高频电源范例6篇

高频电源

高频电源范文1

(广东粤电靖海发电有限公司,广东揭阳515223)

摘要:早期的电除尘器直流高压是由380V交流电流经可控硅高压整流设备供给,控制电源原理简单,但能耗高。为响应国家节能减排政策、降低厂用电率,某电厂对电除尘器进行了改造,将电除尘直流高压电源改为HF型高频电源,无需更换整流变压器,能大幅降低电除尘器能耗,提升除尘效率,并且改造快捷、成本经济。

关键词 :电除尘器;HF型高频电源;除尘效率;能耗

0引言

某电厂#1、#2炉600MW机组配套两台电除尘器,每台电除尘器设双室四电场,每台炉配套18台高压控制柜,12台型号为GGAj02K?2.0A/72kV,6台GGAj02K?1.5A/66kV,两台炉共同配备一套上位机系统。电除尘本体、电控均为龙净环保产品,高压控制柜为龙净环保16位K型控制柜。设备投入运行10年,经过电厂锅炉烟煤改造,增设脱硝脱硫设备,运行参数发生较大改变,高粉尘比电阻产生反电晕,导致电除尘高压柜电流波动大,采样板及个别控制板故障率增高,且原设计能耗大,导致厂用电率高。

HF型高频电源采用新型高压控制器,由新型32位微控制器作为处理核心,运算速度快,并采用最新控制技术,控制器能根据烟气工况改变自动调整控制输出。高频电源无需更换整流变压器,只需将原常规高压控制柜更换为新型调制型高频控制柜,与原变压器组合成一套混合型高频电源,不仅能够大幅度降低电除尘器能耗,而且提高了除尘效率。

1电除尘器存在的主要问题分析

1.1电除尘能耗大

根据厂内设备能耗的统计,目前每台炉单台除尘器9个高压柜能耗约为510kW,每台炉单高压电源能耗约为1000kW。能耗较大,有较大节能空间。

1.2控制器技术落后

由于控制器的控制系统是20世纪90年代的控制技术,控制器的硬件、软件系统不能满足对电场闪络的精确捕捉和控制,并且在反电晕、电晕封闭和节能控制上都已满足不了现阶段的要求。经长期监控电除尘器运行情况发现,所有电场电流极限很高,但是峰值电压不高,影响电晕放电,使粉尘荷电不充分,从而影响了除尘效率。所有电场放电严重,火花率较高,这样也会影响除尘效率。原控制方式运行方式和参数为人工设定,存在一定的盲目性,没有根据工况变化(烟气量、比电阻、烟气温度变化)自动改变运行参数和运行方式,导致除尘状态不稳定,电流波动大,加快了电子设备的老化,且效率低、能耗大。

2除尘器改造的必要性

电除尘器设计效率≥99.62%,保证效率≥99.52%,比集尘面积为94.91m2/s,除尘器本体效率及比集尘面积适中,情况适中。从SIS系统看到,目前#1炉烟尘排放9.8mg/Nm3,#2炉烟尘排放5.6mg/Nm3,远低于GB13223—2011《火电厂大气污染物排放标准》要求的20mg/Nm3。

目前单台炉除尘器高压电源能耗约为1000kW,能耗较高,有较大节能空间,进行高频电源改造后,可从目前的1000kW降低到500kW之下。

3高频电源介绍

3.1工作原理

HF型高频电源结构如图1所示。其工作原理是利用现代电力电子技术,将工频电源经整流桥转化成直流电源,经逆变器逆变成20kHz以上的高频交流电流,然后通过变压器升压,经整流器进行整流滤波,最终给电除尘电场提供40kHz以上的高频脉冲电流。

3.2高频电源的技术优势和性能特点

(1)高频电源在纯直流供电条件下,可以在逼近电除尘器的击穿电压下工作,这样就可以使其供给电场内的平均电压比工频电源供给的电压提高25%~30%。一般纯直流方式应用于电除尘器的前电场,电晕电流可以提高一倍,粉尘排放降低约40%~70%。

(2)效率高,节能显著。高频电源工作在脉冲方式下,能提高电除尘器的除尘效率。微秒级的脉冲宽度,通过高压脉冲作用,能有效地提高脉冲峰值电压,增大电晕功率,提高粉尘荷电强度,克服反电晕,这有效地提高了电除尘器的除尘效率,除尘效率能达到90%以上。且采用脉冲供电方式的高频电源节能效果显著,一般较工频电源节能40%~80%左右。

(3)控制方式灵活。高频电源可根据不同运行工况的电除尘器提供最合适的电压波形,提高了电除尘器对实际运行工况的适应性。火花控制特性好,火花损失能量很小,电场恢复快。

(4)输出稳定,响应迅速快。高频电源输出关断时间小于100ms,恢复时间为5~15ms,且在100次/min的火花率下输出无压降。

(5)体积小,重量轻,工程造价低。高频电源的体积约为工频电源的1/5~1/3,且直接安装于电除尘顶部,其控制柜和变压器是一体化的,节省了配电室空间、电缆与安装费用。

(6)高频电源提高了供电系统的利用率。其输入方式为三相平衡供电,输入的相电流是非高频电源的一半,无缺相损耗,提高了供电系统的利用率。

4实际应用效果

HF型高频电源与原整流变压器组合成的混合型高频电源,在应用到除尘器的第一电场后,经过在不同煤种、各种运行工况下的试验对比,除尘效率有了明显改善。第一电场改造前后数据对比如表1、表2所示。

从数据对比可以看出,首电场应用高频电源后电晕功率降低,烟尘出口浓度没有升高,除尘效率保持良好。经过运行实际分析,与工频电源相比,高频电源的电压波动小,火花控制特性好,能快速检测火花并关闭脉冲电源,电场恢复快,使得电场平均电压较高,在间隙供电时,能有效抑制反电晕现象,适用于高比电阻粉尘工况,控制方式更加灵活。改造后,按机组每年利用小时7000h、上网电价0.4元/kW·h计算,每台炉平均每年可节约厂用电350万kW·h,提高经济效益140万元。

5结语

我国从“十一五”开始,在每个五年规划中都对节能减排制定了明确的目标,火力发电厂要成为有社会责任感的企业,必须高度重视节能减排工作,这就必然对除尘器的效率及能耗提出更高的要求。在除尘器的改造中,要结合运行实际,制定更加切实有效的方案。本例中,针对电除尘器二次电流波动大、能耗高,在原设备的基础上对电除尘器高压柜进行电源改造,结合运用HF型高频电源技术,与原整流变压器组成一套混合型高频电源,降低能耗,且保持良好的出口粉尘排放,同时还对控制器及振打进行了优化,改造成本低、工期短,改造后效果明显,值得其他电厂借鉴。

高频电源范文2

【关键词】变频器;AN8026

1.前言

变频器在能源节约、电力环保方面意义重大,电动机驱动是电能消耗大户,约消耗全国65%发电量,近三十多年来变频调速已在钢铁、冶金、石油、化工、电力等工作中得到广泛运用,其他家用电器例如变频冰箱,变频洗衣机、变频微波炉等也已相继出现[1],因此设计可靠高性能的变频器电源尤为重要。本文设计的电源采用开关电源控制集成电路AN8026,AN8026为松下公司开发的反激式单端输出开关驱动控制器,其内部采用RC充放电控制的RS触发器作为驱动信号源,其输出脉冲可直接驱动MOSFET开关管,而不必外设灌流电路[2]。

变频技术目前得到了广泛的应用,而变频器的可靠稳定运行决定了变频器性能指标,作为基础硬件,变频器电源的高效可靠运行至关重要[3]。如图1所示为变频器的拓扑结构,主要由整流单元、预充电电路、制动单元和逆变单元组成,从图中可知,变频器电源为驱动电路和控制电路提供直流电源,驱动电路则为逆变单元提供驱动能力强响应速度快的驱动脉冲,因而设计高效可靠变频器电源硬件显得尤为重要。

2.电源软开关技术及电路原理

AN8026为松下公司开发的反激式单端输出RCC型准谐振软开关驱动控制器,封装为SIP 9脚封装,各个脚号的定义如表1所示,内部框图如图2所示,其特点如下[4]:

·供电电压为下限8.6V到上限34V;

·输出脉冲为单端图腾柱式驱动脉冲;

·输出驱动电流为+1A,直接驱动M0SFET管;

·启动电流为8uA,减小启动电阻功耗;

·内置逐周控制过流保护电路;

·内置滞回特性的输入欠压8.6V保护电路;

·外置稳压管的过压保护电路。

AN8026的极限参数如表2所示,图3为AN8026的电路原理图。软开关电源主要由控制芯片AN8026、MOSFET K2225、TL431、脉冲变压器TR1等组成。VCC通过启动电阻R1、R3、R5、R6限流分压由直流母线供电,输入直流母线电压等级不同可以调节启动电阻的阻值,当达到启动电压时,变换器开始工作,此后控制芯片由副边+18V辅助绕组供电。

R8将TR1辅助绕组的感应脉冲限流,二极管D6负向箝位,将2.8V的正脉冲送入第①脚用作TR1的磁通复位检测,可以避免TR1磁能未释放完毕时开关管导通产生的冲击电流,同时保证输出电压的稳定;第②脚外接C10、R14设定最小关断时间,C10设定最小导通时间;第④脚以R15作为开关管源极电流传感器,正比于开关电流峰值电压;第⑧脚的过压保护由稳压管ZD4从Vcc端取样,使启动工作电压不超出上限值34V,DZ选用22V稳压管,同时可以实现驱动脉冲失控时输出过压保护;为了防止AN8026启动前启动电压瞬间超过28V产生误动作使电路不能启动,电路中由C13对瞬间超压尖蜂进行吸收。

开关电源的软开关主要是通过C5、C6、C7和初级绕组电感Lp组成的准谐振电路来实现,具体的器件参数需根据开关电源的开关频率来计算;同时第④脚电流检测实现过流保护;第⑧脚通过R16和C18进行启动时的过压锁定,实现开关电源软启动;通过TL431组成的反馈回路实现输出电压的稳定。

3.实验验证

根据电路原理图设计,利用软件Altium Designer Summer 09绘制PCB,并调试样机,图4所示为软开关电源实验波形。

从开关电源实验波形可知开关电源的MOSFET开关管开通和关断时电压应力几乎为零,开关管损耗近似为零,这样大大提高了开关电源效率,同时增加了开关管的寿命,提高了电源的可靠性,进而提高了变频器的可靠稳定性。

4.结论

本文设计的变频器电源板具有高效稳定的工作性能,基于AN8026控制芯片设计的软开关电源效率高、稳定可靠,能够驱动板和控制板的供电需求,从实验结果可知,MOSFET开关管开通和关断时电压应力几乎为零,开关管损耗近似为零,这样大大提高了开关电源效率,同时增加了开关管的寿命,进而提高了变频器的可靠稳定性。

参考文献

[1]张树国,李栋,胡竞.变频调速技术的原理及应用[J].节能技术,2009(1):83-86.

[2]郑国川.RCC型准谐振式AC/DC开关电源控制集成电路AN8026[J].家庭电子(爱好者),2005(22):12-14.

高频电源范文3

关键词:高频开关电源;全桥移相;零电压开关;软开关技术

中图分类号:TM46文献标识码:A

文章编号:1004-373X(2010)02-188-03

Development of 48 kW High Frequency Switching Power Supply

PAN Min

(China Electric Institute,Guangzhou,510300,China)

Abstract:The analysis and design of 48 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase_shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit′s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success_fully.

Keywords:high frequency switching power supply;full bridge phase_shifted;zero voltage switching;soft switching techniques

0 引 言

现有国内外的大功率电源主要为工频整流式电源,体积大、笨重、能耗高、多特性较差,且会对电网造成较大的电磁干扰。与它相比,开关电源具有高效节能,重量轻,体积小,动态性能好,适应性强,有利于实现工艺过程自动化和智能化控制等显著的优点。目前少数高频开关型电源主要限于小功率容量级别(2 000 A以下),而国外同类设备价格过于昂贵,市场迫切需要具有较大功率容量和先进技术水平的国产高频开关型电源装置。因此,大功率开关电源具有广泛的应用前景,是当前国内外研究、开发、应用的主流和方向。但是,开关电源特别是大功率硬开关电源在可靠性、稳定性、效率等方面的缺点成为制约大功率开关电源应用和发展的“瓶颈”,按照传统电源的设计思路和解决办法,不能从根本上解决其所面临的诸多问题。软开关技术的出现以及先进控制技术的兴起,则为解决开关电源诸多问题提供了新的方法。

目前单机容量大于20 kW的大功率开关电源在国内外极为少见,单机输出一般在1 000 A以下。为适应大功率(低电压、大电流)输出的电路拓扑和控制模式,采用全桥移相式电路拓扑结构,并通过软开关技术的应用,研制了48 kW、20 kHz的大功率高频开关电源,通过电镀生产线的现场使用,取得了满意的效果。

1 全桥移相零电压开关原理

零电压全桥移相变换电路拓扑结构适用于大功率开关电源,它采用移相控制,移相芯片选用UC3879,驱动部分采用目前较为成熟的EXB841专用驱动芯片。在换流时利用变压器的漏感和功率管的寄生电容产生谐振,实现开关器件的零电压开通,消除了开通损耗,提高了电路效率,其主电路原理图如图1所示。图1中IGBT1~IGBT4为功率开关管,分为超前桥臂(左半桥)和滞后桥臂(右半桥)。电路零电压开关依靠功率开关管反并联的二极管D1~D4的导通实现功率器件的零电压开通,通过功率管谐振电容C1~C4的充电过程实现功率器件的零电压关断[1,2]。

在全桥相移零压开关变换器中,开关管的导通关断时间恒定。导通顺序为IGBT1IGBT4IGBT2IGBT3。同一桥臂的开关管为反相导通。对角管导通具有相移,从而使共导时间随相移的变化而变化。由于开关管存在关断时间,同一桥臂的两个开关管导通关断时,需要一定的延时时间(死区时间)以防止直通,保证开关管的安全;同时为保证开关管的零压开通,需要分别设定合适的领先臂与滞后臂的延时时间。IGBT1~IGBT4分别由UC3879输出的OUTA~OUTD控制[3]。

图1 全桥移相零电压开关主电路原理图

2 电源系统整体设计

电源装置主要由三相整流滤波电路、高频逆变电路、高频变压器、高频整流滤波电路、PWM控制电路、稳压稳流控制电路及故障保护电路组成(如图2所示)。工作时电网三相电源输入,经整流、滤波电路加至绝缘栅双极型晶体管IGBT组成的逆变电路,由主电路转换成脉宽可调的高频交流(约20 kHz),再经高频变压器降压、肖特基二极管整流转换成适于工作需求的低压直流。

图2 电源装置系统组成图

高频逆变电路采用全桥移相零电压开关主电路,同时采用软开关技术,以实现大功率低损耗高频逆变。高频开关管采用大功率IGBT模块,以提高电源可靠性,高频整流管采用肖特基整流模块以提高电源的效率。

控制单元输出的控制信号可以对主电路输出做出迅速响应,从而不但给出优良的动、静态输出特性,而且能对各种输入电压的波动予以补偿,并能对各种原因造成的故障做出迅速的保护响应。

电源系统的主要功能有:

(1) 系统按输出的电流或电压偏差分别自动进行PI稳流或稳压调节;

(2) 设置了过流、过热和缺水等保护措施,且具有声光电三维报警方式;

(3) 通过面板上的电压、电流表(输出电压、输出电流)可分别监测系统的输出状态;

(4) 系统具有稳压及稳流两种工作模式,保证了系统的稳定运行。用户可根据工艺需要进行选择;

(5) 系统具有软启动功能,其给定值由小逐渐增大,软启动时间约为5 s;

(6) 系统为远控方式,其操作简单,方便用户掌握。

2.1 输入整流桥及平波滤波器

该系统设计输出为3 000 A/16 V,前端采用三相整流桥输入,如图3所示,其中负载R为开关变换器的等效电阻。考虑理想情况,Li为无穷大,id为一平滑直流。通过对三相整流桥电路工作原理分析,考虑电网波动及保留一倍裕量,可选定二极管的额定参数为150 A/1 200 V。

图3 三相整流桥及LC滤波器电路

平波滤波器的作用是平滑整流电压和提高功率因数。设计中需结合经验,选择一个性能和成本的折中点。这里采用把电感放在直流侧的安置方式。与把电感放在交流侧的安置方法相比,无论是在结构复杂程度上,还是成本上,都要低的多。而且理论上这种结构可以达到的最大输入功率因数为0.955,完全能满足该系统的要求。

2.2 高频变压器

在高频开关电源设计中,高频变压器的设计是一个关键因素,它不仅决定了电源的输出能力,而且直接关系到电源设计的成败。

为实现大功率转换,该系统采用四个变压器并联,且每个变压器的磁芯采用一个环形磁芯。环形磁芯的窗口面积和体积都比较容易做大,工艺绕制简单,安装方便,更加适合用于大功率开关电源。并联的四个变压器的原边输入电压相等且为逆变器输入的电压,副边输出并联。通过计算,取变压器原边的匝数为21匝,副边为1匝;考虑绕制工艺、散热、损耗等因素的影响,原边采用USTC 0.1×1 050的多股丝包线,副边则采用TMY-40×6或TMY-50×5的铜排。

2.3 IGBT及隔直电容

由电路特点可知,IGBT的工作平均电流为母线平均电流的一半。流过IGBT的平均电流及承受的最大反向电压为:

IIGBT=Id/2=P0/(2ηUd)

UIGBT=2.34×1.2U2

考虑到尖峰电压电流的影响,保留一定的裕量,最终确定IGBT的容量为300 A/1 200 V。

隔直电容的作用是防止变压器发生偏磁现象,选的过大,则会增加成本;选的过小,则会产生EMI,降低电压利用率。设计中还需考虑等效串联电阻和电感的影响及散热问题。

2.4 输出整流管及RC吸收网络

选择整流二极管首先要考虑流过二极管的电流。计算流过整流二极管的电流及其额定电压,保留一定的裕量,最终选用的是400 A/100 V的肖特基二极管。

RC吸收网络的作用是防止输出整流二极管关断时因反向恢复引起的振铃。设计中可选择电容的容值为二极管寄生电容容值的10倍,电阻值则必须使电容在1/10个周期内充、放电完成,同时也要注意电阻功率是否满足吸收要求。

2.5 输出滤波器

输出滤波器的设计主要围绕输出纹波指标来考虑。一般情况下,以在最坏的情况下计算的参数为依据来选择滤波电容和滤波电感值。

3 试验结果

设计制造的3 000 A/16 V样机如图4所示,试验波形由泰克TDS5034示波器记录,如图5~图7所示。图5为同一桥臂上两个开关管的驱动脉冲波形,开关频率为20 kHz。图6为输入电压为220 V时,样机的工作波形,1通道为变压器原边电压,2通道为IGBT驱动脉冲,3通道为变压器副边肖特基反向压降,4通道为变压器原边电流。图7为样机满载时的工作波形,1通道为变压器原边电压,2通道为样机直流输出电压。表1列出了样机的各项技术指标,及与预定目标的比较。试验证明,样机已完全满足设计要求。

图4 3 000 A/16 V样机

图5 IGBT的驱动脉冲波形

图6 输入电压为220 V时样机的工作波形

图7 样机满载时的工作波形

表1 样机的各项技术指标及与预定目标的比较

技术指标预定目标3 000 A/16 V样机

输入电压范围360~450 V360~450 V

额定输出电压0~16 V连续可调0~16 V连续可调

额定输出电流0~3 000 A连续可调0~3 000 A连续可调

整机效率≥75%≥82.8%

稳压精度≤1%≤0.6%

稳流精度≤2%≤0.5%

冷却方式水冷水冷

保护功能过热、过流、缺水过热、过流、缺水

4 结 语

高频开关电源,作为中国电器科学研究院研制的新一代逆变式电源,具有高效节能、体小量轻、稳定可靠、绿色环保等优良特性。该项目成果较大功率单机输出的实现、软开关技术的应用、水冷却方式的采用等,都为以后电镀行业逆变电源设计提供了很好的借鉴之处。该电源装置已顺利应用于国内某电镀生产线上,并取得了良好的效果。

参 考 文 献

[1]Zhou Linquan,Ruan Xinbo.Soft_switching PWM Boost Full_bridge Converter[J].Journal of Southeast University,2003,19(3):250-255.

[2]殷树言,黄鹏飞,黄勇.软开关弧焊逆变电源的工作机理研究[J].北京工业大学学报,1998,24(3):55-60.

[3]李春旭,李德武,张学红.软开关弧焊逆变电源全桥移相控制电路设计[J].电焊机,2004(Z1):37-43.

[4]张永锋,黄自龙,杨旭.12 kW移相全桥PWM变换器的设计[J].电力电子技术,2006,40(4):50-52.

[5]鞠志忠,童可明.大功率软开关移相全桥变换器的研究[J].电源技术应用,2005,8(6):17-20.

[6]薛家祥,余文松,罗卫红.电流模式控制零电压软开关弧焊逆变器[J].焊接学报,2002,23(4):35-40.

[7]史悦玲,李时杰,贾俊林.基于UC3879的移相全桥ZVS_PWM逆变器的研究[J].自动化与仪表,2002(6):21-23.

[8]周漪清,黄石生,杜贵平.新型软开关弧焊逆变器主电路的仿真与实验[J].航空精密制造技术,2004,40(3):34-37.

高频电源范文4

【关键词】高频电源;脉冲电源

1 概述

某公司I期锅炉设备是上海电气集团有限公司生产的SG 2084/25.4型600MW超临界参数,单炉膛,半露天布置,固态排渣锅炉。原电除尘设备由菲达环保有限责任公司提供,采用双室五电场卧式排列方式,配套控制为大连宗益科技发展有限公司2008年设备。机组投运后,电除尘出口粉尘浓度稳定在60mg/Nm3左右,除尘效率99.72%左右,电场耗电约1700kw。

2 立项背景

随着国家环保部门将企业烟气粉尘排放标准由200mg/Nm3提高到20mg/Nm3。原电除尘设备必须升级换代才能满足新的排放标准。

为达到新的排放标准,目前一般采用电袋除尘法、最后一级电场使用旋转电极等方式。这两种方式由于能耗高、投资大、运行维护量大等问题,性价比较低。通过对大量电除尘设备的了解和对各发电企业电除尘设备使用情况的考察,制定了1、2、3电场使用高频设备,4、5电场使用脉冲电源设备的方案。高频设备起晕电压低,运行方式灵活,粉尘荷电能力强,除尘效率高,适用于前级电场。脉冲电源设备由于运行电压高,对高比阻粉尘和细微颗粒粉尘有很好的除尘效果。

通过高频电源和脉冲电源的配合,预计达到电除尘出口延期粉尘含量≤20 mg/Nm3的标准。

3 电除尘设备简介

3.1 静电除尘器的工作过程

电除尘器工作主要分为气体电离过程、尘粒荷电过程和收尘过程。提高电场电压强化气体电离和粉尘核电从而提高除尘效率,这是传统的除尘理念。实际运行中,由于反电晕现象的存在,过高的电压耗掉了大量能源却降低了除尘效率;同时,过高电压易产生火花放电,也是影响除尘效果的一个重要因素。另一个影响除尘效率的重要因素就是振打收尘过程中粉尘下落造成的二次扬尘。

3.2 高频电源简介

高频电源是把三相工频电源通过整流形成直流电,通过逆变电路形成高频交流电,再经整流变压器升压整流后形成高频脉动电流送除尘器,其工作频率在20kHz左右。

和传统的工频供电模式比较有以下特点:

(1)火花控制方面:工频整流电源工作时产生的火花至少要维持20ms,火花恢复过程30-50ms,这严重影响除尘效率,同时还浪费很多电能。

高频整流电源由IGBT的开关来控制电场供电,稳定的波形有效的抑制了电场火花的产生。另一方面,在产生火花时,高频电源系统可以在20us内快速关断IGBT,从而缩短火花影响的时间。

(2)反电晕的抑制方面:采用高频电源后,充电间歇时间灵活,最小单位可到20us,在应用反电晕自动优化时,优化的精细程度和准确度大大提高,从而较工频系统可以提高除尘效率。

(3)节能方面:

1)高频开关电源转换效率为94%以上相对于工频电源(65%―75%)有大幅提高,节能约20%以上。

2)功率因数提高节电,高频开关电源系统是三相供电,输入功率因数可达0.95。常规工频整流变压器电源功率因数约为0.7。

3)没有或较少的火花闪络水平,且闪络持续时间的缩短,大大减少了闪络时对地放电所耗费的电能。

4)高频开关电源系统内置反电晕监控及运行参数优化软件,能够合理地在线自动调整间隔充电时间间隔和充电强度,从而在提高电除尘器的收尘效率的同时节约了大量的电能。

5)利用机组负荷(或磨煤机给煤总量)信号的能耗管理闭环优化控制节能技术,在不同的锅炉负荷段或不同的磨煤机总输出量,各级电场的充电间隔时间和充电电流强度应相应地进行调整,设置不同的间隔充电运行模式。

3.3 脉冲电源简介

脉冲电源是一款为清除细微粉尘和高比电阻粉尘而开发的产品,应用于钢厂烧结厂、火力发电站、炼油厂等领域。它是在直流电压上面重叠短幅宽(120μs 左右)的脉冲电压。脉冲电压用来提供强电晕,直流电压(Vdc)用来收尘。

脉冲电源的优点:

(1)工作电压达到70~80kv,加大了粉尘的荷电能力。由于脉冲很窄,使得电除尘总的能耗大幅下降,比工频电源节电约60-80%。

(2)脉冲电源的供电方式,抑制了大量无用的电子流吸附于阳极板的高比电阻粉尘之上,从而有效地防止了电场中反电晕的的产生。

(3)此外,脉冲电源也可以DC加电单独运行。

4 高频加脉冲电源的应用

4.1 方案的制定

我们经过充分的调研和反复的研究讨论,制定了1、2、3电场采用高频整流电源,4、5电场采用MPS脉冲电源的方案。前三级电场利用高频电源除尘能力强,控制方式灵活的特点,除掉大部分粉尘。后两级电场使用脉冲电源对细微粉尘和高比电阻粉尘有很好的除尘效果特点,针对性的除掉后级电场的高比阻细微粉尘。通过高频电源和脉冲电源的配合使用,并根据现场实际情况调节电除尘电压电流参数、振打时序及振打降压参数,在原电除尘本体设备不变的情况下,预期除尘效率大幅提高。

4.2 方案的实施

(1)前三电场选用国内某公司高频开关电源系统,脉冲设备选用进口的MPS的脉冲电源系统。

高频电源采用一体化设置,高频变压器、硅整流、控制单元、功率单元均设置于电除尘顶部,使用光纤通信和上位机连接。

高频电源范文5

【关键词】高频脉冲电源;时基振荡电路;短路

数控线切割机床采用电极丝(钼丝、钨钼丝等)作为工具电极,在脉冲电源的作用下,工具电极和加工工件之间形成火花放电,火花通道瞬间产生大量的热,使工件表面熔化甚至汽化,再经过数控系统控制轴运动来进行加工工件的设备。

在线切割机床常见故障中与高频脉冲电源部分相关的故障出现较多且较难维修。本文结合生产实践针对数控线切割机床高频脉冲电源常出现的故障的诊断与排除进行了分析和论述。

1.高频脉冲电源的功能及特点

数控线切割机床由工作台、走丝机构、供液系统、脉冲电源、数控系统等组成。脉冲电源是产生脉冲电流的能源装置。线切割脉冲电源是影响线切割加工工艺指标最关键的设备之一。为了满足切割加工条件和工艺指标,对脉冲电源的要求为:较大的峰值电流,脉冲宽度要窄,要有较高的脉冲频率,线电极的损耗要小,参数设定方便。

2.数控线切割机床与高频脉冲电源相关的故障

高频部分故障可以根据故障现象总结为四种类型,分别为:无高频;高频处于短路状态;丝筒换向时高频不断;高频电流过大钼丝烧丝。下面就针对这四种情况分别进行分析。

2.1 无高频输出

该故障现象的诊断应该按照从机床到内部电路的顺序逐步排查。首先检查电压表显示有无电压产生,如果有电压却没有电流,则考虑放电回路断路,如电极线接触不良,保险管熔断等。如果显示没有电压,则首先应检查电源电压是否正常,如正常,可考虑断高频控制电路未接通或是高频电源板故障。具体诊断方法如下:

断高频控制线路未接通可能是中间继电器线圈故障,或继电器的常开触点接触不良,即接线端子之间开路。此故障可以通过在丝筒运转时按下高频电源箱上的高频按钮,如果钼丝与工件之间有火花产生,则为断高频控制线故障,否则为高频电源控制板故障。

如果诊断为高频电源控制板故障,则需要进一步维修该电路板,维修高频电源控制板首先需要了解该电路板的工作原理:

高频电源由脉宽调节电路、间隔调节电路、时基振荡电路、断高频控制电路、功放推动级、功率放大电路、直流电源等部分组成(如图1所示)。

其中时基振荡电路由555及周围电路组成,产生高频脉冲方波,晶体振荡电路是高频电源的核心部分;断高频控制电路控制信号的输出;功放板采用IRF630作为功率输出管,把信号放大后加到钼丝上,从而可以进行产品加工。

图1 高频脉冲电源框图

所以在排除故障还没有高频情况下,首先要检查时基振荡电路是否有脉冲方波发生,具体方法是通电情况下查看振荡板中的发光二极管是否点亮。

如果二极管亮,应检查整理电源电路中的滤波电容两端电压是否有正常的+100V。如不正常,这时检查变压器交流电压供电是否正常。

如果发光二极管不亮,则按下测试开关,按下后还是不亮,说明振荡电路板有故障,检查12V直流电源电路中的三端稳压器是否有12V电源输出。

如没有,检查电源部分故障,如有,可以用示波器检查555振荡电路和功放推动级电路的输出是否有高频脉冲信号,哪一级没有就检查哪一级电路,然后更换相应的故障元件来修复电路板。

2.2 高频处于短路状态

此故障的排除方法与无高频故障相似,不再重复阐述。只不过此故障在开始加工时会出现加工回退现象,一般是由于钼丝与工件之间短路造成的。

2.3 丝筒换向时高频不断

这个故障首先要检查储丝筒换向断高频继电器的开关,让储丝筒运行,看换向断高频继电器是否吸合,换向时是否断开,若不动作,则是机床控制换向断高频线路有故障,应检查换向断高频机床线路,从而排除故障;如果由于换向开关故障使断高频继电器线圈换向时未断电,也会造成该故障现象,有时会因为接线端子短路造成。

2.4 高频电流大钼丝烧丝。

此故障要首先检查功率推动级电路中的集成电路4096是否被烧坏出现短路,4096损坏则需要更换,如果正常则检查高频功放部分电路板,用万用表电阻挡逐个对比检查功放管,找到击穿的功放管进行更换。若暂时无功放管,则关掉该功放管开关,仍可使用,因为多个功放管是并联的,不影响电路正常工作,只是少一个管在加工厚工件时会因为放电电流减小而影响加工速度。

高频电源范文6

【关键词】感应加热;整流;斩波;逆变

高频电源及感应加热技术目前对金属材料加热效率最高、速度最快,且低耗环保。它已经广泛应用于各行各业对金属材料的热加工、热处理、热装配及焊接、熔炼等工艺中[1]。它不但可以对工件整体加热,还能对工件局部的针对性加热;可实现工件的深层透热,也可只对其表面、表层集中加热;不但可对金属材料直接加热,也可对非金属材料进行间接式加热。因此,感应加热技术必将在各行各业中应用越来越广泛[2]。本文采用先进的数字信号处理器TMS320LF2407A作为控制器,设计一套基于DSP的全数字控制的感应加热电源的硬件设计及实验数据。

一、系统总体结构

本文设计的高频感应加热电源系统框图,以TMS320LF2407A作为主控制芯片对系统进行设计。整流电路采用三相全桥不控整流电路,利用Buck变换器设计直流斩波调压电路,逆变电路为单相全桥逆变电路,感应装置包括逆变高频变压器、谐振电容和感应线圈。直流电压电流采样调理电路将直流母线电压和电流转换后送入DSP的AD模块进行功率闭环控制;负载电压电流采样调理电路将负载电压电流转换后送入DSP的捕获模块进行频率跟踪控制;驱动电路将DSP的控制脉冲隔离放大后,控制逆变电路的功率开关器件;故障检测为系统提供保护措施,故障综合将所有的系统故障综合后向DSP系统发出故障中断请求,并封锁触发脉冲;键盘和液晶显示屏通过DSP的I/O实现人机交互界面;DSP通过串口与上位PC实现通讯,进行信息的相互传输。

二、主电路参数设计与器件选择

1.整流部分参数设计

(1)整流桥的选择

根据三相整流桥的计算并考虑一定裕量和电网电压的峰值及电压扰动等偶然因素会产生浪涌电压,选取耐压值为1200V,额定电流为100A的日本三社公司的整流二极管模块DF100AA120。

(2)滤波器的选择

1)滤波电容C1的设计

为了保证给斩波器提供较平稳的直流电压,在整流桥后加了滤波电容C1,同时此电容还起滤波的作用。为了滤掉高频分量,在此电容的两端还并联了小的高频电容Ch。整流输出电压的基波频率为300Hz,滤波电路的时间常数,即电容与整流桥的负载等效电阻Rd之积应为纹波的基波周期。

电容器的耐压必须高于,取C1=1000uF,采用2只型号等级为2200uF/450V的电容串联而成。

2)高频滤波电容器的设计

由于串联谐振式逆变器的直流电源回路还必须流过无功电流,该无功电流随逆变器的输出功率因数减小而增大,而电解电容C1不能流通高频无功电流,否则会发热损坏。因此,需并接高频滤波电容器Ch,以代替C1流通无功电流[4]。

Ch值一般难于用计算方法确定,都是根据实验选定,在额定工作状态下,逆变器的输出电压方波顶部不出现高次谐波和C1不发热,便被认为Ch选得合适。一般原则是电源容量大,选大值;工作频率高,选小值。高频电容根据经验可选择/1000V的无感电容。

2.斩波部分参数设计

(1)开关器件及续流二极管DF1的选择

续流二极管DF1流过的最大电流为Iomax=113.6A,所承受的最大反向电压为2Ud=1029.6V。计入一定的裕量,可选用SKKE380型二极管。

(2)输出侧滤波参数设计

斩波电路输出采用LC滤波,根据斩波电路满足连续导电模式的条件,

取,为保证耐压容量,采用4只型号等级为220uF/450V的电容,先两两串联,再将两组并联。

参考文献

[1]约翰·戴维斯等.感应加热手册[M].北京:国防工业出版社,1985:5—20.

[2]李爱文,张承慧.现代逆变技术及其应用[M].北京:科学出版社,2000.

[3]张素荣.基于DSP的高频感应加热电源控制系统的研究[D]:[硕士学位论文].西安:西安理工大学,2004,3.