天使不在线范例6篇

天使不在线范文1

初始化通讯端口与数据结构是设备初始化的核心。UHFRFID读写器核心模块采用串口与USB2.0通讯,将通讯端口设置为自动搜索连接。串口通讯波特率为115200波特率,无检验位,数据位为8位,停止位1位。UHFRFID读写器核心模块的串口工作状态,是通过串口命令改写模块ARM7芯片中寄存器的值来控制的。通过对串口发送结构体数据完成MAC寄存器的值修改操作。设计结构体如下:structpc_reg_req{INT16Uaccess_flg;INT16Ureg_addr;INT32Ureg_data;};结构体共8个字节,3个成员变量。其中,ac-cess_flg是MAC寄存器读写标志位,0x0000为读操作,0x0001为写操作;reg_addr是MAC寄存器地址,不同的地址代表着不同的读写器功能;reg_data对应MAC寄存器地址的值,不同的值,对应读写器相应功能中不同的状态。完成了UHFRFID读写器核心模块的通讯端口初始化与结构体初始化之后,必须对模块进行天线配置,才能使模块进入四天线工作模式。

2天线参数配置

使用UHFRFID读写器核心模块天线,必须对所有天线的参数进行配置,天线参数数据结构如下:在天线参数结构中,定义了物理天线号、天线功率和延迟时间等天线工作必须参数。在使用天先前必须对天线的参数逐个进行赋值,然后才能进行天线工作模式配置。

3配置天线工作模式

UHFRFID读写器核心模块采用了Impinj公司R2000芯片配套固件,设备上电初始化后默认双天线工作,设置四天线工作模式,必须通过修改OEM寄存器值使能4个天线端口。地址为0x00000087的OEM寄存器控制天线使能。寄存器值如表1所示。由表1可知,使能四天线,必须将OEM寄存器地址为0x00000087的区域值设置为0x00000000。

4四天线轮询访问标签

天线轮询访问标签软件流程如图3所示。使能四天线之后,可在任一时刻选用任一天线进行标签访问,在某一个天线对标签进行访问期间,必须关闭其他天线的使能。天线在工作期间,会自动搜索匹配使能的天线。如果多个天线同时使能,则读写器核心模块始终会使用最小号天线进行标签访问。采用四天线轮询访问标签,必须根据访问标签的数量设置天线轮换时间。如果标签较多,天线轮换频率过快,则标签读取率低;如果标签较少,天线轮换频率低,则会造成时间的浪费。依据每个天线访问的最大标签数量,选取天线轮换时间。

5测试与应用

UHFRFID读写器核心模块射频前端工作在925MHz,使用频谱测试仪对软件配置结果与硬件设计进行测试,测试结果如图4所示,横轴为输出频率,纵轴为射频前端输出功率。由图4可以看出,UHFRFID读写器核心模块工作在925MHz时,输出功率为31.6dBm。使用UHFRFID读写器核心模块对2个标签进行轮询访问,实际访问率达到100%。经过测试与现场应用,四天线UHFRFID读写器模块核心软件能有效地控制读写器核心模块对标签进行准确访问。

6结束语

天使不在线范文2

锈迹斑斑的卫星天线对烧友们来讲一定很熟悉,当年这些曾经为我们立下“汗马功劳”的“有功之臣”,有些确实应该走进钢铁厂的熔炉了。而另外一些天线的使用年限根本没到,却由于使用地的环境恶劣,致使这些本来还应正常使用的天线,变得锈蚀斑斑。看了让人心里难受的同时,也为此而感到不安,怕有一天成为可怕的“空中杀手”。然而,是否可以通过翻新和日后精心的维护、保养使这些天线使用寿命得以延长呢?答案是肯定的。

笔者地处的东海之滨,长江三角洲之上的上海,在气候上分属于温带海洋性气候,除了冬天外全年的雨水都很丰富。再加上上海是个工业城市,废气排放量较多,使空气中二氧化硫的含量较高,所以在降雨时常有酸雨现象发生,而这此酸雨正是卫星天线的“杀手”。正因为此,笔者所拥有的多面天线都过早地成了准废品。本人由于近日搬了新家,原来的四面老旧天线弃之又觉得可惜,因此对原来的两面0.6m偏馈、一面0.9m偏馈、一面1.5m正馈天线准备进行大翻新。由于天线均是四川视频早期生产的斯威克牌,生产日期较早(实际使用年限已有4年),其表面喷涂的都是灰色油漆,所以只适合对表面进行重新喷涂处理。两面0.6m偏馈、一面0.9m偏馈、一面1.5m正馈经过拆卸后,用磨光机对表面进行了反复的除锈和抛光处理,以便在翻新后不影响原来的精度。本人在对天线喷涂处理时,选用了进口的汽车用自喷漆罐,由于此漆本来是用于汽车上的,所以用来喷涂天线表面,完全能够使其工作在全天候的环境中。在喷涂时喷口应离天线表面15-20厘米左右,以免喷涂太厚挂漆影响美观。等油漆自然干燥后便可进行拼装,拼装时应调换全套6cm的紧固小锣丝,在拼装1.5m正馈时,本人还对原来的地盘架构件进行了加固处理,以利天线长期使用。

由于每面天线都长期使用过,且经过了重新拼装,天线构件不可避免地会有一点变形,故完全有必要对原天线做调焦处理。一般调焦时烧友们都采用在天线表面贴上小镜子的方法,而本人却找到了一个更方便实用的办法。即在天线的表面上贴上一层家用的保鲜膜,由于保鲜膜表面光滑,可以很好地反射阳光,且贴起来方便,成本又不高,贴好后表面有整体性,反射阳光的效率也很高,高频头上的光点亮而且圆,很直观。将天线安装到位,装好高频头,做好了调焦处理后,笔者四面“新天线”又重新上岗了。对此法有兴趣者不妨试试。

天线的保养问题还要按地区的不同加以区分。如在北方寒冷的冬季使用,遇到大雪的天气时应及时地清扫压在天线表面的积雪,以免冰雪的重量使天线变形,造成收视困难。在广阔的平原、草原牧区等常年风力6-7级以上的地区使用时,最好能选用网状天线,安装也必须牢固,防止被风吹走而损坏。而在内陆盐湖、酸雨频繁地区以及沿海海岛等使用的天线,由于使用环境中多盐和酸雾其本身对天线有极强的侵蚀作用,所以维护天线时其重点应倾向于做防腐处理。如定期地喷涂油漆、紧固件涂油脂等等。

以上各点体会均是笔者在多年的发烧经历中的一点己见,不妥之处还望谅解,烧友们如还有高招则望大家能无私的奉献。

天使不在线范文3

我们在郊区的一处平房平台上进行了安装(图4),1.2m安德鲁偏馈天线为立柱式结构,仰角调节片、方位角包箍、立柱、拉杆和角钢这些易锈蚀的部件均采用较厚的喷粉工艺,高频头支撑机构的一根支杆和两根拉杆也均采用不锈钢材质,所有的这些措施都是为了天线在户外使用时不被氧化,确保天线的长期使用寿命。

不过,我们调试时发现天线仰角调节不是太方便,正好有星想事成网友之前赠送的一套铝合金多星安装夹具,于是对天线的仰角调节机构进行了改造,只钻了四个圆孔,安装上夹具,使得天线在最大仰角(图5)、最小仰角(图6)都能够调节自如。

安德鲁天线盘面采用玻璃纤维增强型SMC材料经高温高压制成,俗称玻璃钢,纤维内层夹置有金属网来反射卫星信号。我们从破损的盘面可以看到露出的金属丝。虽然盘面有破损,但不会导致盘面的整体结构变形,这得益于安德鲁天线背面采用较为密集的呈菱形状的加强筋,如图7所示,具有较高的机械强度。而不像普通钢板天线那样,受外力撞击后,易产生形变。

我们将错位处用小铁锤锤平,再在几个裂缝处用AB胶进行涂抹,以避免盘面内层受日晒雨淋而老化分层。接下来,我们进行了实地测试,通过改造后的仰角调整拉杆调节天线仰角,配合原有U型槽板的实际仰角刻度(图8)进行调整,非常方便,而对于天线方位角的调整,只要适当松开两个U型螺杆上的螺帽,就可以左右转动天线了。为了方便以后换星,我们在立柱上贴了一圈纸带,注上每寻找一颗星的标记,如图9所示。

对于测试地原来采用1.8m六瓣正馈天线接收BSD,目前部分时段可以下节目(注:对于DT400机器接收BS信号的门限,一般在信号场强数值超过21时,BS信号就可以锁定),采用1.2m安德鲁偏馈天线效果怎样呢?

我们采用MASPRO DT400机器,一个二手的日本DISH产CANADA BSCH83P31型高频头,本振频率已DIY为10678MHz,用在1.2m安德鲁偏馈天线上。台扬AKE1-LC正馈Ku波段高频头,本振频率为10.678GHz,用在1.8m中卫正馈天线上(图10)。在同一时段内接收,1.8m正馈天线信号质量可以到达21,而1.2m安德鲁偏馈天线最大为14。可见,天线口径和信号质量成正比,即1.8∶21=1.2∶14。

天使不在线范文4

论文摘要:主要介绍了智能天线的提出背景、基本概念、关键技术、优点以及国外的研究进展情况,最后指出了智能天线的发展方向。

1前言

随着蜂窝移动用户的不断增长,如何解决频谱资源紧张、抑制各种干扰、提高通信服务质量成为一个亟待解决的问题。为此,人们提出了一系列的解决方案,例如,在通信密集的地方引入微蜂窝技术、频率跳变技术、高效的编码技术以及进行功率控制等。而智能天线为这一切问题的解决提供了一条新思路。智能天线能够成倍地提高通信系统的容量,有效地抑制复杂电磁环境下的各种干扰,并且还能与各种通信系统和其他多址方式兼容,从而以较小的代价获取较大的性能提高。目前,国内外有许多大学和公司致力于智能天线的研究。欧洲电信委员会(etsi)明确提出智能天线是第三代移动通信系统必不可少的关键技术之一,并制定了相应的开发计划。

2智能天线的基本概念

智能天线综合了自适应天线和阵列天线的优点,以自适应信号处理算法为基础,并引入了人工智能的处理方法。智能天线不再是一个简单的单元,它已成为一个具有智能的系统。其具体定义为:智能天线以天线阵列为基础,在取得电磁信息之后,使用人工智能的方法进行处理,对电磁环境做出分析、判断,并自动调整本身的工作状态使之达到最佳。依据天线的智能化程度可将天线分成可变波束天线、动态相控阵列和自适应阵列3类。可变波束天线依据接收功率最大原则,在几个预设阵列波束中进行切换;动态相控阵列使用测向算法,能够连续追踪用户的方向而改变天线的波束,使接收功率达到最大;自适应阵列既对用户进行测向,又对各种干扰源进行测向,在形成波束时,不仅使接收功率最大,而且使噪声降到最低,从而使接收信噪比最高。

智能天线的发展可分成3个阶段:第1阶段是应用于上行链路,通过使用智能天线增加基站的接收增益,从而使接收机的灵敏度和接收距离大大增加;第2阶段是将智能天线技术同时应用于下行链路,在智能天线应用于下行链路后,能够控制波束的发射方向,从而有助于频率的复用,提高系统的容量;最后一个阶段是完全的空分多址,此时在一个蜂窝系统中,可以将同一个物理信道分配给不同的用户,例如,在tdma中,可以将同一小区内同一时隙同一载波同时分配给两个用户。

3智能天线的组成和关键技术

智能天线主要分为天线阵列、接收通道及数据采集、信息处理3部分。在移动通信系统中,天线阵列通常采用直线阵列和平面阵列两种方式。在确定天线阵列的形式后,天线单元的选择就十分关键。天线单元不仅要达到本身的性能指标,还必须具有单元之间的互耦小、一致性好以及加工方便的特点。目前微带天线使用较多。

接收通道及数据采集部分主要完成信号的高频放大、变频和a/d转换,以形成数字信号。目前,受a/d器件抽样速率的限制,不能直接对高射频信号和微波信号进行采样,必须对信号进行下变频处理,降低采样速率。

信息处理部分是智能天线的核心部分,主要完成超分辨率阵列处理和数字波束形成两方面的功能。进行超分辨率阵列处理的目的是获得空间信号的参数,这些参数主要包括信号的数目、信号的来向、信号的调制方式及射频频率等,其中信号的来向对于实现空分多址和自适应抑制干扰有着重要作用。在众多的超分辨率测向算法中,music算法及其改进算法一直占据主导地位,它不受天线阵排阵方式的影响,只需经过一维搜索就能实现对信号来向的无偏估计,并且估计的方差接近crlb。此外,使用esprit算法来解决移动通信中的测向问题也得到了广泛的研究。数字波束形成主要通过调整加权系数来达到增强有用信号和抑制干扰的作用,它需要收敛速度快、精度高的算法支持。根据所需先验知识的不同,目前的波束形成算法主要有3类:以信号来向为先验知识,如lcmv算法;以参考信号为先验知识,包括lms算法及其改进算法nlms、rls等;不需要任何先验知识,如cma算法。由于移动通信环境复杂,各种算法也有各自的优缺点,因此系统中必须对多种算法取长补短,才能达到最佳效果。

4智能天线的特点和优势

(1)提高系统容量

在蜂窝系统中,用户的干扰主要来自其他用户,而智能天线将波束零点对准其他用户,从而减少了干扰的影响。由于系统提高了接收信噪比,因此减少了频谱资源的复用距离,从而获得了更大的系统容量。

(2)扩大小区覆盖距离和范围

使用智能天线可以提高用户和基站的功率接收效率,进一步扩大基站的通信距离,减少功率损失,从而延长电池的寿命,减小用户的终端。

(3)减少多径干扰影响

智能天线使用阵列天线,通过利用多个天线单元的接收信息和分集技术,可以将多径衰落和其他多径效应最小化。

(4)降低蜂窝系统的成本

智能天线利用多种技术优化了信号的接收,从而能够显著降低放大器成本和功率损耗,提高系统的可靠性,实现系统的低成本。

(5)提供新服务

智能天线在使用过程中必须对用户进行测向,以确定用户的位置,从而为用户提供基于位置信息的服务,如紧急呼叫等。目前,美国联邦通信委员会已准备实施用户定位服务。

(6)更好的安全性

使用智能天线后,窃听用户的通话将会更加困难,因为此时盗听者必须和用户处于相同的通信方向上。

(7)增强网络管理能力

利用智能天线可以实时检测电磁环境和用户情况,从而为实施更有效的网络管理提供条件。

(8)解决远近效应问题和越区切换问题

智能天线可自适应地调节天线增益,较好地解决了远近效应问题,为移动台的进一步简化提供了条件。在蜂窝系统中,越区切换是根据基站接收的移动台的功率电平来判断的。由于阴影效应和多径衰落的影响常常导致越区转接,增加了网络管理的负荷和用户呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。

5智能天线的技术现状

在分析智能天线理论的同时,国内外一些大学、公司和研究所分别建立了实验平台,将智能天线应用于实践中,并取得了一些成果。

(1)美国

在智能天线技术方面,美国较其他国家更加成熟,已开始投入实际应用中。美国的arraycomm公司发展了针对gsm标准和日本phs标准的智能天线系统。该公司已将智能天线应用于基于phs标准的无线本地环路中,并投入了商业运行。该方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同的环境选用,现场实验表明,在phs基站采用智能天线技术可使系统容量增加4倍。

(2)欧洲

欧洲通信委员会在race计划中实施了第一阶段的智能天线技术研究,称为tsunami,由德国、英国、丹麦和西班牙共同合作完成。它采用dect标准,射频频率为1.89 ghz,天线由8个微带贴片组成。阵元距离可调、组阵方式可变,有直线型、圆环型和平面型3种形式。数字波束形成的硬件主要包括2片dbf1108芯片,它在软件上分别由music算法、nlms、rls完成测向和求得最佳的加权系数。在典型的市区环境下进行实验表明,该智能天线能有效跟踪的方向分辨率大约为15°, ber优于10-3。

(3)日本

atr光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率为1.545 ghz。阵元组件接收信号在a/d变换后,进行快速傅氏变换,形成正交波束后分别采用恒模算法或最大比值合并分集算法,数字信号处理部分由10片fpga完成。atr研究人员提出了智能天线的软件天线概念。

(4)其他国家

我国的信威公司也将智能天线应用于tdd方式的wll系统中。该智能天线采用8阵元的环形自适应阵列,射频工作于1 785~1 805 mhz,采用tdd工作方式,收发间隔为10 ms,接收机灵敏度最大可提高9 db。此外,爱立信公司与德国运营商也将智能天线应用于gsm基站上,但该天线的智能化程度不高。韩国、加拿大等国也开展了智能天线方面的研究。

(5)用于卫星移动通信的智能天线

上文主要介绍了基于蜂窝系统的智能天线,另外还有一种用于l卫星移动通信的智能天线。该天线采用了由16个环形微带贴片天线组成的一个4×4的方形平面阵,它的射频频率为1.542 ghz,左旋圆极化,中频频率为32 khz, a / d变换器的采样速率和分辨率分别为128 khz和8位。在数字信号处理部分,选用了10个fpga芯片,其中8个用于16个天线支路的准相干检测和快速傅里叶变换,另外2片则起到波束选择、控制和接口的作用;自适应算法则选择了cma。系统的外场测试表明,它能产生16个波束来覆盖整个上半空间,并且不需要借助于任何传感器,就能用最高增益的波束来自动捕获和跟踪卫星信号,从而在各种复杂的环境下均能提供比采用其他天线要高得多的通信质量。

6智能天线面临的挑战和发展方向

智能天线系统在改善性能的同时,也增加了收发机的复杂度。因为要对每个用户进行定位,并且波束形成的计算量很大,所以智能天线系统中有多个计算单元和控制单元。在实施smda时,资源管理也成为一个必须关注的问题。作为一种新的多址方式,在频谱分配和移动性管理上也提出了新的问题,将会对网络管理提出更多的需求。此外,目前智能天线的物理尺寸较大,不利于构建更小的基站。

天使不在线范文5

论文 关键词:智能天线 无线通信 空分多址 自适应天线 应用

论文摘要:采用数字信号处理技术形成定向波束的智能天线,引起了无线通信工程技术人员的极大重视。作者在对天线传统认识的基础上阐述了智能天线的基本概念、特点、实现方法和应用前景。

一、概述

天线是实现电磁波传播的必备器件:信号发射端利用天线实现电磁波辐射,信号接收端利用天线实现电磁波感应。因此,不论何种通信系统,只要它采用无线传输方式,就必须使用天线,而不论该系统采用的工作频率是多少,属于何种频段,也不论采用什么多址技术或者什么调制技术。

随着通信的 发展 和技术的进步,对所用器件、部件的要求也越来越高。智能天线正是适应通信发展而产生的新事物——在无线接入系统、卫星通信系统和移动通信系统(不论在公众通信网中,还是在专用通信网中)以及军事通信等系统中,均有其重要应用,并由此而带来诸如抗干扰能力、频率利用率等性能大幅度提高的一系列优点。

尽管智能天线还是起着电磁波的辐射和感应作用,但是,智能天线是一个崭新的概念。

二、常规天线与智能天线

按照分类方法不同,常规天线(下文称天线)有众多的分类。例如,若按振子形状分类,天线可分为线状天线和面状天线:后者有抛物面天线,卡什格仑赋形天线等(用于微波频段);前者有布朗天线、j形天线、折合振子天线、八木天线、鞭状天线、螺旋天线、菱形天线等(常用于特高频、甚高频、短波频段)。若按方向性图分类,天线又可分为无方向性天线(即全向性天线)和定向性天线:前者如外露偶极子天线、共轴天线等,其特点是当它们用于信号发射时,不论收信用户位于何处,发射能量通过天线能作3600均匀分布;诸如角反射天线、角形反射器天线等则属于定向性天线。此类天线在一定方向上形成信号的发射或接收,能量的有效性较高。若按材料分,又有金属天线和介质天线之分。若按电场强度方向分类,天线又有垂直极化、水平极化等之分。当然,天线还有其它的分类方法,我们不一一例举。但无论怎么说,通信天线的构成比较简单,即使将用于与发射机、接收机相连的馈线算入,构成“天馈线系统”,但是,它依然是一个简单系统。

智能天线则是一个复杂的系统,而且随着性能要求的提高,智能天线也越加复杂。可以认为智能天线是从自适应天线发展起来的,但是二者之间有着显著的差异:自适应天线主要用于雷达系统的干扰抵消,而且是干扰信号强度特大,数量又不多的场合。在无线通信系统中,主要基于多径传播的干扰,其幅度一般较小,但数量往往很大,尤其是电波在城市地面传播时更是如此。这些差异导致在方向性图的形成上,或者说在信号的处理上有着各自的特色。既然智能天线从自适应天线发展而来,所以智能天线有着与自适应天线相类似的结构,用于信号接收时的智能天线结构图见图1。就是说,智能天线是由一个天线阵列和一组波束形成 网络 (亦称聚束网络)联合构成的系统。所以,从硬件构成来看,将智能天线称为“智能天线系统”是可以理解的。

用于收、发信侧的智能天线结构是相仿的,其工作原理也一致。这里以发送用智能天线为例,说明其波束形成原理。将待发射的各路信号s1(t),s2(t)……sm(t)组合成m维信号集合:s(t)=[s1(t),s2(t)…sm(t)]t,再在n×m矩阵网络中实现复数加权系数w加权,得到一个n维的阵列输出信号:

x(t)=w×s(t) (1)

其中,x(t)=[x1(t),x2(t)…xn(t)]t。

若智能天线的天线阵列的方向性函数为fn(θ),且当天线阵列选定以后,它就为定值。则x(t)将在天线远区场产生的场强

e(θ,t)=∑xn(t)·fn(θ) (2)

若要将信号sm(t)发向接收方,只需修改加权网络加权系数w为wnm即可实现该信号的辐射方向性图。即e(θ,t)可进一步写成

显然,只要调节wnm就能获得所需方向波束。智能天线的天线阵列是由多个(例如5、6个甚至更多)单元天线排列成一定形式形成的,常用形式有平面形、圆环形、直线形。从工程上考虑,这些单元天线方向性图常是无方向性的,其相互间距也需满足一定要求。例如在移动通信中使用时,各单元天线间距常取为λ2(λ为工作波长)。

智能天线波束形成网络的作用是在天线阵列支援下,形成一系列极窄的信号传输通路——空间波道,又称波束(beam),即在收、发两端之间形成一条极窄的信号通道。例如,当智能天线用于无线接入系统时,可以在基站(或中心站、转发站)和用户之间形成极窄的无线电波束通道。当智能天线用于移动通信和个人通信中时,这个极窄的波束能随着用户移动而移动。显然,极窄波束的应用能提高发信功率的有效性,还能提高信号传输的信号干扰比。或者说,在保证接收端信号干扰比不变的条件下,发信端功率可以大幅度降低。

这个极窄波束的实用,也形成了多址技术的第四种概念——空分多址(sdma),而且这个sdma可以和其它多址技术以及它们的混合联合使用。即在采用智能天线后,系统能在相同时隙、相同频率、相同地址码情况下,用户仍可以根据信号不同的空间波束——空间传播路径加以区分。

值得重提的是,形成一定指向的空间波束是众多的无方向性天线和波束形成网络的联合作用,而且空间波束的指向依据用户的不同空间传播方向而决定。这个具有一定指向的空间波束等同于信号有线传输的线缆如光缆、同轴电缆。

智能天线能实用于无线通信系统,而不论它们是公众网还是专用网,也不论该系统采用何种技术标准。智能天线能适用于几乎所有移动通信协议和标准的情况,见表1。有些协议或标准甚至至今还未正式形成产品,例如cdma2000、td-scdma,这种情况说明智能天线适用范围很广。

sdma的实用也促使了系统频率利用率的提高以及频率管理、频率配置难度的降低。例如在移动通信中,同一基站范围内的相同载频可以多次复用而不必虑及同频干扰(这就大大地降低了频率配置的难度)。而且不同指向的波束越窄,同频复用系数可以越大,系统的频率利用率就越提高,系统容量越大。同一小区两个手机用户同时占用同一频道时,智能天线形成的方向性图见图2。图中,智能天线形成的两个主波束分别对准这两个用户(而不会产生同频干扰),其它方向的增益却很小,这就保证了主波束增益可以做得很高,周围的干扰(包括同频干扰、邻频干扰、近端对远端比干扰等)和噪声的影响可以降低到很小。

采用智能天线后,同无线区不仅可以安排相邻或邻近频率,甚至还可实现同频复用,这极大地降低了无线电管理部门在频率配置和干扰管理上的难度,所以无委力主智能天线早日投入使用。

智能天线的应用还可以极大地增强设备供应商的竞争能力,并且智能天线不受调制方式和空中接口协议的限制,它们能与现有的空中接口方式相适应。智能天线的核心技术是波束形成,并主要由波束形成网络实现。

当智能天线为某个具体用户服务时,利用天线阵列发射或接收无线电波,利用波束形成网络中的某些部分对用户形成极窄的波束指向,而在其它方向上,智能天线能自适应地控制其方向性图为零,这种性能又称为自适应调零功能。正是利用这种功能,可以将智能天线的副瓣或零信号区(也称零陷区)的幅度基本抑制掉,这也造就了智能天线有极好的抗干扰性能。

只要能把主波束做得极细,同一基站(或中心站)主波束数能做得足够多,副瓣也能完全被抑制掉,那么,智能天线的应用至少在理论上解决了众多无线通信频率资源不足的难题。因此,不论在欧日联合提出的第三代移动通信方案w-cdma中,或是我国提出的第三代移动通信方案td-scdma方案中都把智能天线作为特征技术阐述在内,这是有道理的。就是在专用通信网中,这个特点也有着重要意义。我们以815~821 mhz(移动台发)和860~866 mhz(基站发)这一集群系统专用频段为例说明这一问题。这一频段虽可划分成240个双向通,但由于集群系统性能优越,特别是它的调度功能强大,因而该系统特别受专用通信网欢迎,许多系统诸如电力、人防、 交通 、港口、民航等都想发展该系统,从而导致频谱紧张。但是,一旦集群系统采用智能天线以后,频谱紧张这一问题将迎刃而解。

三、智能天线系统的构成

智能天线之所以能具备这些优良性能,这同其系统构成有关,特别是波束形成网络。波束形成网络构成复杂,大体上可分为网络处理系统和网络控制系统两部分,依照网络处理和网络控制的工作原理、结构不同,智能天线可分成波束切换型和自适应阵列两种类型。

波束切换型是指,智能天线能形成多少个空间波束一空间信道事先就已确定,这个确定既包括波束指向,也包括数量。确切地说,这类天线的波束数量有限。当智能天线服务于某用户时,系统能自动从有限波束中选择一个或几个的组合以服务于该用户,而不管所选波束的最大指向是否对准用户,也就是说用户虽处在所选波束作用范围,却有可能不在最大方向上。而且,当用户在移动时波束却是固定的,在用户移动到这种另一波束上时,系统会由此波束切换到另一波束上。基于相同原因,另一波束也不保证其最大指向随时指向用户,这些特点构成了这类智能天线的缺点,但是这类天线结构简单。

自适应阵列型智能天线能形成无限多波束,并能使用户始终得到波束的最大指向。当用户移动时,波束也能作自适应改变。显然,这种类型的智能天线性能最佳,但其网络控制系统相当复杂,还要求系统的实时性好,即要求处理网络在软件上需要有收敛速度快、精度高的自适应算法,以能快速调整波束的复数加权参数w。

目前,智能天线网络系统使用的算法有最小、最大信号比、最小偏差等。它们又各有特点,因而在实际系统中常需要并用,以取长补短,特别是在移动通信和个人通信中。这是因为在这两种通信系统中,电波传播主要在地面,而地面的电波传播环境很恶劣。基于智能天线性能极大地依赖于网络系统软件特性,因此智能天线也被称作“软件天线”。

早期智能天线的波束形成 网络 用模拟电路,但调试难度大、性能稳定性和可靠性差,目前都主张采用数字电路。较为一致的意见是采用高速率的数字信号处理芯片来实现。实际使用的芯片主要有两种:一种是dsp通用芯片,如tms320系列等。另一种则为专用集成电路(asic器件),其中最典型的器件是能进行大规模并行处理的门阵列电路fpga,以c6x调处理器为基础的dsp系统见图3。波束形成网络平台应提供充分模块以支持多个c6x,而且要采用高效率的i/o结构。

天线小型化和微带天线的使用,使得天线阵列结构得以简化。软件方面值得注意的 发展 是,基于特征值分解的自适应数字波束形成算法格外受到重视,因为这种算法能和高分辨率的测向算法统一起来,还能克服众多因素造成的波束误差。但是,此种算法的 计算 量大。

四、智能天线在无线通信中的应用

智能天线能用于很多种无线通信系统中,以提高系统性能。未来专用移动通信网将向公众移动通信网方向发展,或者说二者之间关系更加密切。还应注意:移动通信蜂窝小区正在向微型化、智能化方向发展,站距将更小,分布也更广泛,波束跟踪也更需智能化、实时化,基站配置也将更灵活,智能天线的波束形成技术将在改善地面电波传播质量和降低成本上发挥重要作用。由于智能天线的使用,不论在专用移动通信系统,例如集群系统、无线本地环路,还是在公众蜂窝系统,一改控制信道的发射方式——由全小区(或全扇区或全无线区)范围内的辐射为跟踪性的极窄波束辐射,全区内同频可以多次复用,从而形成了智能无线区(智能小区、智能扇区)的新概念。因为智能天线具有跟踪功能的固有性,无需通信系统另设“定位功能”,从而使采用智能天线的移动通信系统、个人通信系统的越区切换产生了“智能切换”的又一个新概念。而且,智能天线的应用也降低了成本。目前国内在公众移动通信系统中虽然使用了性能优良的单极化全向天线antel bcd-87010、单极化定向天线antel rwa-87027、双极化天线dps60-16 rsx和先进的遥控 电子 倾角天线mtpa890-d4-rxy-z,尤其是后者给日常的移动通信网络优化提供了方便,人们根据需要可以方便地调节天线倾角,以改善覆盖和干扰,但是它们远不能和智能天线相比。智能天线用于移动通信系统时,主要用于基站的发和收。

应该承认,移动通信和个人通信应用智能天线的难度较大,其原因在于移动的多用户、电波传播的多路径等因素造成了信号动态捕获与跟踪的难度,所以移动通信和个人通信中智能天线应用较晚,而无线接入系统尤其是固定式无线接入系统却较早应用。智能天线工作于tdd双工方式的无线接入系统时,可以把上、下行链路的加权系数统一。但在上、下行频率不同时,即采用fdd双工方式时,则下行链路的加权系数在上行链路的加权系数基础上,还需作适当处理。智能天线有望用于移动市话,以改善其频率配置的难度和提高网络的容量,以及提高网络的抗干扰能力。

智能天线也能用于dect、phs、pacs、cdct等体制的无绳电话系统,都能改善它们的系统性能。

智能天线还可用于卫星移动通信系统,例如用于l波段的卫星移动系统的智能天线就是用16单元、环形分布的微带天线阵列和一个波束形成网络构成,采用左旋园极化。而波束形成网络则采用10块fpga芯片,其中2块用于波束选择、控制和接口,8块用于天线阵列的准相干检测和快速傅立叶变换。

智能天线还用于各种专用通信网和军事通信等无线通信系统,以改善系统性能。正是由于智能天线具有重要的应用价值,所以国内外许多大学、研究所、通信公司等单位投入巨资,潜心研究,并已见硕果。

五、结语

智能天线对提高专用网和公众网通信系统容量、抗干扰能力,提高通信质量以及实现同一地址的各专用网的频率共享等具有巨大潜力,近年来备受关注。但是由于波束自适应形成的难度大,影响因素多,因此智能天线虽已用于固定式无线接入、卫星通信、军事通信等系统中,并获益匪浅。但用于移动通信、个人通信中还存在有一些难度。不过近来已传来乐观消息。例如某国外公司已2000年6月在上海移动通信网络中进行智能天线实用试验。所用天线类型为波束切换型。试验结果表明,确实提高了网络的整体性能。另据广东消息称,该省移动通信网络将在充分试验的基础上,引入智能天线,以大幅度提高网络服务质量等级和满足用户数量剧烈增长的要求。

参考 文献 :

[1]李小强,胡健栋.未来移动通信中的智能天线技术[j].移动通信,1999(1)

[2]林敏,龚铮权.智能天线及其在移动通信中的应用[j].电信快报,2000(2)

[3]向卫东,姚彦.智能天线及其在无线通信中的应用[j].微波与卫星通信,1999(2)

[4]toby haynes.先进的dsp结构对无线基站大有裨益[j].环球通信,1999(1)

天使不在线范文6

关键词:接收天线、仰角、方位角、极化角

目前,我国的广播事业已经取得了令人瞩目的成就。卫星广播电视从模拟到数字,从C波段到Ku波段,从传输到直播,发展迅速。卫星直播电视的开播,更是解决了我国偏远山村收看电视难的问题,现阶段的村村通广电工程也是利用卫星信号进行覆盖的。

1.卫星接收天线的作用

广播电视节目是靠卫星接收系统来完成的,系统是由卫星接收天线、高频头、馈源、第一中频电缆、功分器和卫星接收机等几部分组成。

最常用的卫星接收天线就是我们所说的大锅,是一个金属抛物面,它把从星空传来的卫星信号能量反射会聚成一个焦点。馈源是在天线焦点处设置的一个卫星信号的喇叭,它把会聚到焦点的能量全部收集起来。高频头是将馈源送来的信号进行降频和放大后再传送到卫星接收机。一般来说,天线的口径越大,节目信号越强,接收到的信号质量越高。

2.卫星天线的种类

卫星天线的类型可分为两种,正馈和偏馈。正馈天线即我们说的大锅,接收C波段的节目。它属于一次反射式天线,卫星信号经反射面反射后,聚焦到天线的中心焦点处。偏馈天线是指天线的馈源和高频头的安装位置偏离反射面的正前方,因此对反射面没有遮挡,即没有馈源阴影的影响,从而提高了天线的口面效率。偏馈天线也叫小锅,常用于接收Ku波段的节目。

2.1 按天线的接收性质和构造分类

2.1.1 旋转抛物面天线

也称为中心聚焦天线,是最常用的卫星接收天线形式,由一个反射面和馈源组成。高频头和馈源安置于天线的中央焦点。其盘面为正圆,成抛物线形。旋转抛物面天线的盘面(反射面)多以铝合金板状结构最为普遍,这种结构的天线,强度大、精度高、结实耐用、反射效率高,但它的重量大、风阻较大,对天线支架的要求比较严格,价格偏高。现在使用的卫星接收天线的反射面均为铝质网状结构,它重量轻、对风的阻力小,价格相对便宜,但精度差、强度较低、耐用性比较差。

2.1.2 卡塞格伦天线

卡塞格伦天线是双曲面天线,由主反射面、副反射面和馈源组成。这类天线多为大口径接收天线,其馈源位于抛物面顶点附近,焦距较短,馈线的长度也较短。馈源是指向天空的,由馈源漏溢的电波产生的噪声温度低。由于用了副反射面面,在设计时增加了灵活性,容易控制天线开口上场的分布,其设备的机械结构和调整维护也比较简单。

2.1.3 球形反射面天线

球形反射面天线是指反射面是球面的一部分,在接收系统中,使用此种天线的目的就是通过一幅天线来进行多星接收,在焦点上,安装了多个馈源,并根据所接收卫星的方向适当地调整各馈源的位置。

2.1.4 微带天线

在Ku波段可以使用微带天线作为接收天线。它采用微带技术,高频头设置在天线内部,外形是一块平板,所以也称平面天线。它是采用在一块薄介质基片上,一面贴上一薄金属层作为接地板,另一面用光刻腐蚀等方法做出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电的形式接收信号。这种天线的体积小、重量轻、电性能多样化,价格较低,比较适合在家中使用。

2.2 按天线的使用材料分类

1、板状天线:有钢板、铝板、不锈钢、玻璃钢、塑酯等材质构成的天线。

2、网状天线:用金属丝网模压成型,多用于C波段的个人接收方式。

3、螺旋天线:通常由多个螺旋部分和一个反射器组成,螺旋部分的长度等于或略大于接收信号的一个波长,反射器呈圆形或方形,用在接收L波段的广播电视上。

2.3 按天线的驱动方式分类

1、普通天线:通过手动来调节天线的方位角、仰角、极化角,结构简单,价格低,但使用麻烦,精度低。

2、电动天线:通过低速电动机驱动减速换向机构(蜗轮等)来调节天线的方位角和仰角。

3、自动跟踪天线:这种天线精度高,捕捉时间短,使用寿命长,操作简单,多用于轮船、汽车、火车等移动的交通工具上。

3.卫星天线调试方法

要进行卫星接收,关键点是卫星的定位。即天线的方位角、仰角、馈源的极化角这三大参数的调试。下面,就以旋转抛物面天线为例,介绍一下怎样调试天线的参数。

3.1 仰角

从接收点仰望卫星天线的视线与水平线构成的夹角即为仰角。这里介绍两种简便实用的调整方法。

3.1.1 直线、双线法:在直尺的一端(记为A处)钻一个小孔,挂上一根细线,细线下面系上一小重物。在直尺的中间(记为B处)再钻一个小孔也挂上一根细线,并将该细线拉直贴近A处的小孔,在该处将细线打一个结。于是此细线从A端转向另一端是,线上的小结就会画出一个无形的半圆弧。将直尺贴紧天线圆盘,使挂有细线的一端向上,此时,挂在A端的细线在重物的作用下就会自然下垂,然后拉紧挂在尺中间的那根细线,使它上面的小结与垂线相交,交点记为C,量出AC、和BC的长度,就很容易得出仰角的数值了。

3.1.2 量角器法:用一个较大的量角器,稍作加工就可以做成一个仰角测试器。将量角器的直边垂直的靠在天线圆盘平面上,(不是量角器刻有0度的一端朝下)此时,一边转动天线的仰角一边就可以直接读出仰角的数值了。

3.2 极化角

接收天线的极化角是指接收点地平面与接收天线口面的交线和电波的水平极化矢量之间的夹角。粗调极化角,按公式算出P的理论值。可能有三种情况,P>0、P=0、P

细调:用AGC(自动电压增益控制)电压法或卫星接收机中的信号强度指示条等方法进行精确的调整。电压法一般用于模拟卫星电视场合。它是利用卫星接收机输出的AGC电压来调整接收天线的极化匹配的。

上一篇新课程理念

下一篇铁人电影