量子化学基本原理与应用范例6篇

前言:中文期刊网精心挑选了量子化学基本原理与应用范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

量子化学基本原理与应用

量子化学基本原理与应用范文1

物理化学是化学类专业的重要基础课程,其基本原理被广泛地应用于其它分支学科。因而学好本课程,可以加深对无机化学、有机化学、分析化学等先行课程的理解。物理化学也是一门理论性很强的交叉学科,涉及一定的数学和物理学知识,推演出的公示很多,使初学者感到抽象难懂,普遍反映是比较难学的一门课程[1]。随着人们对物理化学现象本质的认识以及计算机技术的飞速发展,近些年来许多物理化学原理和方法得到了进一步的发展和完善。为了促使大学教师及时更新知识、丰富教学内容、提高教学水平,非常有必要在课程教学中融入相关学科领域的最新科研成果,最终达到科研促进教学的目的。鉴于此,作者将反应焓的量子化学计算研究融入到物理化学课程的热化学教学中,这极大地提高了物理化学的教学水平和教学效果,同时有助于培养学生的科研兴趣、增强学生的思维创新性。

1.物理化学教材中关于反应焓的计算

众所周知,化工生产离不开化学反应,而化学反应常常伴随着热量的交换与传递。测定或计算一个化学反应的热对于实际生产是非常重要的。由于实际生产经常是在等压或者等容条件下进行的,因此很有必要对这两种情况下的热即Qp和Qv展开学习和研究。又因为Qp和Qv之间存在直接的定量关系,所以只需要获得其中一种热效应值就可以了,一般倾向于讨论Qp。在非体积功为零的条件下,Qp与反应焓变H在数值上是相等的,故恒压反应热又可称之为反应焓。目前,物理化学教材[1]中关于化学反应焓的计算,主要是利用标准摩尔生成焓和标准摩尔燃烧焓这两种基础热数据计算标准摩尔反应焓。通过标准摩尔反应焓可以进一步计算化学反应过程的Qp、Qv以及体系的rH和rU等。因此,标准摩尔反应焓的计算是物理化学课程的一个重要知识点,所涉及的相关内容也是物理化学课程的教学难点。

对于298.15 K下的反应cC + dD yY + zZ,其标准摩尔反应焓等于:

也就是说,298.15 K下的标准摩尔反应焓等于相同温度下参加反应的各个组分的标准摩尔生成焓与其化学计量系数乘积的代数和。结合νB的取值情况,其实质是:一个化学反应的标准摩尔反应焓等于各产物的标准摩尔生成焓之和减去各反应物的标准摩尔生成焓之和。

如果利用标准摩尔燃烧焓计算上述化学反应的标准摩尔反应焓,那么相应的计算公式为:

显然,一个化学反应的标准摩尔反应焓等于参加反应的各个组分的标准摩尔燃烧焓与其化学计量系数乘积的代数和的负值。

2.反应焓的量子化学计算方法

根据文献“Thermochemistry in Gaussian”白皮书[2]可知,对于一个化学反应来说,如果反应物和生成物中各种原子的个数均相等,那么在计算该化学反应过程的反应热时,有关原子的信息就可以抵消,其反应热的计算只需要分子的数据。具体的计算公式如下:

其中Em表示分子总能量,Hc表示热焓校正,二者之和可以直接从Gaussian程序的输出文件中读取。此处量子计算化学研究的对象一般是单个气态分子,因此上述公式中的Em准确地说是气态单分子的总能量,Hc是气态单分子的热焓校正值。由此可见,这里所说的化学反应都是在气相中进行的,即参与反应的各个组分均为气态。这也正是该理论计算方法的局限性和不足之处。但是,对于某些液相或者固相反应来说,同样可以利用该方法粗略地估算其标准摩尔反应焓。

3.乙醇脱水制取乙烯的化学反应焓

以乙醇脱水制取乙烯的气相化学反应为例,介绍量子化学方法计算标准摩尔反应焓的步骤和具体过程。首先,利用GaussView软件分别绘制乙醇、水和乙烯的分子结构,编辑各自的输入文件。然后,采用Gaussian03程序优化它们的分子结构,并且进行振动分析以判断它们为势能面上的稳定点。图1给出了乙醇、水和乙烯在B3LYP/6-311++G?鄢?鄢理论水平下的优化分子结构。

此外,通过查阅物理化学教材[1]的附录获得乙醇、水和乙烯的气相标准摩尔生成焓分别为-235.10kJ/mol、-241.82kJ/mol和52.26kJ/mol,进而采用公式(1)计算乙醇脱水制取乙烯的标准摩尔反应焓等于45.54kJ/mol。其次,打开它们的Gaussian输出文件,得到每个组分的分子总能量Em与其热焓校正值Hc之和,再利用公式(3)计算该反应在298.15 K时的标准摩尔反应焓。在此基础上,计算各种理论水平下的误差,相关热化学数据的理论值及其误差列于表1。

量子化学基本原理与应用范文2

今年是我国著名的物理学家和杰出的教育家芶清泉教授诞辰100周年.先生的学术生涯长达七十余载,他对我国原子分子物理、固体物理、高压物理、物理力学等学科领域的发展做出过重大贡献.在相当长时期内,先生是这几个学科发展的规划者、组织者、和领导者,他所培养的众多弟子现在都是这些学科领域的科研中坚力量,甚至有的已成为学科领导者.他编著的《原子物理学》和《固体物理简明教程》著作直接影响了我国几代物理学子的成长.同时,由他创刊的《原子分子物理学报》以及他与经福谦先生合作创刊的《高压物理学报》这两个学术交流和成果平台大大促进了这两个研究领域的学术繁荣.在分享先生这些杰出贡献的同时,我们通过回忆和总结先生的学术思想和深邃智慧,以表达对恩师的敬意,起到承前启后和促进学术进步的作用.高压下原子分子物理是先生提倡和发展的重要研究方向之一,其中蕴藏着深刻的学术思想.上世纪80年代,我国科学事业迎来空前的大发展期.一方面,国防需求提出了大量的高压凝聚态物理问题,另一方面,原子分子物理学已经发展到能够解决某些工程需求的水平.

特别是计算科学的迅速发展,使解决高温高压极端条件下某些物理问题成为可能.在此背景下,先生提倡从原子分子物理基本原理出发解决高温高压凝聚态物理问题,与国际上基于电子能带论发展的固体物理相比,这种以发展原子分子物理新方法解决高温高压复杂问题的思路是一种极具特色的学术思想.这个思想的基本内涵包括:(1)物质构成观:认为在高温高压下物质体系仍然由某些具有局域电子结构的相对稳定单元构成,如分子、原子、或离子等;(2)结构变化观:认为在高温高压下这些相对稳定单元的几何结构和电子结构可以在一定程度内发生变化,如键长、键角、取向、原子壳层结构、电子密度分布等;(3)相互作用观:这些相对稳定的结构单元之间存在相互作用,即“原子间力”,如长程库伦力,范德瓦尔斯力等;(4)能量最低原理:认为体系结构单元划分、结构变化、和相互作用这三个环节必须受能量最低原理约束,如通过变分法求解体系总能量.不难发现,先生所提倡的高压下原子分子学术思想包含着丰富的哲学思想和系统性方法论.它在方法论上体现出分析与演绎相结合,在认识论上体现了还原论与重构论的统一.当人们采用分析法和还原论思维在研究孤立原子分子物理问题方面取得了巨大成功的同时,自然会面临演绎和重构的挑战,即如何基于局部的微观分析方法获得对高温高压复杂体系的系统认识.这个学术思想既为原子分子物理问题提出了新的挑战,也为解决高压凝聚态物理问题提供了新的研究途径.因此,它包含深刻哲理、丰富内涵、深邃智慧、具有重要的学术价值和科学意义.高压下原子分子物理学术思想在先生指导博士研究生论文过程中不断得到发展.在王新强博士的学位论文中首先提出“离子重叠-压缩模型”解决碱金属氢化物晶体的高压状态方程和高压结构相变问题[1,2].在这个模型中,氢化锂晶体被认为由氢负离子和锂正离子构成;在高压作用下氢负离子的电子云密度分布会由于离子间电子轨道重叠排斥效应而受到压缩;在晶体结合能表达式中包含了正负离子间库伦势能、邻近离子对之间的短程排斥能、以及由离子的电子轨道压缩效应引起的部分压缩能贡献.排斥能和压缩能的取值受体系总结合能极小条件约束.这个模型比较完整地体现了先生关于高压下原子分子物理的学术思想,其中计算工作完全采用解析波函数和量子化学计算方法完成,计算软件由研究作者自己编写,给出了准确的晶体结合能.先生一直非常推崇这项研究工作且把它当作典型范例推广,并希望理论研究能指导实验工作.随后裴春传博士参与到氢化钠和氢化钾体系的研究工作中,也获得一定成功[3].与国际上流行的晶体能带计算方法相比,“离子重叠-压缩模型”的物理图像最为清晰,它强调在晶体中电子云重叠排斥效应的局域性贡献.在随后几年中,先生安排博士研究生继续推广这个研究思路,同时希望指导实验研究获得更大成功.芶先生安排我利用刚建立的二级轻气炮加载设备开展氢化锂高压状态方程与相变问题的实验研究,该项研究得到经福谦先生的支持;又安排张中明博士采用相同的计算方法解决碱金属锂的卤化物(LiF和LiCl)的高压状态方程问题.但这两方面研究结果都出乎意料.实验发现实际氢化锂晶体在高压下比模型计算结果更易压缩得多,表明上述模型并不如预期的完美[4].张中明和我在王新强博士指导下将原先计算NaH和KH体系的程序用于LiF和LiCl体系研究,计算结果与预期差别也很大.不难发现,NaH和LiF,以及KH和LiCl,本来是两个等电子体系,计算方法不能同时描述这两个体系就意味着理论模型存在明显缺陷.为此,先生感到很困惑,他也意识到“离子重叠-压缩模型”可能低估了次邻近离子的贡献.由于研究计划受阻,张中明的博士论文改为解决氟化钠和氯化钠晶体的高压状态方程问题[5].高压下原子分子物理学术思想在后续研究工作中得到进一步发展.自“离子重叠-压缩模型”在实验验证和理论推广两方面都遇到挑战之后,该模型的进一步完善问题成为需要解决的关键.为了避开离子压缩和次邻近离子贡献等因素,我们将这个模型应用于氦原子体系.我们注意到,先生本人早前计算过两个氦之间排斥势(即氦原子对势),并计算过氦气的二阶维里系数[6].我们采用这个势计算液态氦的Hugoniot曲线,发现计算结果与实验测量结果偏差很大[7].这个结果让我们意识到“离子重叠-压缩模型”推广到高压情形时面临自身问题,这个问题既不来自离子压缩效应(因为氦原子极难压缩),也不来自邻近粒子贡献,而在于它忽视了多体相互作用.事实上,当多个原子或离子的电子轨道发生重叠时,具有波动性的电子会发生复杂的干涉效应,导致电荷密度分布发生明显变化,这种变化的结果是破坏了短程排斥势能按原子对的可加性,即表现出复杂的多体相互作用特征.

为了证实高压下氦原子相互作用呈现出复杂的多体效应,我对一系列氦原子团簇的势能进行多体展开研究[8,9],将两体、三体、四体、五体关联的贡献分别计算出来进行比较后,发现随压力增加多体贡献确实增大,同时揭示了多体屏蔽效应所导致的对势软化机理[10,11].采用类氦原子近似,我们计算了氢分子间三体和四体相互作用贡献[12].随后,我们将氦团簇的研究工作延伸到高压下氦晶体中多体关联贡献的计算,并从结合能的多体展开式出发获得了更准确的总势能计算方法[13-15].基于新发展的晶体氦多体关联计算方法,我们发展了“原子重叠—多体相互作用模型”,从氦原子间多体相互作用角度解决氦体系的高压状态方程精确计算问题[16,17].计算结果不仅与现有高压实验观测结果一致,而且在100-200GPa压力范围内给出了可靠的状态方程.为了解决氢化锂晶体高压状态方程,我们改进了“离子重叠-压缩模型”,发展了“粒子重叠-压缩-多体相互作用模型”,并考虑了次邻近离子贡献,计算结果与现有高压实验数据一致,获得了该体系在100GPa压力区高压状态方程[18].后来,“原子重叠-多体相互作用模型”被应用到其它惰性原子体系,包括氩、氪等体系,都能精确地给出这些体系的高压状态方程[19,20].高压下原子分子物理问题主要基于电子局域结构的体系而提出,这类体系的总势能可以通过局域累加求得.如果将这种方法用到电子的非局域运动起决定作用的体系,例如金属,多体展开式的收敛性差,因为在这些体系中次邻近原子的贡献大.在固体电子理论非常盛行的今天,“高压下原子分子物理”的提法是否已经过时呢?我的回答当然是否定的.这种学术思想强调相互作用的局域性以及从少体系统向多体系统再向晶体过渡的研究思路,具有非常清晰的物理图像,可以直接推广到无序系统和高温液态系统的描述.这是基于总能量计算的固体电子能带论无法获得的认识.再者,基于局域少体相互作用的计算方法不需引入密度泛函近似和对称性限制,它是一种基于量子化学从头算的精密计算方法.因此,即便在崇尚固体电子能带论的今天,高压下原子分子物理仍然具有学术生命力.

作者:刘福生 单位:西南交通大学高温高压物理研究所

量子化学基本原理与应用范文3

关键词:物理教学;数学手段;物理教学理念

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)01-0266-02

一、前言

物理是一门研究自然界变化规律的科学。物理逻辑性强,物理教学中离不开数学,需要通过数学公式来表达物理思想,通过数学演算揭示事物发展规律,同时也为数学的发展提供新的命题。成功的物理的教学理念往往体现出物理和数学这种相辅相成的关系。

二、物理教学理念处处体现数学的重要性

物理教学应该具备相应的理念,这些教学理念也可以在物理、数学的密切关系中得到体现。在设计物理教学时应该具备的教学理念有:

1.注意分享物理发展史,介绍物理发展史上著名的物理问题的提出和解决过程,回顾大师足迹,激发学生兴趣,这就必然离不开阐述物理和数学的关系。物理发展史上有很多物理学家,他们同时也是数学家。比如牛顿,牛顿19岁时进入剑桥大学,他的第一任教授伊萨克・巴罗是个博学多才的学者,将自己的数学知识,包括计算曲线图形面积的方法,全部传授给牛顿,牛顿在数学的学习中走向了近代自然科学的研究领域,又在自然科学的研究中提出二项式定理、微积分、解析几何与综合几何、数值分析、概率论和初等数论,牛顿在他的论著《自然哲学中的数学原理》中明确提到了物理――数学方法,认为物理学范围中的概念和定律都应该“尽量用数学表达”。因此,介绍牛顿的贡献必然离不开介绍牛顿为物理、数学两个领域建立的桥梁,牛顿的贡献是阐述物理和数学之间不可分离的关系的最生动的实例。

2.提醒学生重视物理学科的研究方法,在传授知识点的时候介绍相应的方法论。物理问题的表述、解答、定律都离不开数学,物理学研究方法与数学发展紧密相关,不同分支的物理学科有其最重要的数学理论,要掌握不同分支的物理知识必须熟悉其相应的数学方法,否则就是离本之木。比如分析力学的创立者拉格朗日,在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,拉格朗日发展了达朗贝尔、欧拉等人的研究成果,引入了势和等势面的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,使得分析力学成为理论力学最重要的方法论。高斯通过对足够多的测量数据的处理,得到一个新的、概率性质的测量结果,在这些测量数据的基础之上,高斯专注于曲面与曲线的计算,成功得到正态分布曲线,其函数被命名为标准正态分布(或高斯分布),这种分布被广泛应用于分析和处理物理学中各种概率事件中。傅里叶认为数学是解决工程问题最卓越的工具,在他的著作《热的解析理论》中,傅里叶就系统运用了三角级数和三角积分(即傅里叶级数和傅里叶积分),此后以傅立叶著作为基础发展起来的傅立叶分析对近代物理和工程技术的发展都功不可没,因此,学好物理某一分支,就必须重点掌握并能够灵活运用这一分支需要的数学知识。

3.注重将物理知识与生活、社会联系起来,启发学生创造性思维,提高学生素质。国际纯粹物理与应用物理联合会在《新千年的物理教育》一文中认为:如果物理教育是为更多学生的全面发展服务的,那就应当重视物理学家的工作成果在社会上、技术上的应用,应当重视蕴涵于我们文化之中的物理学方法,应当重视物理学家这个专业群体的特点,如支持、贡献社会的方式等。如今,物理已经渗透到社会生活、技术的各个领域,比如,物理和化学之间,量子化学、激光化学、分子反应动力学、固体表面催化、功能材料等学科的兴起都是物理学的理论向化学领域的渗透;物理和生物学之间,量子生物学、分子生物学等也都是物理理论在生物学领域的进一步延伸和提高;再比如物理与经济学,股市模型、报酬经济学等都建立在物理模型和经济学基础相结合的基础上。然而,我们也必须注意到,物理向某个科学领域渗透的媒介必然是数学,物理学家对这一学科的贡献也报过了其用到的数学方法,因此,强调物理学的应用就必须强调数学的重要性。比如免疫的统计模型建立的基石是数学统计、回归分析论,通过各种先进数学算法得出规律性结论,多元判别分析预测结果与原判定结果差异等。股市模型可以建立在模糊数学方法基础上,应用模糊模式识别、评价股市技术面和基本面,指导股民进行理性投资。因此,物理向各学科领域渗透的过程,也是相应的数学知识与各领域特征知识进行结合的过程,只有深刻意识到这一点,物理思想才能在各学科领域中发光溢彩。

4.引导学生建立严谨、务实的求知态度,帮助学生认识到物理的哲学思想,实现自然科学和人文教育的大统一。物理是研究运动的科学,物理上的运动可以理解为变化,变化是自然界的客观存在,与人类的主观认知有不同的一面,这就要求我们在物理教育过程中,不能让人类的认知水平左右到对物理知识的接受,不能偏离物理客观的一面。而数学作为一门逻辑性很强的科学,最适合于作为物理教育的语言载体和分析工具,由数学推导、建立起来物理结论无疑最具有说服力,物理教学要以数学为主要载体,在数学的基础上向学生熏陶物理思想,在经得起推敲的层面上,保证物理知识的延续和发扬,同时培养思维细致、逻辑缜密的公民。爱因斯坦在他的狭义相对论中得出了“一切物体的速度不可以超过光速”的结论,而根据当时人们对引力的认识,似乎引力的传播速度却是无穷大,为了解决这一问题,最终爱因斯坦以惯性质量和引力质量成正比的自然规律作为等效原理的根据,在专门学习了黎曼几何、张量分析等数学知识后,利用数学手段进行推理、论证,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空的观点。爱因斯坦用数学方法得到的广义相对论中的推测,也最终由水星近日点进动中一直无法解释的43秒、引力红移、引力场使光线偏转等系列观测结论完美地证实。如今广义相对论已经被广泛承认,广义相对论的发展里程也正是一条典型的物理学发展进程:在自然界中发现变化―借助数学方法摸索规律―通过实验证实推断,这种思维方式应该在物理教学中得到落实。

三、在强调数学手段的重要性中贯彻物理教学理念

学习物理的目的分为:①研究物理而学物理;②为应用而学物理;③为提高文化素养而学物理。这就构成了物理教学目的的多样性或者说物理学习的多功能性。但从物理学的发展我们知道,18世纪,物理学归属于自然哲学,因为数学和实验的发展,使得物理学从自然哲学中分离出来,物理学研究不再以思辨哲学的方法为主,从定性表达发展到定量表达,塑造了现代物理学的新特征物,因此,物理研究终究需要通过数学手段来完成。物理和数学都是逻辑性强的学科,因此物理教学设计要关注学生渴求学习成功的心理,拓展教学方法和思路,使学生通过数学来理解物理,获得物理学习的乐趣,要尽可能多地在双向交流中进行数学推导,在数学的基础上采用提问模式、讨论模式、合作学习模式、答辩模式等。