欧姆定律的概念范例6篇

前言:中文期刊网精心挑选了欧姆定律的概念范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

欧姆定律的概念

欧姆定律的概念范文1

关键词:欧姆定律;适用范围;微观机理;导电材料;能量转化

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)12-0039-2

人教版《普通高中课程标准实验教科书物理选修3-1》《欧姆定律》一节内容围绕电阻的定义式、欧姆定律和伏安特性曲线三部分展开,图1为教材的两段文字,意思是当金属导体的电阻不变时,伏安特性曲线是一条直线,叫做线性元件,满足欧姆定律;“这些情况”的电流与电压不成正比,是非线性元件,欧姆定律不适用[1]。随后,教材举例小灯泡和二极管的伏安特性曲线,指出两个元件都是非线性元件。在遇到欧姆定律时,不论是年轻教师还是学生常常感到疑惑:欧姆定律适用范围究竟是金属和电解质溶液还是线性元件?小灯泡是金属,又是非线性元件,究竟是否满足欧姆定律?

[导体的伏安特性曲线 在实际应用中,常用纵坐标表示电流I、横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。对于金属导体,在温度没有显著变化时,电阻几乎是不变的(不随电流、电压改变),它的伏安特性曲线是一条直线,具有这种伏安特性的电学元件叫做线性元件。图2.3-2中导体A、B的伏安特性曲线如图2.3-3所示。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其他导体是否适用,仍然需要实验的检验。实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说,在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。]

1 欧姆定律的由来

1826年4月,德国物理学家欧姆《由伽伐尼电力产生的电现象的理论》,提出欧姆定律:在同一电路中,通过某段导体中的电流跟这段导体两端的电压成正比。欧姆实验中用八根粗细相同、长度不同的板状铜丝分别接入电路,推导出 ,其中s为金属导线的横截面积,k为电导率,l为导线的长度,x为通过导线l的电流强度,a为导线两端的电势差[2]。当时只有电导率的概念,后来欧姆又提出 为导体的电阻,并将欧姆定律表述为“导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。”

关于欧姆定律的m用范围,一直存在争议,笔者认为可以从不同角度进行陈述。

2 欧姆定律的适用范围

2.1 从导电材料看适用范围

欧姆当年通过对金属导体研究得出欧姆定律,后来实验得出欧姆定律也适用于电解质溶液,但不适用于气体导电和半导体元件。

从微观角度分析金属导体中的电流问题,金属导体中的自由电子无规则热运动的速度矢量平均为零,不能形成电流。有外电场时,自由电子在电场力的作用下定向移动,定向漂移形成电流,定向漂移速度的平均值称为漂移速度。电子在电场力作用下加速运动,与金属晶格碰撞后向各个方向运动的可能性都有,因此失去定向运动的特征,又回归无规则运动,在电场力的作用下再做定向漂移。如果在一段长为L、横截面积为S的长直导线,两端加上电压U,自由电子相继两次碰撞的间隔有长有短,设平均时间为τ,则自由电子在下次碰撞前的定向移动为匀加速运动,

2.2 从能量转化看适用范围

在纯电阻电路中,导体消耗的电能全部转化为电热,由UIt=I2Rt,得出 在非纯电阻电路中,导体消耗的电能只有一部分转化为内能,其余部分转化为其他形式的能(机械能、化学能等), 因此,欧姆定律适用于纯电阻电路,不适用于非纯电阻电路。

金属导体通电,电能转化为内能,是纯电阻元件,满足欧姆定律。小灯泡通电后,电能转化为内能,灯丝温度升高导致发光,部分内能再转化为光能,因此小灯泡也是纯电阻,满足欧姆定律。电解质溶液,在不发生化学反应时,电能转化为内能,也遵守欧姆定律。气体导电是因为气体分子在其他因素(宇宙射线或高电压等条件)作用下,产生电离,能量转化情况复杂,不满足欧姆定律。半导体通电时内部发生化学反应,电能少量转化为内能,不满足欧姆定律。电动机通电但转子不转动时电能全部转化为内能,遵从欧姆定律;转动时,电能主要转化为机械能,少量转化为内能,为非纯电阻元件,也不满足欧姆定律。

2.3 从I-U图线看适用范围

线性元件指一个量与另一个量按比例、成直线关系,非线性元件指两个量不按比例、不成直线的关系。在电流与电压关系问题上,线性元件阻值保持不变,非线性元件的阻值随外界情况的变化而改变,在求解含有非线性元件的电路问题时通常借助其I-U图像。

从 知导体的电阻与自由电子连续两次碰撞的平均时间有关,自由电子和晶格碰撞将动能传递给金属离子,导致金属离子的热运动加剧,产生电热。由 知导体的温度升高,τ减小,电阻增大。因此,导体的电阻不可能稳定不变。当金属导体的温度没有显著变化时,伏安特性曲线是直线,满足“电阻不变时,导体中的电流跟导体两端的电压成正比”。理想的线性元件是不存在的,温度降低时,金属导体的电阻减小,当温度接近绝对零度时,电阻几乎为零。小灯泡的伏安特性曲线是曲线,是非线性元件,当灯泡电阻变化时,仍有I、U、R瞬时对应,满足欧姆定律 如同滑动变阻器电阻变化时也满足欧姆定律[3]。

2.4 结论

综上所述,从导电材料的角度看,欧姆定律适用于金属和电解质溶液(无化学反应);从能量转化的角度看,欧姆定律适用于纯电阻元件。对于线性元件,电阻保持不变,导体中的电流跟导体两端的电压U成正比,欧姆定律适用。从物理学史推想,欧姆当年用八根不同铜丝进行实验,应该是研究了电压保持不变时,电流与电阻的关系,以及电阻保持不变时,电流与电压的关系。虽然都是非线性元件,小灯泡是金属材料,是纯电阻元件,满足欧姆定律,二极管是半导体材料,却不满足欧姆定律。因此,线性非线性不能作为欧姆定律是否适用的标准。

3 教材编写建议

“有了电阻的概念,我们可以把电压、电流、电阻的关系写成 上式可以表述为:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比。这就是我们在初中学过的欧姆定律。”[1]笔者以为,欧姆定律的内容是 这个表达式最重要的意义是明确了电流、电压、电阻三个量的关系,而不是其中的正比关系和反比关系,教材没必要对欧姆定律进行正比反比的表述。

“实验表明,除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。”教材已明确欧姆定律的适用范围,建议教材将线性元件和非线性元件的概念与欧姆定律的适用范围分开,同时明确线性、非线性不能作为欧姆定律是否适用的标准。

参考文献:

[1]普通高中课程标准实验教科书物理选修3-1[M].北京:人民教育出版社,2010.

欧姆定律的概念范文2

一、教材分析

《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法——列表对比法和图象法;再次领会定义物理量的一种常用方法——比值法.这就决定了本节课的教学目的和教学要求.这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法.

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础.本节课分析实验数据的两种基本方法,也将在后续课程中多次应用.因此也可以说,本节课是后续课程的知识准备阶段.

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析.这是本节课的核心,是本节课成败的关键,是实现教学目标的基础.

本节课的难点是电阻的定义及其物理意义.尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏.从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度.对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义.有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正.

二、关于教法和学法

根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法.教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动.在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见.这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃.

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律.同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯.

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用.2.对演示实验所需器材及电路的设计可先启发学生思考回答.这样使他们既巩固了实验知识,也调动他们尽早投入积极参与.3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考.4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识.到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨.5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义.此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨.此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象.6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华.要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力.教师重申时语气要加重,不能轻描淡写.要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推.7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的.然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题.

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍.

2.注意正确规范地进行演示操作,数据不能虚假拼凑.

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见.

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆.

欧姆定律的概念范文3

关键词:概念和规律;必然性;创设情境;适用范围

物理知识中最重要最基本的内容是物理概念和规律,它们是整个物理知识的基本组成元素,学好物理概念和规律,并使学生的认识能力在形成概念和掌握规律的过程中得到发展,是物理教学的首要任务。物理概念和规律是人类在探索物理世界过程中,在大量观察实验的基础上,运用逻辑思维的方法,把物理现象,物理过程的本质属性加以抽象、概括形成的。任何概念和规律的形成并非一蹴而就,都需要一个发展的过程,其发展、完善的过程不乏有过程的科学分析,研究方法的确立以及人文价值的体现,这都是新课程标准的基本理念中的内容。

物理概念和规律的教学,一般要经过四个环节:引入概念和规律的必然性,建立概念和规律的过程,讨论概念和规律的适用性, 应用概念和规律解决问题的思路。

一、引入概念和规律的必然性

每一个概念和规律的引入都有它的必然性,当我们研究问题时用以前的概念和规律无法解释时,这就为概念和规律的引入创造了必然性,例如:在引入速度时,根据学生的生活经验,体育课100米赛跑,班里谁最快?汽车与骑自行车同时开始,哪个快?学生用时间或路程比较物体运动快慢,当甲同学跑150米用30秒, 乙同学270米用50秒,甲乙谁快?此时用时间或路程比物体运动快慢就不可行,就需要建立速度的概念来说明问题。

引入概念和规律的核心方法是创设物理情境,提供感性平台,概念和规律的基础是以感性现象为出发点,通过对具体的物理现象及其特性进行概括、提炼、归纳、汇总,才能形成概念,对于物理现象变化规律及概念之间的本质联系进行概括、归纳,就形成了物理规律,因此,教师要给学生提供丰富的感性素材。可以运用实验来展示感性素材的物理现象和过程,利用直观教具,利用学生已有的生活经验,以及学生已经学习过的知识来展示感性素材,让学生从这些不同的运动过程中,找出共性,从而概括定义。为形成概念、规律而选用的事例,必须是包括主要类型的,本质联系明显的。

二、建立概念和规律的过程

物理概念和规律是人脑对物理现象和过程等感性材料进行科学抽象的产物,在获得感性认识的基础上,提出问题,引导学生进行分析、综合、概括,排除次要因素,抓住主要矛盾,找出一系列现象的共性、本质属性,才能使学生正确形成概念。如功的概念的建立,是通过大量的生活情景,引导学生找出这些过程的共性,即不论哪个过程,都要有一个力,且物体都沿着这个力的方向移动一段距离。从而提炼出“功”的定义,在对共性进行概括和提炼时,教师要有意识引导学生突出本质,摒弃非本质,才能建立起正确的概念与规律。

三、讨论物理概念和规律的适用范围

教学实践证明,只有学生真正理解了的东西,才能牢固地掌握。因此,在物理概念和规律建立以后,还必须引导学生对概念和规律进行讨论,以深化认识。一般要从以下三个方面进行讨论:一是讨论其物理意义,二是讨论其适用范围和条件,三是讨论有关概念和规律间的关系。例如对于欧姆定律的讨论,首先应该让学生知道欧姆定律研究的是电流与电压、电阻的关系。而非电压与电流、电阻的关系,或是电阻与电压、电流的关系。其次要强调应用欧姆定律的对应性,这是学生特别容易出错的地方,另外还要从电压、电阻的作用入手说明电流与电压成正比,与电阻成反比的内在联系,只有把这三个方面的问题交代清楚了,学生在理解和掌握欧姆定律时才会少出错误。

四、运用物理概念和规律解决实际问题

学习物理知识的目的在于运用,在这一环节中,一方面要用典型的问题,通过教师的示范和师生共同讨论,深化活化对所学的概念和规律的理解,逐步领会分析、处理和解决物理问题的思路和方法;另一方面,更主要的是组织学生进行运用知识的练习,要帮助和引导学生在练习的基础上,逐步总结出在解决问题时的一些带有规律性的思路和方法。其次,物理知识来源于自然,它又要服务于自然,使科学技术真正成为生产力。

欧姆定律的概念范文4

【关键词】线性元件;非线性元件;纯电阻;非纯电阻元件;欧姆定律

About linear, nonlinear element and pure resistance, impure resistor’s discussion

Zhang Feng

【Abstract】Linear, the mis alignment and the pure resistance, the impure resistor’s concept is separately from two different angles the classification which carries on to the electricity component, between them not direct relation.

【Key words】Linear element; Nonlinear element; Pure resistance; Impure resistor; Ohm’s law

在欧姆定律一章的教学过程中常常会遇到有些资料或者一线教学的教师,对线性、非线性元件及纯电阻、非纯电阻元件和欧姆定律的适用关系出现一些概念上的混乱。所以在此我们就这个问题做一些专门的讨论。

人们对通过导体的电流与电压关系的实验研究中,发现温度变化不大时,常见的金属导体中所通过的电流与其两端所加的电压是成正比的,即电压与电流的比值是确定的;而对不同的金属导体这个比值是不同的。看来电压与电流的比值可以反映导体本身的一种性质,于是物理学中将其比值定义为导体的电阻。但是在后来的研究中发现也有一些导体所通过的电流与加在其两端的电压并不成正比,于是人们把电压与电流成正比的导体材料叫做线性元件(伏安特性曲线是直线),而把不成正比的导体材料叫做非线性元件。实验表明常见的线性元件除金属外还有电解质溶液。而常见的气态导体、半导体材料都是非线性元件。

我们知道物理学中的欧姆定律是实验定律,其内容表述是:导体中的电流跟导体两端的电压成正比,而跟导体的电阻成反比。这是由于欧姆当初实验是用常见的金属导体来做实验所得出的该结论。由此看来欧姆定律是只对线性元件而言的,或者说欧姆定律的适用范围只是线性元件。需要注意的是I=U/R这个公式对非线性元件仍然是成立的,对非线性元件I=U/R是在某一个工作状态下所对应的数学关系。

人们对用电器工作中能量转化问题的研究中,注意到有一类用电器所消耗的电能是全部转化为内能的,即电流做功用来全部产生焦耳热。所以电流所做的功W=UIt和焦耳实验定律中得到的电热Q=IR2t二者是相等的,即UIt=IR2t。化简得到U/I=R,可以理解为这种用电器对电流的阻碍作用全部来自于电阻,所以这种用电器被称之为纯电阻元件。相反,有些用电器所消耗的电能并没有全部转化为内能,即电流所做的功是大于所产生的焦耳热的,由UIt>IR2t可化简得到U/I>R,可以理解为这种用电器对电流的阻碍作用不纯粹来自于电阻而是还有其它的阻碍作用(将来可由反电动势、感抗、容抗等概念予以解释),所以这种用电器被称之为非纯电阻元件。

所以对纯电阻元件,其电压、电流、电阻之间还是具有等量关系的,U/I=R I=U/R U=IR都是成立的。而对非纯电阻元件因为U/I>R,所以I,U,R之间也就不再具有等量关系了。

总之,线性、非线性元件与纯电阻、非纯电阻元件的概念是分别从两个不同的角度对电学元器件所进行的分类,他们之间无直接的联系。纯电阻元件可能是线性的也可能是非线性的,而对非纯电阻元件则通常都是非线性的,当然从概念上讲也不排除将来会发现或人为合成出线性的非纯电阻元件。非线性元件不适用于欧姆定律是由于电流与电压不成正比;非纯电阻元件不适用于欧姆定律则是对电流的阻碍作用不仅有电阻还有感抗或容抗等作用,所以U/I>R。

下面我们来看两个涉及线性、非线性元件与纯电阻、非纯电阻元件的电学问题;

例题1. 要描绘某电学元件(最大电流不超过6 mA,最大电压不超过7 V)的伏安特性曲线,设计电路如图1-1所示。图中定值电阻R为1 kΩ,用于限流;电流表量程为10 mA,内阻约为5 Ω;电压表(未画出)量程为10 V,内阻约为10 kΩ;电源电动势E为12V,内阻不计。

(1)实验时有两个滑动变阻器可供选择:

a.阻值0~200 Ω,额定电流0.3 A

b.阻值0~20 Ω,额定电流0.5 A

本实验应选用的滑动变阻器是(填“a”或“b”)。

(2)正确接线后,测得数据如下表:

a. 根据以上数据,电压表是并联在M与(填“O”或“P”)之间的。 b.根据以上数据,在图1-2中画出该元件的伏安特性曲线。

(3)画出待测元件两端电压UMO随MN间电压UMN变化的示意图(无需数值)。

【答案】(1)a (2)a. P b.见解析中图1-4

(3)见解析中图1-5

【解析】(1)由于电源内阻不计,所以若使用变阻器b时,流过其电阻丝的电流(触头右侧部分)I>12/20 A=0.6 A>0.5 A,会烧毁变阻器,故只能用变阻器a。 (2)a. 由题表格数据知,被测元件的电阻R=U/I在不同电压下都在1 kΩ以上,与电压表内阻很接近,故为减小实验误差,电流表应采用内接法,即电压表应接在M与P两点之间。b. 以纵轴表示电流,以横轴表示电压建立坐标系,在纵轴上以5小格(1大格)表示1 mA,在横轴上以5小格(1大格)表示1 V,将表格中各组数据对应的点描绘在坐标系中,然后用平滑的曲线将描出的各点连接起来,即得伏安特性曲线。 (3)UMO随MN间电压UMN的变化如图1-5所示。

例题2 抽油烟机是现代厨卫不可缺少的用具,下表是“惠康牌”家用抽油烟机说明书中的主要技术参数表.用多用表测量得两只电动机的线圈电阻均为R=90 Ω.若保险丝的熔断电流是保险丝允许通过的电流的1.5倍,启动时电动机当作纯电阻处理,则

(1)这种抽油烟机保险丝的熔断电流不得低于多少?

(2)两电动机每分钟消耗的电能为多少?

(3)两电动机每分钟所做的有用功是多少?

(4)这种油烟机的机械效率是多少?

思维引导 电动机启动过程和工作过程有何不同?启动过程中电功的作用是什么?工作过程中电功分为几部分?电动机的有用功部分是做什么工作?效率的计算方法是什么?

解析 (1)电动机启动时通过的电流大于正常工作时的电流,所以保险丝的熔断电流应以启动时通过的电流来确定.I=UR×2+P灯U=5.1 A.所以保险丝的熔断电流至少:I′=1.5I=7.7 A.

(2)两电动机每分钟消耗的电能E=2Pt=22 200 J

(3)电动机所做的有用功是用于排风的,故两电动机每分钟所做的有用功为:

W=PΔV=300×15 J=4 500 J

(4)该抽油烟机的效率η=WE×100%=20.3%

欧姆定律的概念范文5

例题如图1所示,用粗细相同导线绕制的边长为L闭合导体线框,以v匀速进入右侧磁感应强度为B的匀强磁场,如图所示.在线框进入磁场的过程中,M、N两点间的电势差大小为U,下列判断中正确的是( ).

A.U=14BLv

B. U=34BLv

C. U=BLv

D. U=12BLv

易错解法

同学在刚开始学习时,经常这样解题:

解根据导体平动切割磁感线产生感应电动势

E=BLv①

设每边的电阻为R,根据闭合电路欧姆定律

I=E4R②

根据部分电路欧姆定律,MN边的电阻为R,

两端电压为U=IR③

由以上三式解得 U=14BLv

最后选A.

正确的解法:

解根据导体平动切割磁感线产生感应电动势

E=BLv①

设每边的电阻为R,根据闭合电路欧姆定律:

I=E4R ②

根据部分电路欧姆定律.MN两端电压为路端电压,U=3IR③

由以上三式解得: U=34BLv

最后选B

分析过程

第一、从两种解法对比分析,可以很明显地看出,同学对路端电压的理解不到位,路端电压应该是外电路的总电压,而不是内电阻的电压,在本题中,MN边切割磁感线产生感应电动势,则MN边就是电路中的电源,它本身的电阻就是内电阻,所以要想做对本题,需要理解好电路中电源和内阻由什么充当,内电压和外电压怎么求.这样才能做对.

第二、从含源电路欧姆定律角度进一步分析.从上边的分析来看,学生能够理解上边的基本概念和计算方法,但是学生还是不理解直接从MN求为什么不对,问题出在了哪里.

补充知识

一段含源电路欧姆定律:电路中任意两点间的电势差等于连接这两点的支路上各电路元件上电势降落的代数和,其中电势降落的正、负符号规定如下:

a.当从电路中的一点到另一点的走向确定后,如果支路上的电流流向和走向一致,该支路电阻元件上的电势降取正号,反之取负号.

b.支路上电源电动势的方向和走向一致时,电源的电势降为电源电动势的负值(电源内阻视为支路电阻).反之,取正值.

如图2所示,对某电路的一部分,由一段含源电路欧姆定律可求得

UA-UB=I1R1-ε1+I1r1+ε2-I2r2-I2R2-ε3-I2R3

根据以上知识能很好地解决同学的疑问,可以解释为什么直接计算MN边的电压U=IR不对.正确的计算,应该是一段含源的欧姆定律,MN本身就是一个电源,它两端的电压应该除了内阻电压降之外,还要加上产生的感应电动势,所以直接从MN边计算的方程应该是U=-IR+E,就可以得出正确答案.

巩固练习

例(选自2007年,山东理综卷)用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为Ua、Ub、Uc和Ud.下列判断正确的是( ).

A. Ua

B.Ua

C.Ua=Ub

D.Ub

答案B

本文就一道路端电压问题,分析了学生易出现的错误,并从一段含源电路欧姆定律进一步分析了产生错误的原因.从正反两面的分析过程、补充知识点的讲解再加上巩固练习,因此夯实了学生的相关知识,分析与解决问题的能力都得到相应的提高.

如图1所示,取小车和砝码(包括砝码盘)组成的系统为研究对象,由牛顿第二定律得 a=mgM+m=mg1M+m=

F1M+m(前提条件:平衡了小车的摩擦力)

欧姆定律的概念范文6

1 知识目标

1.1 知道电动势的定义.

1.2 理解闭合电路欧姆定律的公式,理解各物理量及公式的物理意义,并能熟练地用来解决有关的电路问题。

1.3 知道电源的电动势等于电源没有接入电路时两极间的电压,电源的电动势等于内、外电路上电势降落之和。

1.4 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。

1.5 理解闭合电路的功率表达式。

1.6 理解闭合电路中能量转化的情况。

2 能力目标

2.1 培养学生分析解决问题能力,会用闭合电路欧姆定律分析外电压随外电阻变化的规律。

2.2 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。

2.3 通过用公式、图像分析外电压随外电阻改变规律,培养学生用多种方式分析问题能力。

3 情感目标

3.1 通过外电阻改变引起电流、电压的变化,树立学生普遍联系观点。

3.2 通过分析外电压变化原因,了解内因与外因关系。

3.3 通过对闭合电路的分析计算,培养学生能量守恒思想。

3.4 知道用能量的观点说明电动势的意义。

教学建议

1 电源电动势的概念在高中是个难点,是掌握闭合电路欧姆定律的关键和基础,在处理电动势的概念时,可以根据教材,采用不同的讲法.从理论上分析电源中非静电力做功从电源的负极将正电荷运送到正极,克服电场力做功,非静电力搬运电荷在两极之间产生电势差的大小,反映了电源做功的本领,由此引出电动势的概念;也可以按本书采取讨论闭合电路中电势升降的方法,给出电动势等于内、外电路上电势降落之和的结论.教学中不要求论证这个结论.教材中给出一个比喻(儿童滑梯),帮助学生接受这个结论。

需要强调的是电源的电动势反映的电源做功的能力,它与外电路无关,是由电源本生的特性决定的。 电动势是标量,没有方向,这要给学生说明,如果学生程度较好,可以向学生说明,做为电源,由正负极之分,在电源内部,电流从负极流向正极,为了说明问题方便,也给电动势一个方向,人们规定电源电动势的方向为内电路的电流方向,即从负极指向正极。

2 路端电压与电流(或外电阻)的关系,是一个难点.希望作好演示实验,使学生有明确的感性认识,然后用公式加以解释.路端电压与电流的关系图线,可以直观地表示出路端电压与电流的关系,务必使学生熟悉这个图线。

学生应该知道,断路时的路端电压等于电源的电动势.因此,用电压表测出断路时的路端电压就可以得到电源的电动势.在考虑电压表的内阻时,希望通过第五节的“思考与讨论”,让学生自己解决这个问题。

3 最后讲述闭合电路中的功率,得出公式 , .要从能量转化的观点说明,公式左方的 表示单位时间内电源提供的电能.理解了这一点,就容易理解上式的意义:电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中。

教学设计方案

闭合电路的欧姆定律

1 教育目标

1.1 知识教学点

1.1.1 初步了解电动势的物理意义。

1.1.2 了解电动势与内外电压的关系。

1.1.3 理解闭合电路欧姆定律及其公式,并能熟练地用来解决有关的电路问题。

1.1.4 理解路端电压与电流(或外电阻)的关系,知道这种关系的公式表达和图线表达,并能用来分析、计算有关问题。

1.1.5 理解闭合电路的功率表达式,理解闭合电路中能量的转化。

1.2 能力训练点

通过用公式、图像分析外电压随外电阻变化而变化的规律,培养学生用多种方法分析问题的能力。

1.3 德育渗透点[来源:高考资源网]

1.3.1 通过外电阻的改变而引起I、U变化的深入分析,树立事物之间存在普遍的相互联系的观点。

1.3.2 通过对闭合电路的分析计算,培养学生能量守恒的思想。

2 重点、难点、疑点及解决办法

2.1 重点

①正确理解电动势的物理意义。[来源:高考资源网]

②对闭合电路欧姆定律的理解和应用。

2.2 难点

路端电压、电流随外电阻变化规律。

2.3 疑点

路端电压变化的原因(内因、外因)。

2.4 解决办法

制作多媒体课件,采用类比分析、动态画面、图像等帮助同学增强感性认识,逐步了解电动势的含义,推导闭合电路欧姆定律公式,分析各项的意义,使学生有初步整体感知,精选运用闭合电路欧姆定律分析路端电压随外电阻改变而改变的规律的典型例题,结合图像分析突破难点。

3 教学过程设计

引入新课:

教师:同学们都知道,电荷的定向移动形成电流.那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差)

演示:将小灯泡接在充满电的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭.)为什么会出现这种现象呢?

分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差.当用导线把小灯泡和电容器两极板连通后,电子就在电场力的作用下通过导线产生定向移动而形成电流,但这是一瞬间的电流.因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减少为零,所以电流减小为零,因此只有电场力的作用是不能形成持续电流的。

教师:为了形成持续的电源,必须有一种本质上完全不同于静电性的力,能够不断地分离正负电荷来补充两极板上减少的电荷.这才能使两极板保持恒定的电势差,从而在导线中维持恒定的电流,能够提供这种非静电力的装置叫电源.电源在维持恒定电流时,电源中的非静电力将不断做功,从而把已经流到低电势处的正电荷不断地送回到高电势处.使它的电势能增加。

4 课时安排[来源:高考资源网][来源:高考资源网]

1课时

5 教具学具准备

不同型号的干电池若干、小灯泡(3.8V)、电容器一个、纽扣电池若干、手摇发电机一台、可调高内阻蓄电池一个、电路示教板一块、示教电压表(0~2.5V)两台、10Ω定值电阻一个、滑线变阻器(0~50Ω)一只、开关、导线若干。

6 学生活动设计

学生观察、动手测电源电动势,并边观察边思考,逐步推导闭合电路欧姆定律,在教师的启发下逐渐理解公式含义,引导学生用公式法和图像法去分析同一问题。

7 教学过程

教师:同学们都知道,电荷的定向移动形成电流。那么,导体中形成电流的条件是什么呢?(学生答:导体两端有电势差。)

演示:将小灯泡接在充电后的电容器两端,会看到什么现象?(小灯泡闪亮一下就熄灭。)为什么会出现这种现象呢?

分析:当电容器充完电后,其上下两极板分别带上正负电荷,如图1所示,两板间形成电势差。当用导线把小灯泡和电容器两极板连通后,电子就在电场力作用下沿导线定向移动形成电流,但这是一瞬间的电流。因为两极板上正负电荷逐渐中和而减少,两极板间电势差也逐渐减小为零,所以电流减小为零,因此要得到持续的电流,就必须有持续的电势差。

教师:能够产生持续电势差的装置就是电源。那么,如何描述电源的特性?电源接入电路,组成闭合电路,闭合电路中的电流有什么规律呢?这节课我们就来学习闭合电路欧姆定律。

8 板书设计

8.1 电源电动势:等于电源没有接入电路时两极间的电压。

8.2 闭合电路欧姆定律。

闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。

8.3 路端电压跟负载的关系。

路端电压随外电阻增大而增大。