响。因此必须把参数合理地组合,以确保修复工作是在涂覆特性可知的情况下进行。在激光熔敷过程中,如果不采用特殊的工艺过程对基材的热输入量进行控制,将会使熔敷层与基体结合程度不理想,或在熔层表面和熔敷层与基材的过渡区产生裂纹。因此,合理地选择工艺参数是激光熔覆技术用于模具维修的关键因素。

根据物理冶金原理,熔敷材料和基体材料必须加热到足够高的温度才能满足实现冶金反应所无原则的条件,最终形成几何外形规则的熔敷层,见图1,根据经验,应尽可能使熔敷材料加热到较低的温度,这样可以减小熔敷裂纹、畸变倾向,也可避免熔敷材料的烧损和蒸发,需控制熔化材料的熔点(取基体、粉末材料两者最高熔点)tm+(50-100)℃。参考温度场计逄,理论上p取值为1kw-2kw、为2mm/s-4mm/s可满足上述要求,至于熔覆层表面不平度,可通过调节送粉量实现其最小化。

2.2 试验方法

试验用横流连续波5kw-co2激光器,光束模式为多模,光斑直径为4mm,基体材料(模具)为5crmnmo钢,试样尺寸80mm×60mm×10mm,由于ni合金粉流动性好,与基材相结合后表面光洁,价格适中,故选用了ni60镍基合金粉末材料。试验选定激光功率p为1.5kw 。

3 试验结果分析

3. 1工艺参数对模具修复性能的影响

从熔覆层组织可以看出,激光与粉末材料相互作用充分,稀释率适中,在熔覆层内各层间组织与层内组织稍有差别,层内组织均匀细小致密,层间组织较粗大。由此可知,激光修复可以在相当宽的范围内获得组织均匀、细小致密和性能优异的修复层。测量1~3层硬度变化为85hv0.2。

试验结果表明,粉末在与激光相互作用时,如果激光功率p>5kw且扫描速度<1mm/s,基体因加热温度过高而被烧损,表面出现折皱以及气孔等质量问题。究其原因熔覆过程熔池内搅拌加剧,基体元素与金属粉末元素相互扩散严重,熔覆层开裂、变形敏感性明显上升。当激光功率p=1kw~2kw、扫描速度=2mm/s~4mm/s范围内均可得到较理想的激光熔覆层。此外,若加热温度过低无法充分熔化,难于达到修复模具的目的。扫描速度过大时出现熔覆层不连续现象,其结合强度不够。稀释率随扫描速度的增加,呈减小的趋势,而随送粉量的增大使稀释率有增加的趋势。

3.2 工艺参数对模具修复宏观形貌的影响

试验表明,在p和变化不大时,激光熔覆表面宏观形貌与送粉量关系密切,在其它条件相同的情况下,随的增大,熔覆层宽度有所变化(有变小的趋势),而熔覆层厚度明显增加,接触角加大。完全可以利用调节的方法改善熔覆层表面不平度。