电压不稳范例6篇

电压不稳范文1

电脑电源电压不稳的症状有系统不稳定;蓝屏;死机;卡机;运行缓慢;自动关机;自动重启等。

电脑(computer,又称计算机)是一种用于高速计算的电子计算机器,被称为“20世纪最先进的科学技术发明之一”。电脑由硬件系统和软件系统所组成,具有进行数值计算、逻辑计算和存储记忆等多项功能。它的应用领域从最初的军事科研应用扩展到社会的各个领域,带动了全球范围的技术进步。软件系统包括:操作系统、应用软件等。应用软件中电脑行业的管理软件,IT电脑行业的发展必备利器,电脑行业的erp软件。硬件系统包括:机箱(电源、硬盘、磁盘、内存、主板、CPU-中央处理器、CPU风扇、光驱、声卡、网卡、显卡)、显示器、UPS(不间断电源供应系统)、键盘、鼠标等等(另可配有耳机、麦克风、音箱、打印机、摄像头等)。家用电脑一般主板都有板载声卡、网卡。部分主板装有集成显卡。

(来源:文章屋网 )

电压不稳范文2

【关键词】稳压块;最小稳定电流;调压电阻

可调三端稳压块317是在固定三端稳压块的基础上发展起来的,它除了具备固定三端稳压块的优点外,其某些电性能比固定三端稳压块的电性能更好,它的电压调整率的典型值仅为0.01%/V,负载调整率的典型值仅为0.1%,输出电压范围为1.25~37V,输出电流可达1.5A,最大工作温度范围(某些型号)可达-55~150℃。另外,由于它的内部带有过流、过热和调整管安全工作区保护电路,所以一般不易损坏,可靠性非常高。正是由于317稳压块具备以上诸多优点,加之其输出电压灵活可调,所以众多电子爱好者都把它作为常备元件。很多电子爱好者经常用317稳压块制作输出电压可调的稳压电源,稳压电源的基本原理如图1所示。

图1 稳压电源的基本原理

笔者在用317稳压块制作稳压电源时却出现了一种怪异现象:稳压电源在空载和负载电流极小时,输出电压都比较高;负载在230~30Ω范围内变化时,输出电压基本不变。例如表1中的第一行数据,稳压电源空载时,输出电压为12.05V;稳压电源带动30~230Ω的负载时,输出电压下降到8.09~8.10V,但电压非常稳定,基本不随负载变化而变化;当负载电阻增大到17.26KΩ时,输出电压增大到8.15V;当负载电阻增大到35.07KΩ时,输出电压增大到9.45V。从以上数据明显可以看出,稳压电源的输出电压变化太大,不是稳压电源应有的表现。当出现这种异常现象时,最怀疑的是317稳压块有问题,可是连续更换几块317后,问题依旧,可见不是偶然现象。为了解决这一问题,笔者用多种型号的317稳压块(如LM317T、CW317、CW317M等)进行了实际测试,表1是使用LM317T进行测试所得的部分数据。从表1的实测数据可以看出,数据是有规律的,并且规律性很强。为什么会产生此种怪异现象呢?经过查阅有关317稳压块的资料发现,在317稳压块的多项技术参数中,有一项参数是最小输出电流,有的资料称为最小泄放电流,也有的资料称其为最小稳定工作电流。在本文中简称为最小稳定电流。最小稳定电流的典型值为3.5mA,由于317稳压块的型号不同,生产厂家各异,其最小稳定电流也不一样,但其最小稳定电流都不大于10mA。当317稳压块的输出电流小于其最小稳定电流时,317稳压块就无法正常工作,表现为输出电压虚高;当加上适当的负载后,317稳压块的输出电流大于其最小稳定电流,317稳压块进入稳定工作状态,其虚高的输出电压就会立即回落。

为了保证317稳压块能够稳定工作,最小稳定电流的问题必须解决,解决的方法有两种:

其一是在317稳压块的输出端并联一只泄放电阻R(如图1所示)为其提供电流泄放通道,保证317稳压块的输出电流大于其最小稳定电流,使其处于稳定工作状态。但这种做法的问题是:由于并联的泄放电阻不能随输出电压的变化而变化,如果要保证317稳压块的输出电压为1.25V时其输出电流大于其最小稳定电流(假设其最小稳定电流为3.5mA),则泄放电阻R的阻值应为350Ω;当317稳压块的输出电压为37V时,通过350Ω的泄放电阻R的电流就会达到100mA,消耗在R上的功率竟然会达到3.5W之多,这样不但会白白浪费电能,同时也增加了317稳压块的负担,另外R还必须选用功率值特别大的电阻,显然不适合实际应用。

其二就是合理设置调压电阻R1的阻值(如图1所示),使317稳压块通过R1泄放电流,只要R1的阻值选择恰当,就能使317稳压块的输出电流大于其最小稳定电流,保证317稳压块能够稳定工作。电子爱好者都知道,317稳压块的输出端与调整端之间的压差为1.25V,只要使1.25V/R1大于其最小稳定电流,就能保证317稳压块在空载时其输出电流仍然大于其最小稳定电流。因为317稳压块的最小稳定电流的典型值为3.5mA,最大值为10mA,因此,R1的取值范围应当是125~350Ω。因为3.5mA是317稳压块的最小稳定电流的典型值,而并非所有317稳压块的最小稳定电流都是3.5mA,因为型号不同,生产厂家各异,可能有的317稳压块的最小稳定电流大于3.5mA,这时如果R1的阻值为350Ω,则317稳压块空载时的输出电流小于其最小稳定电流,317稳压块就不能稳定工作。因此,为了保证317稳压块的输出电流大于其最小稳定电流,一般情况下,R1的最佳取值范围为125~250Ω。

电子爱好者都知道,用317稳压块制作可调稳压电源时,其输出电压可用公式U0=1.25×(1+R2/R1)进行计算,就公式本身来说,R2和R1的阻值可以随意设定,但是,在实际运用中R2和R1的阻值却不能随意设定。前文已经说明,一般情况下,R1的最佳取值范围应为125~250Ω。

那么,R2应当如何取值呢?由于317稳压块的输出电压变化范围是1.25~37V(有些高输出电压的317稳压块的输出电压变化范围可达1.25~45V),即U0=1.25~37V,因为U0=1.25×(1+R2/R1),所以R2/R1的变化范围应当是0~28.6,如前所述,R1的最佳取值范围为125~250Ω,则R2的取值范围应当为3.6~7.2KΩ。

电压不稳范文3

【关键词】稳压器;电源;可调

集成稳压器又叫集成稳压电路,是指输入电压或负荷发生变化时,能使输出电压保持不变的集成电路。集成稳压器的种类有多端可调式、三端可调式、三端固定式及单片开关式等。三端可调式输出集成稳压器具有精度高,输出电压可调,电压纹波小,转换效率高等特点,因而选用该器件作为稳压电路,再加上降压、整流和调整电路可较为方便的实现连续可调式直流稳压电源设计。

1.降压电路设计

各类电子装设备及实验室中使用的一般为220V交流电,所以稳压电源设计的第一步就是要将220V高电压降为低电压。为了提高电源使用的安全性和可靠性,降压部分采用降压变压器来实现。首先,根据稳压器的输入电压确定降压变压器二次绕组电压的有效值;然后根据直流稳压电源的最大输出电流,确定降压变压器二次绕组的电流和功率;再根据降压变压器二次绕组的功率,查出变压器的效率,从而确定降压变压器的额定功率P。然后根据所确定的参数,选择降压变压器。

2.整流电路设计

整流电路的作用是把经过降压的交流电转变为脉动的直流电。一般选用单相桥式整流电路。它由四个整流二极管组成,其作用是保证在变压器副边电压的整个周期内,负载上的电压和电流方向始终保持不变。在单相桥式整流电路中,整流二极管的最大整流电流必须大于实际流过二极管的平均电流;整流二极管的最大反向工作电压必须大于二极管实际所承受的最大反向峰值电压。可以通过这两个参数来选择整流二极管。单相桥式整流电路中的四个二极管(Dl~D4)可选用IN4002。

3.滤波电路设计

整流后的脉动直流电幅值变化很大,不能直接使用。可利用电容的充、放电作用,在整流电路的输出端并联一个滤波电容,使输出电压波形变得平滑,脉动小。要实现较好的滤波效果,需选择容量较大的电解电容。在电容充电时,回路电阻为整流电路的内阻,其数值很小,故时间常数很小。电容放电时,回路电阻为整流电路的输出负载电阻,放电时间常数通常远大于充电的时间常数,因此滤波效果取决于放电时间。一般应使滤波电容的放电时间常数大于电容充电周期的3~5倍。对于桥式整流电路而言,电容的充电周期等于交流电网周期的一半,即C>(3~5)/2T。在滤波电路中,电容的耐压值不能小于交流有效值的1.42倍,容量与电流大小有一定比例关系。故在此选择一个2200μF的滤波电容。

4.稳压电路设计

4.1 集成稳压器选择

CW317是单片集成稳压器,它能输出1.25V~37V之间的基准电压值,最大输出电流为1.5A,最小负载电流为5mA,最大输入电压为40V,基准电压为1.25V。稳压器内部设置了过电流保护、短路保护、调整管安全区保护及稳压器芯片过热保护等电路,因此十分安全可靠。CW3l7稳压器管脚引线没有接地(公共)端,只有输入、输出和调整二个端子,采用悬浮式电路结构,输出电压连续可调,稳定度高。

4.2 基本稳压电路

由于CW3l7的输出端与调整端有1.25V固定输出电压,其输入电压可达40V,而输入输出电压差不能小于2V~3V,因此,可组成1.25V~37V输出电路。电路如图1所示。

稳压器的输出电压Uo是由电阻Rl、R2决定的。集成稳压器的内部工作电流都要流出输出端,此电流一般不小于5mA。三端稳压器的输出端与调整端之间的电压为1.25V的基准电压,要保证稳压器有10mA的输出电流,所以Rl的阻值应为120Ω。此时若Rl的下端(即调整端ADj接地,则Rl两端的1.25V电压即为稳压器的输出电压。为了使输出电压能在1.25V~37V之间连续可调,在Rl下端和ADj与地之间接一个可变电阻R2,此时输出电压Uo为R1、R2上的电压之和。

图1 1.25V~37V连续可调基本电路

Uo= URl+ UR2

其中:

URl=1.25V;UR2=(IR1+ IADj)R2=(UR1/ R1+ IADj)R2

考虑到 IADj 的电流很小可以忽略,则:

U0= URl+ UR2=URl + UR1/ R1*R2=1.25(R2/ R1+ 1)

可见,改变R2的阻值即可改变输出电压。R2取6.8kΩ的电位器,即可实现1.25V~37V连续可调的输出电压。为了保证电源空载时也有可靠的稳压性能,电阻R1的阻值可取120Ω。即最小输出电流10mA,R2取3.9kΩ的电位器。

图2 0V~30V连续可调稳压电路

4.3 0~30V连续可调稳压电路

从上面分析可知,将R2短路接地(R2=0),稳压电源输出Uo起码也有1.25V。现要求稳压电源以0V开始输出,故应将R2接到一个负电压上。VD5、C4为半波整流电容滤波,R3、VS为并联稳压电源负电压输出。通过R3、VS可使R2接到-1.25V上,在电阻R2为0时,可实现Uo输出为0V。调节R2阻值,可实现稳压电压电源输出电压在0V~30V内连续可调,最终电路如图2所示。

参考文献

[1]康华光.电子技术基础[M].北京:高等教育出版社, l998:221-223.

[2]熊如贵.浅析三端集成稳压器及其典型应用[J].电子制作,2007(3):43.

电压不稳范文4

摘要:三端集成稳压器被广泛应用于各种电子设备中,本文以W7800系列产品为例对三端集成稳压器的典型应用作了简要分析,并给出了实际应用电路的具体设计参数。

关键词:浅析;三端;稳压器;应用

集成稳压器是20世纪70年展起来的集成稳压器件,它具有稳压性能高、输出电流大、体积小、使用方便等优点,三端集成稳压器的这些优点是以前的集成稳压器件(例如KC582)无法比拟的。因此,三端集成稳压器被广泛应用于各种电子设备中。下面以W7800系列产品为例对三端集成稳压器的典型应用电路作简要分析。

一、三端集成稳压器应用的基本电路

三端集成稳压器的基本应用电路如图1所示。图中,Ui是整流滤波后的未经稳压的输入电压,Uo是稳压源的输出电压,CW7800的输入电容C1一般情况下可以不接,但当集成稳压器远离整流滤波电路时,应接入一个0.33uF的电容器,以改善纹波和抑制输入的过电压,保证CW7800的输入-输出电压差不会瞬间超过允许值。CW7800的输出电容器Co一般不采用大容量的电解电容器,只要接入0.1uF的电容器便可改善负载的瞬态响应。但为了减小输出纹波电压,有时在CW7800的输出端并入一只大容量的电解电容器,会取得良好的效果。但此时,当输入端出现短路时,Co上的电荷将通过集成稳压器内部调整管的发射结放电,会造成稳压器的损坏,为防止该情况的出现,可在CW7800的输入-输出端之间接一个二极管,如图2所示。二极管为电容器Co的电荷提供了放泄通路,对稳压器起到了分流的作用,此电路的输出电压Uo为集成稳压器的标称值UXX。

二、正负电压同时输出的稳压源

正、负输出电源的组合,可提供正、负电压同时输出的稳压源,其电路如图3所示。

三、高输入高输出集成稳压器

在集成稳压器的实际应用中,往往会出现整流滤波后的电压Ui较高,而要求输出较低的情况。为了保证集成稳压器的输入-输出的电压差不超过允许值,就必须降低集成稳压器的输入值。

一种适用于高输入的电压的集成稳压源电路,如图4所示。

当所需稳压源输出电压高于集成稳压器的标准时,可采用升压电路来提高输出电压。

图5是一种升压电路的原理图。在图中,R1上的电压就是稳压器的标准输出电压Uxx,设经过R1的电流为IR1,流过R2的电流为IR1和集成稳压器静态工作电流IQ之和。

高输入和升压电路的组合,可构成高输入-高输出稳压源,这类电源电路适用于高输入高输出电压的情况。具体电路如图6所示。

四、可调输出集成稳压电源电路

图7是7~30V的可调输出集成稳压电源电路,运算放大器F007作为电压跟随器,由于运算放大器有较高的输入阻抗和较低的输出阻抗,将它接在集成稳压器的输出端2和调整端3之间,起到了缓冲作用,提高了稳压精度。

参考文献:

[1]杨碧石 何其贵.模拟电子技术基础.北京:北京航空航天大学出版社,2006.

[2]谢嘉奎.电子线路(非线性部分).北京:高等教育出版社.2000.

电压不稳范文5

伍水梅 广东省国防科技技师学院 广州同和 510515

【文章摘要】

电源是电路的核心,是电子电路制作过程中必不可少的设备。一个好的直流稳压电源能让电路制作事半功倍,效果显著。一般直流稳压电源由变压器、整流、滤波、稳压等几个部分组成。本文介绍了一种简单实用的直流稳压电源的制作。

【关键词】

直流稳压电源;变压器;整流;滤波; 稳压;7806

【Abstract】

Power which is the core of the circuit is the essential equipment for making electronic circuit. It will get twice the result with half the effort if a good DC power is supplied for the production of circuit.Generally speaking,DC power supply is mainly composed of transformer, rectifying,filtering and voltage-stabilizing. This article describes a simple and practical construction of DC power supply.

【Keywords】

DC Regulated Power Supply;Transformer; Rectifying;Filtering;Voltage-stabilizing; 7806

0 引言

科技在不断进步,人们对小型电器的需求越来越大,但不管是那种电器设备, 电源都是必不可少的,而且越是高端的电器,对电源要求越是严格。电源技术核心是电能变换与处理,广泛应用于教学、科研等领域,而直流稳压电源是电子技术中常用的仪器设备之一,几乎所有家用电器和其它各类电子设备都在使用直流稳压电源,它占着举足轻重的位置,是大部分设备与电子仪器的重要组成部分,是电子科技人员及电路开发部门进行实验操作和科学研究不可缺少的电子仪器。但实际生活中通常是由 220V 的交流电网供电, 直流电源需要通过电源系统将交流电转换成低电压直流电以供给各类电器设备使用。

直流稳压电源对电路调试、电路制作有决定性的作用,一个好的直流稳压电源,能让工作事半功倍。直流稳压电源系统主要由变压、整流、滤波和稳压四部分电路组成,其原理和制作过程比较简单, 如图1 所示。本文主要介绍一个能提供+6V、+1A 的串联型直流稳压电源的制作过程。

1 合适变压器的选择

变压器作为一个降压元件,主要是将初级电压(市电220V)转换为电路所需压降。根据电路要求提供+6V、+1A 的直流电源,所以在选择变压器的次级电压和次级电流时应适当增大,原则上次级电压应在所需电压的基础上多加3V,即次级电压应选6V+3V=9V,而次级电流应在所需电流的基础上乘以1.7 倍,即1.7A ;变压器的功率P 是初级线圈P1 和次级线圈功率P2 之和的一半,即:

P=(P1+P2)/2,

按照所选择的电压可计得:

P2=U2×I2=9×1.7=15.3W

P1=P2/ (0.8 ~ 0.9)=18W

这样可以选择变压器的参数是功率为18W,初级输入电压220V,次级输入电压9V。变压器应进行基本检测,如初级、次级线圈的分辨,最常用的方法有两个: 第一种是根据线圈电压与线圈匝数的比值V1:V2=n1:n2 可知线圈细的那边应为初级线圈(输入端);另一种方法是用万用表的电阻档比较两线圈的电阻值,阻值较大的那一端为初级线圈(输入端)。

2 整流电路的配备

整流电路的主要作用是利用二极管的单向导通特性将变压器输出的交流电压转换为脉动直流,是直流形成的第一站,它所提供的电压比最大输出电压值

图4.2 1ms 调频周期信号频谱 要略高,所以在选用四个二极管时要注意耐压值应比变压器的次级输出电压大3 倍以上,耐流值应略大于变压器的次级电流。按照变压器所取的数据:U2=9V、I2=1.7A,所选取的二极管耐压应大于27V,耐流值最小应等于变压器的次级电流。二极管需要承受较大的反向电压,假如二极管反接,将会造成二极管损坏,电路无法工作等严重后果,因此安装前要对二极管进行检测,确保极性。二极管的检测:用万用表测量二极管的正反向电阻, 根据二极管的单向导通特性可以轻易的判断出小电阻的那次黑笔所接是正极,红笔所接是负极;对于外观完好的二极管也可以从银色圈圈在哪边从而判出负极。

3 选用不同的电容器实现滤波

滤波电路是利用电容器将整流电路所输出的脉动直流存在的交流成份滤掉, 使输出波形变得平滑。不同类型的电容器有着不同特性,在电路中能起不同作用, 因此不同的电路应该选择不同的电容器; 但不管何种电容器,在电路中承受的电压都不能超过它自身的耐压值,否则电容器将受到损坏,甚至产生“放炮”现象。根据变压器的次级电压等于9V,选择电容器的耐压值应为1.42 U2,即13V,电容器的容量应为(1500 ~ 2000)I2 (I2 为变压器次级电流),即电容器可选用3300 ~ 4700μF 的。在本文所设计的电路中,前面的滤波电容C1 可适当选大到3300μF 以上,稳压出来的滤波电容C2 就要相对减小,可选择几十微法的。利用万用表的电阻档检测电容的好坏,判断电容有无短路、断路和漏电等现象:按电容量的大小用万用表不同的电阻档,红、黑表笔分别接电容器的两引脚,在表笔接通瞬间观察表针的摆动,若表针摆动后返回到“∞”,说明电容良好,且摆幅越大容量越大;若表针在接通瞬间不摆动,则说明电容失效或断路; 若表针在接通瞬间摆幅很大且停在那里不动,说明电容已击穿(短路)或漏电严重;若表针在接通瞬间摆动正常,只是不能返回到“∞”,说明电容有漏电现象。对电解电容更要分清楚正负极,避免反接。

4 稳压电路的研制

稳压电路是当电网电压波动或负载发生变化时,能使输出电压保持稳定的电路。根据电路的连接方式可分为并联型直流稳压电源和串联型直流稳压电源。并联型直流稳压电源所用元器件少,较经济;输出短路时元器件不易损坏,但效率低,调压范围小,负载变化容易引起输出电压的变化,适用于负载电流变化不大或极易发生短路的场合。相比之下串联型直流稳压电源可用在负载变化较大,稳压性能要求较高,输出电压可调等场合,所以建议安装串联型直流稳压电源。常用的稳压元件有稳压管、LM317、CW78××× (CW79×××)。

稳压管是特殊加工而成的二极管,和普通二极管一样具有单向导通特性,主要工作于反向击穿区,起稳压作用,通常并在负载两端使用。当它两端所加的反向电压达到反向击穿电压时,管子导通,电流急剧上升,达到稳压效果。只用稳压管工作的稳压电路一般较简单,性能也较差, 适用于输出电流不大,稳压要求不高的场合。为改善稳压效果,稳压管常会和复合管一起用,但稳压效果还是不理想。

LM317、CW78×××(CW79×××) 同属三端集成稳压器,都是将稳压电路通过半导体集成技术压制在一块半导体芯片中形成集成稳压电路[9]。LM317 是一种常用的三端可调稳压集成电路,输出电流为1.5A,输出电压可在1.25 - 37V 之间连续调节,调整使用方便。CW78××× 系列为输出正电压的固定式三端稳压器, CW79××× 系列为输出负电压的固定式三端稳压器,两者都包含了输入、输出、公共接地端三个引出端,具有限流和热保护的功能,且根据后序××× 不同各有不同的的输出电压和输出电流,第一个“×” 代表额定电流--- 字母L 表示输出电流为100mA,字母S 表示输出电流为2A, 没有字母表示输出电流为1A ;后面两个×× 表示额定电压---05 表示额定电压为5V,12 表示额定电压为12V,如此类推。根据要求,本文选用7806 集成稳压器(如图5 所示),其额定电压+6V,输出电流1A ;若是79S12 则额定电压为-12V,输出电流2A。在使用所选IC 前,应注意区分7806 的三个管脚和判断其好坏。区分管脚时可将三端稳压器正面竖起来面对自己, 从左到右依次为输入端、接地端、输出端, 使用加电压法测试三端稳压器好坏,在7806 的1 脚和2 脚按极性加上直流电压(9—35V),用万用表测3 脚和2 脚的电压, 如果所测电压数值与稳压值相近(大小不超出2V),则说明稳压器性能好。

5 附加电路的选用

根据电路的要求不同,也为了让电路能更好的工作,可以在原电路的基础上增加一些冗余电路,如电源指示电路,输出电压显示电路,散热电路等。

当电路完成后应重新检查一次所有元器件,如二极管的方向、电解电容的极性、集成电路的各管脚等,在检查无误后则可以进行通电调试,接通开关后若指示灯显示正常,则+6V、1A 直流稳压电源即可正常使用,其原理图如图2 所示。

6 结束语

通过对直流稳压电源的分析制作,总结出直流稳压电源的制作应从选材入手, 根据电路要求进行电路设计。只要认真扎实的进行制作,就能从中悟出很多有关直流稳压电源的制作技巧,使一些积累问题迎刃而解,推导出开关型稳压电路、串联反馈式稳压电路、输出正负电压可调的稳压电路等的制作,提高创作水平。

【参考文献】

[1] 田智文. 一种带有保护电路的直流稳压电源的设计[D]. 西安:西安电子科技大学,2011

[2] 孟祥印,肖世德. 基于先进集成电路多输出线性直流稳压电源设计[J]. 微计算机信息,2005,21(1): 154-155,180

[3] 金钊. 直流稳压电源的性能测试与优化[D]. 威海:山东大学,2012

电压不稳范文6

关键词:开关电源 保护电路 系统设计

1引言

直流开关稳压器中所使用的大功率开关器件价格较贵,其控制电路亦比较复杂,另外,开关稳压器的负载一般都是用大量的集成化程度很高的器件安装的电子系统。晶体管和集成器件耐受电、热冲击的能力较差。因而开关稳压器的保护应该兼顾稳压器本身和负载的安全。保护电路的种类很多,这里介绍极性保护、程序保护、过电流保护、过电压保护、欠电压保护以及过热保护等电路。通常选用几种保护方式加以组合,构成完善的保护系统。

2极性保护

直流开关稳压器的输入一般都是未稳压直流电源。由于操作失误或者意外情况会将其极性接错,将损坏开关稳压电源。极性保护的目的,就是使开关稳压器仅当以正确的极性接上未稳压直流电源时才能工作。利用单向导通的器件可以实现电源的极性保护。最简单的极性保护电路如图1所示。由于二极管D要流过开关稳压器的输入总电流,因此这种电路应用在小功率的开关稳压器上比较合适。在较大功率的场合,则把极性保护电路作为程序保护中的一个环节,可以省去极性保护所需的大功率二极管,功耗也将减小。为了操作方便,便于识别极性正确与否,在图1中的二极管之后,接指示灯。

3程序保护

开关稳压电源的电路比较复杂,基本上可以分为小功率的控制部分和大功率的开关部分。开关晶体管则属大功率,为保护开关晶体管在开启或关断电源时的安全,必须先让调制器、放大器等小功率的控制电路工作。为此,要保证正确的开机程序。开关稳压器的输入端一般接有小电感、大电容的输入滤波器。在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,如图2所示。这种电路称之谓开关稳压器的“软启动”电路。

开关稳压器的控制电路中的逻辑组件或者运算放大器需用辅助电源供电。为此,辅助电源必须先于 开关电路工作。这可用开机程序控制电路来保证。一般的开机程序是:输 入电源的极性鉴别,电压保护开机程 序电路工作辅助电源工作并通过限流电阻 R对开关稳压器的输入电容器C充电 开关稳压器的调制电路工作,短路限流电阻开关稳压器 稳定工作。

在开关稳压器中,刚开机时,因为其输出电容容量大,充到额定输出电压值需要一定时间。在这段时间内,取样放大器输入低的输出电压采样,根据系统闭环调节特性将迫使开关三极管的导通时间加长,这样一来,开关三极管就会在这段期间内趋于连续导通,而容易损坏。为此,要求在开机这一段时间内,开关调制电路输出给开关三极管基极的脉宽调制驱动信号,能保证开关三极管由截止逐渐趋于正常的开关状态,故而要加设开机保护以配合软启动。

4过电流保护

当出现负载短路、过载或者控制电路失效等意外情况时,会引起流过稳压器中开关三极管的电流过大,使管子功耗增大,发热,若没有过流保护装置,大功率开关三极管就有可能损坏。故而在开关稳压器中过电流保护是常用的。最经济简便的方法是用保险丝。由于晶体管的热容量小,普通保险丝一般不能起到保护作用,常用的是快速熔断保险丝。这种方法具有保护容易的优点,但是,需要根据具体开关三极管的安全工作区要求来选择保险丝的规格。这种过流保护措施的缺点是带来经常更换保险丝的不便。

在线性稳压器中常用的限流保护和电流截止保护在开关稳压器中均能应用。但是,根据开关稳压器的特点,这种保护电路的输出不能直接控制开关三极管,而必须使过电流保护的输出转换为脉冲指令,去控制调制器以保护开关三极管。为了实现过电流保护一般均需要用取样电阻串联在电路中,这会影响电源的效率,因此多用于小功率开关稳压器的场合。而在大功率的开关稳压电源中,考虑到功耗,应尽量避免取样电阻的接入。因此,通常将过电流保护转换为过、欠电压保护。

转贴于 5过电压保护

开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。开关稳压器所使用的未稳压直流电源诸如蓄电池和整流器的电压如果过高,使开关稳压器不能正常工作,甚至损坏内部器件,因此,有必要使用输入过电压保护电路。用晶体管和继电器所组成的保护电路如图3所示。