电站设计规范范例6篇

电站设计规范

电站设计规范范文1

【关键词】:水电站厂房;火灾危险性;消防设计

中图分类号:TU998文献标识码: A 文章编号:

一、水电站厂房火灾危险性

水电站由于设备众多、线路复杂、带油设备繁多,发电机、主变压器、油浸变压器(电抗器)、油开关、电缆、蓄电池等电力、电气设备,柴油发电机、绝缘油和透平油系统等场所火灾危险性大。水电站厂房地下部分空间密闭,一旦发生火灾,宜造成人员疏散困难,火灾扑救难度大,从而产生社会影响,造成巨大经济损失,后果严重。

二、水电站消防设计特点

1重点突出

水电站工艺布置与运行情况不同于其他工业建筑,主厂房空间高大,较长时间的烟气聚集不会影响到人员疏散,而且随着电站管理自动化程度的提高,大部分场所无人值班或少人值守,人员疏散与民用建筑有所不同。因此在消防设计中,保证机电设备安全和人员安全疏散应是水电站厂房消防设计的重点。

2消防措施综合运用

在消防设计中,首先应突出“防”,争取将火灾危险性降到最低程度;其次合理布置各个功能区,有针对性的对火灾危险性高属丙类的场所、部位进行分隔,采取多重消防灭火保障措施。在预防-报警-灭火设施启动多重环节保护下,尽量减少火灾蔓延的可能性发生。

3立足自防自救

“预防为主、防消结合”是消防工作方针。水电站一般远离城镇,可借助的社会消防力量有限,消防安全立足自防自救。在确保消防需要的前提下,充分发挥水消防优势,尽可能与正常使用的设备相结合,重点部位采用先进技术,做到保障安全、使用方便、经济合理。

三、消防设计常见问题分析

西部地区水电站厂房生产的火灾危险性类别通常为丁类。部分场所如中央控制室、油浸变压器室、油处理室、柴油发电机室、室外主变压器场等为丙类。在消防设计中通常根据厂房建筑的火灾危险性类别和危险等级,按照以下防火规范进行设计:

(1)《水利水电工程设计防火规范》SDJ 278-90、

(2)《火力发电厂与变电站设计防火规范》GB 50229-2006、

(3)《建筑设计防火规范》GB 50016-2006、

(4)《建筑内部装修设计防火规范》GB 50222—95(2001年修订版)

(5)《建筑灭火器配置设计规范》GB 50140-2005

(6)《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002)进行相应的消防设计。

(7)《建筑防火封堵应用技术规程》CECS 154:2003

在水电站消防设计审查中通常存在以下几个问题:

1.将主、副厂房作为同样的功能分区,划分为一个防火分区。

丙类场所内部装修设计燃烧性能等级设计不合理。顶棚、墙面材料较多使用燃烧性能等级为B1级的装修材料,地面、隔断使用B2级;丙类场所防火分隔中,建筑装修材料的燃烧性能等级设计遗漏。

厂房内各部位火灾危险性定性不全、划分不准确,导致主变室、油系统、中控室等重要部位消防设计不完整。

安全疏散不能符合新标准要求,两座水电站都仅设置了敞开楼梯间作为安全出口,且地下层与地上层共用楼梯间;作为工作人员主要聚集地的办公室只设有一条疏散线路,且设在主变室上方,无法保障人员安全疏散。

油系统事故排烟系统未独立设置,油罐和油处理室排出的油气火灾危险性大,易发生油气火灾,与厂房通风系统共用通风总管道,一旦发生火灾,势必造成火势向其他通风子系统蔓延扩大。

电站的消防电源均取自厂用电系统两端的母线上,一旦发生火灾, 则两端母线均无法供电,无法满足消防电源的要求。

对不同形式的墙、楼板、井在穿管、开洞时其防火封堵组件设计笼统,交代不清或设计不合理。

四、水电站消防设计建议

1防火分区和丙类场所防火分隔与内部装修

根据《水利水电工程设计防火规范》(SDJ278-90,以下简称《水规》)规定:水电站主厂房和高度在24m以下的副厂房,其防火分区最大允许占地面积不限,是指各自的防火分区面积不限,但并不是表明二者可以划分为一个防火分区。根据《建筑设计防火规范》(GB50016-2006,以下简称《建规》)第 2.0.20条、7.1.5条,在主、副厂房按照不同防火分区划分时,相邻之间应设置防火墙分隔,防火墙上门窗洞口应为甲级防火门、窗。

水电站厂房的丙类场所主要有:中控室、发电机配电装置室、油浸变压器室、油处理室、柴油发电机室、电缆夹层、室外主变压器等场所。根据《水规》第 4.1.1条规定,丙类生产场所应作局部防火分隔,防火分隔宜按照《建规》第 5.4.2.3、5.4.2.5条、第 5.4.3.2条规定,采用耐火极限不低于2.0h不燃烧体隔墙和耐火极限不低于1.50h的楼板及甲级防火门窗与厂房其他部分隔开。

根据《建筑内部装修设计防火规范》GB50222- 95(2001修订版)第4.0.3条规定,电子设备室等丙类场所顶棚和墙面装修材料燃烧性能不应低于 A级,地面和其他部位不应低于 B1级。中控室根据《火力发电厂与变电站设计防火规范》GB 50229-2006第 11.1.5条规定:控制室内装修应采用不燃材料。

2安全疏散出口、疏散距离和楼梯间

安全疏散出口:根据《水规》第2.0.2、4.1.1条规定,水利发电厂的主、副厂房生产的火灾危险性类别为丁类,耐火等级为二级。水电站厂房的安全疏散出口宜根据《建规》第3.7.2.4、3.7.2.5条、《水规》第4.2.4条规定设计, 按照耐火等级为二级的厂房进行设计,厂房的每个防火分区、一个防火分区内的每个楼层,当“建筑面积大于400m2,且同一时间的生产人数超过 30人”或“地下厂房其建筑面积大于 50m2,经常停留人数超过15人”时, 应当设置两个安全出口。根据《水规》第4.2.4条规定,当副厂房每层建筑面积不超过800㎡时,且同时值班人数不超过15人时,可设一个安全疏散出口。

疏散距离:根据《水规》第4.2.5条规定,发电机层室内最远工作地点到该层最近的安全疏散出口的距离不应超过60m,根据《建规》表3.7.4规定,地下厂房内任一点到最近安全出口的距离为45m。

楼梯间:水电站厂房发电机层以下部分宜设置封闭楼梯间, 根据《建规》第7.4.4条规定,地下室的楼梯间,在首层应采用耐火极限不低于2.00h的不燃烧体隔墙和乙级防火门与其他部位完全隔开, 并应直通室外。

地下厂房的楼梯间宜按照《建规》第7.4.2.1、7.4.3.1条规定要求,按照防烟楼梯间设计。

3水喷雾灭火系统

根据《水规》规定,考虑用水作为灭火介质方便、经济,一般水轮发电机、主变、绝缘油和透平油系统、 大型电缆室、电缆隧道和竖井等部位采用水喷雾灭火装置。系统设备有:火灾自动报警系统、 手动或电动球阀、压力表、喷头、末端试水及管网等。以水轮机水喷雾灭火系统设计为例:应按照《水喷雾灭火系统设计规范》(GB50129-95)要求,在发电机定子上下端各配一圈灭火环管,环管上安装水喷雾喷头,设计喷雾强度13L·min- 1·m- 2, 火灾延续时间应按时间40min计算, 最不利点水雾喷头工作压力不小于0.35MPa , 发生火灾时由火灾自动报警系统探测并自动打开电动球阀启动水喷雾灭火系统灭火,系统反应时间不大于45s,喷头选用离心雾化型水雾喷头, 末端试水在厂内进行,用于日常系统检测。

4火灾自动报警系统

根据电站保护对象的使用性质及火灾危险性的特点, 将报警区域按照防火分区及不同危险区域划分。主厂房、副厂房、开关站,其中一级保护对象有:发电机、变压器、电缆管沟、油罐和油处理室, 其余为二级保护对象。每个报警区域设置一台区域火灾报警控制器, 每个探测区域面积不大于 500m2。火灾自动报警系统划分和配置如表 1所示。

表 1火灾自动报警系统划分和配置

5消防给水系统

水电站消防给水通常有自流供水、水泵供水、消防水池方式。水电站适宜以水库水作为消防水源, 根据建筑体积和《建规》的规定, 确定室外消防用水量和室内消防用水量。在电站上游应设置一座消防水池和补水设施,通过高度差形成常高压消防给水系统, 引两根消防主干管采用环状布置分别向下游厂区和开关站的消火栓系统和水喷雾系统供水。

根据《水规》第9.2.2条规定,当给水设施采用自流供水方式时,取水口不应少于两个,必须在任何情况下保证消防给水。

在厂房周围及其它建筑外、厂房内各层按照《水规》第9.3.2、9.3.3条规定,合理布置消火栓。

6事故排烟系统

地下厂房、封闭厂房、坝内厂房的油浸变压器、油处理室、电缆室等场所应设置独立的排烟系统,不得跨越其他房间。具体按照《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002) 进行设计。疏散走道、楼梯间的排烟可与厂房内排风系统结合。

7建筑防火封堵

在水电站消防设计中,很少有针对不同性质的墙、楼板、井在穿管、开洞时做具体的防火封堵组件设计措施。大多仅在图纸说明中交代几句。没有根据《建筑防火封堵应用技术规程》CECS154:2003对各类孔口、建筑缝隙的不同性质、位置画图进行防火封堵组件设计。因而出现防火封堵材料使用不当,防火封堵组件设计未考虑其结构本身的稳定、开裂、位移及耐久性。

8其他需注意的事项

水电站厂房灭火器配置,应根据《建筑灭火器配置设计规范》GB 50140-2005的规定,确定各灭火器配置场所的火灾种类和危险等级;按照建筑每个防火单元的面积,经计算确定灭火器配置数量和类型。水电站厂房火灾种类一般为固体火灾(A类)、液体火灾(B类)、物体带电燃烧火灾(C类)三种类型。灭火器可选择可扑灭A、B、C类手提式干粉灭火器、卤代烷灭火器或二氧化碳灭火器;消防电源应符合二级负荷要求, 宜自备发电, 电缆布置都不得穿越易燃易爆危险场所。此外, 目前的水电站消防设计规范亟须修订,对水电站的专项消防设计应按最新消防技术规范执行。

五、结束语

水电站消防设计较为复杂,各专业应根据建筑内部功能火灾危险性及建筑空间的特点进行综合分析,根据规范要求,进行合理设计。同时积极引进先进设计理念,采用科技含量高和可靠性、自动化程度高的设施设备,以适应新的形势和经济发展要求。只有这样,才能较好地解决水电站消防设计中存在的问题和矛盾,做到安全适用、经济合理,以达到整个工程的消防安全。

参考文献:

电站设计规范范文2

摘要:居龙滩水利枢纽工程装机2台,单机容量30.0MW,总装机容量60.0MW,水头变幅范围为9.5~18.0m,为国内灯泡贯流式机组应用水头较高的机组之一,机组额定水头14.20m,额定转速125.0r/min, 多年平均发电量19730万KW·h,本文介绍该水利枢纽工程的消火栓灭火系统、CO2灭火系统、探测和控制系统的设计。 关键词: 贯流式水电站;消防总体设计;消防给水;CO2灭火系统;干粉灭火器;火灾自动报警及灭火控制系统 1. 工程概况和消防总体设计方案 1.1概况及其特征。居龙滩水利枢纽工程是以发电为主,兼顾防洪和灌溉、供水、航运以及水库养殖等任务的综合利用工程。其工程规模为:水库总库容为7.76×107m3;电站总装机容量60MW。 该工程位于贡水左岸支流桃江下游赣县大田乡夏湖村境内,距赣县县城约28Km。桃江流域属副热带季风气候区,流域内各地多年平均气温19.4℃,极端最高气温41.2℃,极端最低气温-6℃,多年平均蒸发量1576.2 mm。 工程是由挡水坝、溢流坝、河床式发电厂房、船筏道及升压开关站等建筑物组成。 本工程的主要消防对象是水电站建筑物及其机电设备。其中水电站建筑物的消防设计含主厂房、副厂房、主变压器场(开关站)、高压开关室、厂用屏配电室、油库、机修车间和坝区等。除检修期外,水电站及其机电设备一般都处于生产运行状态。 1.2消防设计依据和设计原则。 本工程消防设计依据国家、行业颁布的下列现行规程规范进行: (1)水利水电工程设计防火规范(SDJ 278-90) (2)火灾自动报警系统设计规范(GB 50116-98) (3)建筑设计防火规范(GB50016-2006) (4)自动喷水灭火系统设计规范(GB 50084-2005) (5)建筑灭火器配置设计规范(GB 50140-2005) (6)二氧化碳灭火系统设计规范(GB 50193-93) (99年版) (7)电力系统设备典型消防规程(GB 5027-93) (8)采暖通风与空气调节设计规范( GB50019-2003) (9)水力发电厂机电设计技术规范(DL /T5186-2004) (10)中华人民共和国消防法( 1998-04-29) (11)火灾报警控制器通用技术条件( GB 4717-93) (12)水库工程管理设计规范(SL106-96) 为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理、经济实用的方针,并结合居龙滩水利枢纽工程的具体情况,确定了如下基本设计原则: 在消防区内,按规范要求统一规划畅通的安全通道,设置安全出口及其标志; 以生产重要性和火灾危险性设置消防设施和器材,特殊部位按防火规范采取其它消防措施; 在电站设置消防控制中心(计算机房旁)和火灾报警系统,消防电源采用双可靠独立电源; 采取消防车、消火栓、CO2灭火和干粉灭火器四种灭火方式,消防用水取自可靠而充足的水源; 设置通风排烟系统; 选用阻燃、难燃或非燃性材料为绝缘介质的电气设备或采取其它保护措施以防止或减少火灾发生; 有火灾危险性设备之间, 采用耐火材料制成的墙或门隔离,孔洞用耐火材料封堵以防止火灾的漫延与扩散。 1.3消防总体设计方案。枢纽总体配备一辆消防水车,若遇重大火灾时,则由县消防部门支援扑救。工程消防系统按其生产及防火功能要求分为主厂房、副厂房、开关站、高压开关室、油库、机修间及大坝(含启闭机室、坝区用电变房)七个区,其中主厂房、副厂房采用自动灭火与灭火器具结合的灭火方式,开关站、高压开关室、油库、机修间、大坝则采用灭火器具灭火。 为确保消防区灭火要求,本工程消防水源及电源均按双水源、双电源设置,互为备用。当其中之一停止工作时,备用水源及备用电源均能自动切换投入。二台消防水泵从上游水库取水或下游取水,水泵扬程为52m,作为消火栓消防备用水源,两台消防水泵布置在技术供水设备室;另外,由两台深井泵从水井取水给高位水池(V=100m3)供水,作为消防水源及生活用水,为保证消防水源的可靠性,应经常

电站设计规范范文3

关键词:加油站;雷电安全隐患;解决方案

0 引言

近些年,杭州市余杭区经济快速发展,百姓生活水平得到了很大改善,私家车等数量越来越多,且辖区内设立的余杭区经济技术开发区和钱江经济开发区内,各类企业投资办厂,随之产生的物流运输也使得该区机动车流量增多,作为城市交通配套服务设施的加油站也愈加突显其重要。

1 基本概况

余杭区内的加油站通常建造在城乡主干道及路口、进出该区的320国道和09省道以及沪杭等高速公路开阔地带。一般营业用房、宿舍等的规模都不大,不便于多级防雷方案的实施,且所处环境较为空旷,属相对孤立的建筑物,易遭受雷击,且加油站的性质属易燃易爆场所。因此,加油站的防雷防静电情况应当引起足够重视。

1.1 存在的问题

或大或小,或轻或重,但均是安全隐患,若不引起重视,及时采取措施,都有可能酿成大患。

1.1.1 营业用房未装设防直击雷装置。

1.1.2 专设引下线:①材料规格不达标;②未设断接卡;③未沿建筑物均匀设置;④未采取防跨步电压、接触电压措施;⑤未做防腐处理。

1.1.3 未装设相应的电涌保护器(SPD)。

1.1.4 加油枪、广告牌等未接地或接地不良。

1.2 问题的分析

1.2.1 没有区分防雷类别 部分加油站在防雷工程设计中没有对站内建筑作防雷类别区分,有的直接按照三类防雷建筑物去设计,显然这是不合理的,应当严格依据其“年预计雷击次数”的计算结果和相应规范的要求确定工程的防雷类别。根据《建筑物防雷设计规范》GB50057-2010和《汽车加油加气站设计与施工规范》GB50156-2002(2006年版)等规范可以判定,加油区罩棚、罐区等属于二类防雷建筑物,营业用房、宿舍等属于三类防雷建筑物。

1.2.2 没有明确防雷保护范围 一些加油站的加油罩棚比营业用房高,设计施工人员(或是私营加油站老板)便省去了营业用房的接闪器,但加油罩棚的接闪器能否保护到营业用房,这个还是得按滚球法计算其保护范围来确定,而不是用肉眼观察。按滚球法计算时,如果加油罩棚能够保护到营业用房,那么营业用房顶部可不设接闪器,否则必须加设。

1.2.3 设计不应只图美观,施工不应只想成本和难度 设计方面,根据《建筑物防雷设计规范》GB50057-2010第4.3.3条的要求:二类防雷建筑物的引下线应沿建筑物四周均匀对称布置,其间距不宜大于18m。这点许多加油站为了不影响建筑物的外观及经济性等因素,利用建筑物结构柱内主筋作为引下线,这样的做法是符合相关规范要求的,但应注意引下线的平均间距和均匀分布问题。

在施工方面,大多数加油站由于所处地理环境和施工条件受限等影响,存在明敷引下线跨度较大或过于集中的问题,须引起注意并尽可能解决它,以防万一。

1.2.4 未采取防感应雷措施 在配电系统这块的防感应雷保护上,包括中石油等的大型国企加油站在内,普遍没有采取相应的防感应雷措施,比如:埋地电缆的进线方式、电源电缆没有屏蔽措施或是屏蔽措施不当、未设信号电涌保护器等。由于I级试验的电涌保护器和信号电涌保护器一般价格都较昂贵,国外进口的就更不用说了,所以大多数加油站都未按要求装设。一旦雷击电磁脉冲干扰,税控加油机、电脑监控等电子设备都极易受到损坏,将给企业造成巨大经济损失.

1.2.5 接地体安全距离。 安全距离,指接地点至被接地物体间的距离应达到一定长度,才能避免因雷电流泄放不畅和雷电高电位反击而引起火花放电,造成灾害事故。但在近几年的防雷检测中,不少民营加油站图方便,油罐就近接地,其与接地体的距离太近,有的甚至就在边上,且存在油罐接地点未达到至少2处的情况。

1.2.6 民营加油站的不规范问题 民营加油站由于其所属私人及规模较小等特殊情况,存在较多问题。①人员专业素质。民营加油站的员工在企业招聘后并未进行系统专业的相关培训,在实际作业过程中,无论装备还是操作方法,都存在许多安全隐患。②防爆器材。加油站内爆炸危险区域内(如罐区)的照明灯具应采用防爆型,配备对讲机的也应采用防爆型。

2 相应解决方案

2.1 防直击雷

①加油站罩棚为二类防雷建筑物,其引下线间距不应大于18m,且应沿建筑物外墙尽可能的均匀分布。②营业用房的防直击雷保护范围必须根据滚球法计算确定,而非肉眼或直觉。

2.2 接地系统

①储油罐必须至少有两处接地,且罐体距接地体距离应不小于3米。②加油站内的防雷、防静电、信息系统、配电系统宜采用共用接地系统,其接地电阻不大于4Ω。③加油枪要做可靠接地,并定期检查接地状况,及时处理加油枪连接处的污垢,以免影响接地效果。④广告牌应作可靠接地处理。

2.3 配电系统的防雷保护

①电源入户处应装设满足I级试验要求(I级:Iimp≥12.5kA,Up≤2.5kv)的电源浪涌保护器(SPD),信息系统要装设相应的信号电涌保护器(SPD)。②电源线路进出处金属外皮应做接地处理。

2.4 静电防护

加油枪、金属管道的法兰盘等的接地要在连接处进行有效跨接。当法兰盘的连接螺栓不少5根时,在非腐蚀环境下可不跨接。

2.5 规范化、专业化

以民营加油站为例,需要努力做到人员专业化、设备规范化。加强人员岗前培训、岗内考核,购置、更换老旧和不符合标准的设备。

3 结束语

随着该区城市综合灾害防御规划的部署,加油站的各项防雷保护措施也在逐渐得到重视,其在灾害防御规划中的重要性也越来越重要。因此相关的加油站企业要加强管理,做好相应防护措施,以防范于未然。

参考文献:

[1]《建筑物防雷设计规范》GB50057,2010.

电站设计规范范文4

关键词:投资设计优化

中图分类号:F830.59 文献标识码:A 文章编号:

前言

随着社会的经济发展,以及国家对土地的保护政策,地铁与城市中的其它交通工具相比,除了能避免地面的拥挤和充分利用空间外,一是运量大:地铁的运输能力要比地面公共汽车大7~10倍,是任何交通工具所不能比拟的;二是速到快:地铁列车在地下区间隧道内风驰电掣地行进,行驶速度可超过100公里;三是无污染:地铁列车以电作为动力,不存在空气污染的问题,因此受到各国政府的青睐,在整个城市的建设发展过程中扮演着重要的角色。

地铁的给排水系统,在整个地铁运营系统中有着非常重要的地位。因为地铁车站及区间都处于地下,排水问题就较为突出,不但要考虑平时的结构渗漏水,还要考虑消防救灾后的消防废水,以及暴雨天后的雨水,需要及时排出,避免车站机电设备被淹,保证行车和旅客安全。

地铁给排水系统分为车站给排水系统及区间给排水系统,因区间处于整条线的低点,同时运营维护人员很难进入,所以区间给排水系统更需不断优化,以提高安全性及便捷性,同时降低工程投资。本文主要研讨区间给排水系统的减少投资的设计方案。

优化单泵排水流量

因地铁规范中规定,区间泵站排水量是根据区间消防水量及结构渗漏量加和来确定的,原区间泵站设计中,传统设计都将区间泵站中单台泵的水量设置为40m3/h,即为区间消防水量及结构渗漏量之和,因为《地铁规范》中规定区间消防水量为10L/s。结构渗水量经验值为4m3/h。当区间排水泵单台排水流量40m3/h,按照地铁规范中关于区间泵站集水池有效容积的规定,集水池的有效容积为最大一台泵15~20min的流量,计算后所得集水池较深较大,造成土建施工难度大,同时大大增加了工程投资。

为减轻区间泵站土建施工难度,减少工程投资。我们根据规范,可以对区间泵站的设计进行优化,因区间泵站为防灾泵站,水泵运行工况为一用一备,必要时同时启动。这样两台区间水泵同时启动时的排水量,即为区间消防水量和区间结构渗水量之和40m3/h,此时一台泵排水流量,然后再根据《地铁规范》中关于区间泵站集水池的有效容积的规定,即为(40÷2)m3/h=20m3/h,15~20分钟的流量,计算后区间泵站集水池相对于传统的设计方案,及满足了规范规定,又减轻了区间施工难度,同时大大降低了工程投资。

排水出户管就近原则

因区间泵站都设置在区间最低点,一般都较区间两端车站较远,传统设计的区间泵站出户管,都是直接由区间泵站直接出户,在地面附近设置一检查井,再由检查井接至市政污水管网。虽然此种做法也遵循了《地铁规范》中区间泵站出户管的就近原则,但由于区间泵站埋深较深,出户管在覆土中敷设距离较长较深,检修难度大,同时受出户上方场地制约,泵站上方地面有建筑物时,管道即无法出户。

鉴于传统方案的弊端,我们根据出户管就近原则,设置了三种区间泵站出户方案:1、当区间泵站距离车站较近时,区间泵站可将排水管延伸至车站主废水泵房,区间泵站废水结合车站主废水泵房排出。2、当区间泵站距离区间敞口施工竖井较近时,区间泵站出户管可就近结合区间敞口施工竖井出户接市政排水管网。3、当区间泵站距离区间风井较近时,区间泵站出户管可就近结合区间风井出户接市政排水管网。这样就降低了区间泵站出户难度,以及后续检修管道难度,同时大大降低了工程投资。

取消区间消防管连通管

根据《地铁规范》规定,区间要设置消防连通管,目的是使区间消防管道成环状管网。但传统方案在区间中间位置设置消防连通管,并在上下行区间一共设置了4个区间电动蝶阀,连通管安装难度大,安装时需横穿两次轨道,同时此连通管预埋后打压困难,预埋后无法检修,区间电动蝶阀在运行期间也无法及时检修。

鉴于传统方案的弊端,我们根据《地铁规范》,通过在每个车站两端设置电动蝶阀,由FAS系统统一控制,当此车站或此区间发生火灾时,由FAS系统进行联动,将本车站最外侧区间电动蝶阀以及(大里程方向)下一车站最外此区间电动蝶阀关闭,以此类推其它车站。因为车站消防环网是联通的,此环网就起到了传统设计方案中区间中间的消防连通管的作用。此时只需要将车站消防泵的扬程进行核算,需将两个相邻车站及区间消防管道的沿程损失、局部水头损失、环网中最不利点供水高度、自由水头等进行累加核算。此种方案大大减少了区间连通管的施工难度,从而降低了工程投资。

结束语

在设计过程中,我们要遵循国家设计规范,但也要根据工程实际情况,多制定合法、合理的方案,降低施工难度,减少工程投资,造福运营人员及使用者。

参考文献:

电站设计规范范文5

【关键词】变电站建设;土建工程;技术;控制

从工程建设角度来看,土建工程是变电站建设中必不可少的重要环节。而起土建工程涉及到土建、给排水、采暖通风、电气设备安装专业等,它是电气安装工程的前提基础,其施工质量会直接影响到整个工程的质量和效益。因此,研究变电站土建工程建设中的关键技术是一项赋有现实意义的课题。

1、土建工程主建筑结构的抗震技术

对于土建工程而言,由于主建筑结构的安全性与耐久性设计是尤为重要的。因此,这涉及到主建筑结构抗震问题。要确保土建工程中主建筑结构的良好抗震性能,为此要做好以下几方面的工作:

(1)选址的科学性:建筑物的抗震能力与场地条件有密切的关系,场地条件包括地质构造,地基土质和地形,对建筑物震害有着明显的影响,变电站建筑物如建在地震断裂带及其附近,地震时最易倒塌,因此,选址时应避开地震带。

(2)结构选型:应根据建筑物的基本条件来决定,合理的结构选型,可加强结构的整体刚度。同时,增强结构构造连接,是减轻地震灾害,提高抗震能力的前提条件。结构选型应有明确的计算简图和合理的传力途径,结构内力分析应符合建筑物的实际情况,结构体系应有多道防线,应具有必要的强度和良好的变形能力,避免因部分构件失效而导致整个结构的破坏。

(3)施工组织技术:在正确选择站址和地基基础按抗震设计的基础上,施工质量成为结构抗震的重要环节。目前施工质量存在问题是多方面的,有的施工单位抗震意识缺乏,对工程质量要求不严,设计意图不能落实,不按规程施工,偷工减料,给工程质量带来隐患,因此需要加强施工监督机制,完善施工质量体系,提高施工队伍的素质和质量意识。

2、土建工程的地基处理技术

对于变电站土建工程而言,地基处理技术尤为重要,因为基础打得牢固与否,处理是否科学合理,直接影响到后期的其他变电站工程建设。而土建工程的地基处理,主要包括以下三方面:

(1)建筑基础的处理:在设计前一般会对整个站址进行地质勘察,设计过程中要选择其适合的基础形式。变电站的建筑物基础形式有两种:即独立基础和条形基础。在施工过程中,如果出现基坑(槽)挖至设计标高明地的问题,就要对基底土质采取触探实验的处理措施,如果实验结果显示地基承载力达到设计要求时,则可进入下一道工序。若实验结果显示地基承载力达不到设计要求时就要采取相关处理措施:①片石垫层:若出现的情况是该处基础填土区域填土不深时,可用M10水泥砂浆和片石砌筑至设计标高,且开挖至符合设计要求的持力层;②扩大基础的底面积处理方法,此处理方法是针对当地基承载力与设计要求相关不大时的情况;③挤密桩处理技术,该法是针对于基础部处于软弱土层且无法判断该土层厚度时的情况。

(2)围墙基础的处理技术:围墙分布在变电站的四周,挖土区的围墙基础一般不会出现什么问题,如果填土区填土厚度不大时,设计时围墙可砌在挡土墙上,这样可节约用地。情况相反时,即填土厚度较大时,这对挡土墙设计和工艺要求,却相对要高,无疑这会增大工程造价。建议设计时采用自然放坡的处理形式,在坡底砌筑不高的挡土墙,一般不宜砌在挡土墙上,这是为了整个围墙的美学效果考虑,处理方法可砌在填土区域,可用桩基础或地基梁。

(3)变压器等基础的处理技术:变压器、构支架基础都属于独立基础,不同的是其上部的设备和管线都是相连的,据此,设计处理时有必要将其沉降控制在允许范围内,其沉降控制范围要根据规范要求进行调控。如果出现基础不良地基,建议采取片石垫层或其它有效的处理技术;而如果出现大部分构支架基础处理较深的填土无时,建议用桩基础处理技术。

3、土建设计中的防火防噪技术

建筑防火防噪问题,也是变电站土建工程建设需考虑的重点内容。为此也需要采取相应的技术措施与方法:

(1)土建设计中的防火:就变电站建筑物而言,国家电力防火规范规定最低耐火等级为二级,火灾危险性类别主控制室和继电器室为戊类,配电室为丙或丁类;建筑物的屋面应采用非燃烧体。主控制室、继电器室、微波载波机房的墙面可采用较高等级的难然烧材料及自熄型饰面材料,隔墙、顶棚宜采用非燃烧材料。同时,建筑物安全疏散出口数量设置、防火门等级要求及其开启方向等方面的设计均应满足规范要求,且在建筑物内还需配置一定数量的消防器材。变电站的火灾事故绝大部分是由电气设备特别是带油设备所引起的,这类火灾用水扑救的作用不大。电缆是容易燃烧引起火灾的物体,在站内其分布较广,采用固定灭火设施来应对由电缆起火引起的火灾不太经济,也不现实。所以,电缆消防应采用的主要措施是分隔及阻燃。变压器是变电站内最重要的设备,防火要求更高,应在设计中加以重视。国家规范规定,主变压器对主要生产建(构)筑物及屋外配电装置最小防火安全距离要求不得小于10m。设计人员在设计过程中要严格检查主变压器之间、主变压器与其他充油设备以及主变压器与建筑物之间的距离,当防火净距小于规范要求时,就应在设置防火隔墙,同时防火墙的耐火极限需达到《火力发电厂与变电所设计防火规范》规定的具体时限。

(2)土建设计中的防噪:变电站内的电气设备在运行过程中会产生较大的噪音,会影响附近居民的生活。在变电站土建设计时要考虑到这一点,合理地规划布局,优化通风设计,减少噪声污染。因此,变电站选址时,在满足供电规划的前提下,可首先考虑把变电站建在背景噪声比较大、或对噪声可以起到缓冲作用的区域;其次是优化变电站的通风设计,在进风口设置消音设备,降低噪声污染。

4、结束语

综上所述,变电站土建工程建设是电气安装工程的前提与基础,其建设质量直接影响到变电站的正常运行与维护。因此,对土建工程的建设过程对工程容不得半点马虎,在施工过程中必须对各关键技术加以严格的控制,进而提高工程建设质量,从而实现保证电网建设的高效和安全。

参考文献

[1] 黄海.浅析110kV户外变电站土建设计[J].科技资讯.2009(19).

[2] 巫尚吉.变电站土建设计中有关防火的问题[J].企业科技与发展.2008(20).

[3] 王发恕.对变电站中电气安装质量的探讨[J].广东科技.2012(07).

电站设计规范范文6

关键词:变电站土建工程;土建设计;安全性;耐久性

在电网系统中,变电站工程的系统性较强,涉及到土建、采暖、给排水、设备安装、通风等多个环节,而作为变电站工程前提条件的土建工程,更是在很大程度上影响着变电站工程的整体质量。因此,在对变电站土建设计中正确认识其结构的安全性和耐久性就十分重要。它是做好施工质量控制工作,为后续工程的质量提供坚实保障的前提。

1、变电站土建设计结构安全性

结构安全性是指各种作用下结构防止破坏倒塌、保护人员不受伤害的能力。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建法规和技术标准的合理设置及运用相关联。对结构工程的设计而言,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性和结构的耐久性等几个方面:

1.1结构构件承载能力的安全性

与结构构件安全水准关系最大的两个因素:一是规范规定结构需要承受多大的荷载(荷载标准值);二是规范规定的荷载分项系数与材料强度分项系数的大小。前者是计算荷载对结构构件的作用时将荷载标准值加以放大的一个系数,后者是计算结构构件固有的承载能力时将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数,体现了结构构件在给定标准荷载作用下的安全度。

1.2变电站土建结构的整体牢固性

除了结构构件要有足够的承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处局部破坏时不至于导致大范围连续破坏倒塌的能力,主要依靠结构能有良好的延性和必要的冗余度。这就要求设置合理的构造系统,采用必要的构造钢筋,采用有利于结构耐久性的最小配筋率,配置限裂钢筋。消除不合理的约束因素,合理设置变形缝或后浇带。对特殊环境中的混凝土,应通过计算和试验给出较为准确合理的配合比,努力提高混凝土的抗拉强度。

在《变电站建筑结构设计技术规定》中对站内生产用房、辅助及生活建筑荷载效应、房屋建筑的结构形式的选择等都作出了具体的规定。特别是对变电站特有的屋外构支架的设计条件、计算简图和内力分析等都给出了详细的要求。

1.3变电站结构的安全耐久性

这主要是我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀)下的耐久性要求则相对考虑较少。混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远大于因结构构件承载力安全水准设置偏低所带来的危害。因此,我们要对土建结构工程使用阶段的正常检测与维护。结构耐久性和使用寿命的概念与使用阶段的检测、维护和修理不能分割,为了保证结构安全性和耐久性,变电站工程在建成后的使用过程中应该进行定期检测和维护。只注意工程项目建设的一次投资支出,很少考虑工程建成后需要正常维护的长期费用,不但可能损害工程使用寿命和正常使用功能,而且经济上算总账会很不合算。

2、变电站土建设计中的防火与防水

2.1变电站防火设计分析

就变电站建筑物而言,国家电力防火规范规定最低耐火等级为二级,火灾危险性类别主控制室和继电器室为戊类,配电室为丙或丁类;建筑物的屋面应采用非燃烧体。主控制室、继电器室、微波载波机房的墙面可采用较高等级的难然烧材料及自熄型饰面材料,隔墙、顶棚宜采用非燃烧材料。同时,建筑物安全疏散出口数量设置、防火门等级要求及其开启方向等方面的设计均应满足规范要求,且在建筑物内还需配置一定数量的消防器材。

变电站的火灾事故绝大部分是由电气设备特别是带油设备所引起的,这类火灾用水扑救的作用不大。电缆是容易燃烧引起火灾的物体,在站内其分布较广,采用固定灭火设施来应对由电缆起火引起的火灾不太经济,也不现实。所以,电缆消防应采用的主要措施是分隔及阻燃。变压器是变电站内最重要的设备,防火要求更高,应在设计中加以重视。国家规范规定,主变压器对主要生产建(构)筑物及屋外配电装置最小防火安全距离要求不得小于10m。设计人员在设计过程中要严格检查主变压器之间、主变压器与其他充油设备以及主变压器与建筑物之间的距离,当防火净距小于规范要求时,就应在设置防火隔墙,同时防火墙的耐火极限需达到《火力发电厂与变电所设计防火规范》规定的具体时限。

2.2变电站土建工程防水措施

首先,施工中加强过程控制及监督,砌筑砂浆所用水泥应合格,不同品种的水泥不得混合使用。应将堵临时性外墙孔洞作为一个独立的工序认真对待。窗、洞口、窗台按规范要求做滴水线或鹰嘴,窗台上部要向外抹流水坡度;其次,仔细检查雨篷根部,如果根部空鼓,则剔开后重新堵抹,如果有必要可以在根部做SBS防水处理。雨篷上部抹灰前找好坡度,

在根部做泛水使其不存水。最后,要严格按规范要求,每天砌筑墙体高度不超过1.8m,同时,外墙抹灰前应在填充墙体与框架梁(上、下边)、柱交接处加设一道200mm~300mm宽的通长钢丝网片,网片与各基体的搭接宽度不应小于100mm,并拉平钉牢,以免该处因为出现通长裂缝而渗水。此外,施工人员必须严格按照砌体工程施工质量及验收规范砌筑墙体,按照混凝土结构工程施工质量验收规范浇筑混凝土。

3、变电站土建设计相关的其他问题

3.1变电站土建设计中的防噪

变电站内的电气设备在运行过程中会产生较大的噪音,会影响附近居民的生活。在变电站土建设计时要考虑到这一点,合理地规划布局,优化通风设计,减少噪声污染。因此,变电站选址时,在满足供电规划的前提下,可首先考虑把变电站建在背景噪声比较大、或对噪声可以起到缓冲作用的区域;其次是优化变电站的通风设计,在进风口设置消音设备,降低噪声污染。

3.2变电站土建设计中的外观及绿化

由于户内型变电站在地处城市中,怎样使变电站的外观和绿化适应现代城市面貌是当前的时代要求,因此注重建筑形体的设计和绿化是非常必要的。在土建工程设计中,应将变电站尽量建筑得整齐有序,与周围建筑物融为整体。同时,在尊重整体格局的前提下,还可以考虑将变电站设计成为有个性、富有时代感的城市型变电站。采用集中绿化区和利用边角地带绿化的方法,尽量提高绿化率。

4、结束语

变电站土建工程结构设计的安全胜与耐久性一直值得关注的问题,它关系到安全与经济的协调、基础设施的投资。结构侧十人员要高度重视土建工程的结构安全胜和耐久性,要运用新的先进技术,结合结构耐久胜的理论研究,适当提高土建结构设计的安全性和结构耐久性。这样才能够提高变电站土建工程结构的安全性和耐久性,更好的适应我国现代化建设的需求。

参考文献