前言:中文期刊网精心挑选了继电保护灵敏性和可靠性范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。
继电保护灵敏性和可靠性范文1
一、继电保护运作的风险评估
既然继电保护的运行存在一定的风险,有关部门和单位在使用该装置前,就必须对可能产生的风险进行评估和预测,以此来推测可能产生的危害,并做好预防工作。因为风险产生的方式是多样的,不是单一的,不同的继电保护运行风险有可能组合出现。一般来说,在进行风险分析的过程中,主要应用的公式为R=P・I,R表示的是运行风险,P表示该风险所可能产生的概率,I表示该风险发生的后果。
在电力系统运行过程中,对于继电保护的基本要求包括选择性、灵敏性、速动性及可靠性。首先,继电保护的选择性即当电力系统的某些设备或者线路发生故障,继电保护会将故障设备或线路从系统中切除,若出现保护拒动,则会通过相邻设备或线路进行保护动作,将故障从系统中切除。继电保护的选择性对于保护功能的正常发挥非常重要,如果选择性存在问题,则电力系统故障扩大甚至出现重大事故的风险就会加大。其次,继电保护的灵敏性即当设备或线路发生故障时继电保护装置的反应能力。如果继电保护的灵敏性达到要求,则在任何运行状态下当系统发生故障时,继电保护系统都能正确进行保护动作。继电保护的灵敏系数,可以作为风险评估的重要参数。再次,继电保护的速动性也是另一个重要的要求,速动性即继电保护系统应具备在故障发生时快速地实施保护动作的能力,快速地实施保护动作有助于减少设备在故障中的损坏程度,有助于在故障发生时整个电力系统能相对稳定地继续运行。因此对继电保护进行风险评估,速动性也是重要的评价依据。最后,可靠性是继电保护最根本的要求,可靠性即继电保护不应发生拒动和误动,无论是保护拒动还是保护误动,都会给电力系统带来严重的损害。因此在对继电保护进行风险评估时,应将这些基本要求考虑在内,评估继电保护是否达到了以上要求。在实际工作中,主要通过两个方面对继电保护进行风险评估。即对保护定值的运行风险进行评估和对硬件系统缺陷进行评估。
(一)对保护定值进行风险评估
在继电保护开始投入运行前,需要设置相应的保护定值,用以设置好继电保护的选择性,同时提高其灵敏性。实际工作中,一般是在离线条件下对保护定值进行计算和设定,但电网在实际运行过程中,情况是处于变化之中的,因此保护定值的设定对于电网安全的保护一般存在以下三种不同的效果:第一,保护定值未能达到继电保护所要求的灵敏度,则使继电保护存在隐患。第二,保护定制未能满足继电保护所要求的选择性,例如未能达到对越级跳闸的选择。第三,对相间距离三段保护值的设定未能满足大负荷时的选择。对定值设定不合理,会使继电保护存在不同的风险及隐患,而且对不同位置的定值设置不合理时,产生的危害也有所不同,同时对于电网处于不同运行状态或者不同负荷水平时,定值的设定也存在不同的风险。
继电保护定值的不合理设定使继电保护可能发生的不正确保护动作存在着一定的范围,这个范围就是定值不合理时的隐患范围。继电保护的不合理定值引发的风险是不同的,在实际评估过程中,应结合具体电网系统的实际情况,由其相间距离的保护的定值设定情况来进行研究,例如,可以从某一时刻的断面进行分析,发现定值不合理的隐患,再从整个系统的主要断面进行分析,可以基本推算出在故障发生时继电保护正常与不正常保护动作的规律性。
(二)对于继电保护硬件系统的内部缺陷进行风险评估
继电保护的硬件系统包括设备和线路,不同的设备和线路的不同性质的缺陷,对继电保护的保护功能具有不同程度的影响。这类影响主要包括:第一,系统发生故障时,可能由于继电保护某些硬件存在问题而产生拒动;第二,当系统发生故障时,由于继电保护某些硬件存在问题导致其它硬件产生保护误动;第三,即使在系统没有发生故障的情况下,也可能由于电网运行状态不同,由继电保护系统的硬件问题而导致保护误动。因此,当故障点由于继电保护硬件缺陷而发生不正确的保护动作,对相邻设备的误动概率会增加,可能会产生连续的不正确的继电保护动作,从而引发事故。
二、继电保护的可靠性
继电保护的可靠性就是能够在电网正常运行的情况下,不发生误动,不作出错误的操作。对继电保护的可靠性进行研究,不但要使继电保护在故障发生时实施可靠的保护动作,做到不拒动不误动,而且要对继电保护系统的缺陷情况进行监测,统计其缺陷信息,因为即使是很小的缺陷也可能影响继电保护的保护功能,甚至可能造成拒动和误动。充分利用监测到的缺陷信息,进行深入的研究分析,可以作为对继电保护可靠性进行评估的重要依据之一。
对于继电保护的可靠性进行评估,应该从可能性和后果两个方面进行充分评估。继电保护可靠性的评估体系利用相应的可靠性模型,综合考虑各种影响因素后进行评估分析。目前在对继电保护的可靠性进行分析时,常用的模型有故障树解析法。故障树解析法从继电保护系统的故障模式出发,利用瞬间抓拍技术,进行推理。这种模式存在着很多不足,因此目前较为广泛采用的是成功流法,即GO法。这种模式是从系统的结构出发,仿真模拟系统部件之间的逻辑关系和分析数据,使分析更为直观。
三、总结
总的来说,在电力系统中针对继电保护的可靠性研究大致能够分成确定性评估、概率评估、风险评估这三个部分。其中,确定性评估基本上是对较为严重的事故进行评估,其评估效果非常保守。而概率法是主要考虑了事故发生的概率,但对事故可能造成的后果没有充分考虑在内,因为即使概率很小的事故,如果会造成严重的后果,也应该对其进行评估。风险评估是确定性评估和概率评估的延伸,它除了考虑概率外,也能将概率以外的安全指标考虑在内。想要确保继电保护风险评估的准确度,以及继电保护运行过程中的可靠性,必须对继电保护风险评估及可靠性问题展开更加深刻的研究。
参考文献
[1]杜骁释.考虑继电保护影响的大电网安全性风险评估[D].华中科技大学,2010.
[2]江成,潘晓峰,沈旭晓.继电保护可靠性评价及风险评估研究[J].机电信息,2013,12:25+27.
继电保护灵敏性和可靠性范文2
关键词:继电保护;技术
1、继电保护概述
继电保护是电力系统在发生故障或出现威胁安全运行状况时,利用继电器来保护发电机、变压器、输电线路等电力系统元件免受损坏的措施。利用它可以在最短时间内,自动从系统中切除故障设备,或者发出信号让工作人员能及时排除故障,从而将损失减少到最小。对于继电保护的评价指标是可靠性,表示在某一范围内,出现故障后,它能给出反应动作,而在其保护范围内不应有动作出现时,绝不出现误动作的情况。如果继电保护装置出现拒动或误动都会给电力系统造成不可估量的损失。如果系统备用容量小,系统联系比较薄弱,出现误动而切除线路时则会造成巨大的损失,而出现拒动时,其它后备保护可动作保护线路,损失可以比较小。这种情况下不误动的可靠性比不拒动的可靠性更重要。因此,在实际操作中,提高拒动或误动的可靠性是矛盾的,继电保护的可靠性则是平衡误动和拒动之间的关系。
2、继电保护的基本要求及作用
2.1要求
(1)选择性。基本含义是保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中非故障部分继续安全运行。
(2)速动性。速动性是指继电保护装置应以尽可能快的速度断开故障元件。这样就能减轻故障设备的损坏程度,减小用户在低电压情况下工作的时间,提高电力系统运行的稳定性。
(3)灵敏性。保护装置对其保护范围内的故障或不正常运行状态的反应能力称为灵敏性(灵敏度)。灵敏性常用灵敏系数来衡量。它是在保护装置的测量元件确定了动作值后,按最不利的运行方式、故障类型、保护范围内的指定点校验,并满足有关规定的标准。
(4)可靠性。继电保护装置必须运行可靠,可靠性是指在保护装置规定的保护范围内发生它应该反应的故障时,保护装置应可靠地动作(即不拒动)。而在不属于该保护动作的其他任何情况下,则不应该动作(即不误动)。
2.2 作用及任务
(1)在线路的保护方面,主要采取的电流保护为二段式或者三段式。一段为电流速断保护,二段为限时电流速断保护,三段是过电流保护。
(2)母联的保护,就是同时设置限时电流速断和过电流保护。
(3)主变的保护,包括了主保护和后备保护,前者多为对重瓦斯的保护或者差动保护,而后者一般是对复合电压过流进行保护,或者是过负荷的保护。
(4)对电容器的保护,主要是对电容器的过流保护、零序电压的保护、过压保护以及失压保护。
3、继电保护技术
3.1日常管理及检测
(1)连接件是否紧固、焊接点是否虚焊、机械特性等。现在保护屏后的端子排端子螺丝非常多,特别是新安装的保护屏经过运输、搬运,大部分螺丝已经松动,在现场就位以后,必须认认真真、一个不漏地紧固一遍,否则就是保护拒动、误动的隐患。
(2)应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,也必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。
(3)做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。
3.2 故障处理方法
(1)掉换法。用好的或认为正常的相同元件代替怀疑的或认为有故障的元件,来判断它的好坏,可快速地缩小查找故障范围。这是处理综合自动化保护装置内部故障最常用方法。当一些微机保护故障,或一些内部回路复杂的单元继电器,可用附近备用或暂时处于检修的插件、继电器取代它。如故障消失,说明故障在换下来的元件内,否则还得继续在其它地方查故障。
(2)短接法。将回路某一段或一部分用短接线接入为短接,来判断故障是存在短接线范围内,还是其他地方,以此来缩小故障范围。此法主要用于电磁锁失灵、电流回路开路、切换继电器不动作、判断控制KK等转换开关的接点是否好。
(3)分段处理法。发信或收不到信号3d 告警等故障。由于牵涉到两侧收发信机和许多通道设备,可分段来处理。先将通道脱开,将75Ω负载接入,用电平表确定自发自收是否正常,根据负载端能测到合格的电平来判断故障是否出现在本机,再接入通道,通过测通道口和在结合滤波器通信电缆端测对侧发信时的收信电平差来排除通信电缆好坏,就可寻找故障段所在。
(4)参照法。通过正常与非正常设备的技术参数对照,从不同处找出不正常设备的故障点。此法主要用于查认为接线错误,定值校验过程中发现测试值与预想值有较大出入又无法断定原因之类的故障。
4、继电保护设备的技术改造
(1)针对直流系统中,直流电压脉动系数大,多次发生电磁及微机保护等工作不正常现象,可将硅整流装置改造成整流输出交流分量小且可靠的集成电路硅整流充电装置。对雨季及潮湿天气易发生直流接地现象,首先可将户外端子箱中的易老化端子排更换为阻燃复合型端子,提高二次绝缘水平;其次,可对二次回路进行核对、整理、改造,使其控制、保护、信号、合闸及热工回路逐步分开;第三在开关室加装熔断器(空气开关)分路开关箱,既便于直流接地的查找与处理,也避免直流接地时引起的保护误动作。
(2)对原理缺陷多、超期服役且功能不满足电网要求的保护逐步由电磁型改造更换为微机保护;加速保护动作时间,从而快速切除故障,达到提高系统稳定的作用。
(3)技术改造中,对保护重新选型、配置时,首先考虑的原则是满足可靠性、选择性、灵敏性及快速性,其次考虑运行维护、调试方便,且便于统一管理,优选有运行经验且可靠的保护,个别新保护少量试运行取得经验后,再推广运用。
(4)对现场二次回路老化,保护压板、继电器接线标号头、电缆示牌模糊不清及部分信号掉牌无标示现象,重新标示,做到美观、准确、清楚;组织二次回路全面检查,清除基建遗留遗弃的电缆寄生二次线,整理并绘制出符合实际的二次图纸,杜绝回路错误或寄生回路及保护回路反事故措施不到位而引起的保护误动作。
(5)将所有水银接点瓦斯继电器更换成可靠的干簧接点瓦斯继电器;低电压、时间电磁型继电器更换成集成型静态继电器;所有涉及直接跳闸的继电器应采用直流电压在55%-70%范围内的中间继电器,并要求其动作功率不低于5W,对保护装置中不能保证自启动的逆变电源,要进行更换。机械防跳6kV断路器,加装防跳继电器等。
参考文献
继电保护灵敏性和可靠性范文3
关健词:继电保护意义基本要求 发展概况
中图分类号:TM77文献标识码:A 文章编号:1672-3791(2012)02(c)-0000-00
1继电保护的意义
电力系统各元件之间是通过电或磁联系的,任一元件发生故障时,会立即在不同程度上影响到系统的运行。因此,切除故障元件的时间常常要求在十分之几秒甚至百分之几秒内。显然,靠运行人员在如此短的时间里发现故障元件并予以切除是不可能的。要完成这样的任务,必须在每一电气元件上安装具有保护功能的自动装置。这种保护装置截止目前,多数由单个继电器或继电器与其附属设备的组合构成,又称为继电保护装置。在电子式静态保护装置和数字式保护装置出现以后,虽然继电器已被电子元件或计算机所代替,但仍沿用此名称。在电力工业部门常用继电保护一词泛指继电保护技术或由各种继电保护装置组成的继电保护系统。
继电保护是指能反应电力系统运行中电气元件发生的故障或不正常运行状态,并依此动作于断路器跳闸或发出信号的一种自动装置。
其基本任务是:
①当故障发生时,自动、迅速、有选择地将故障设备从电力系统中切除,以保证系统其余部分迅速恢复正常运行,并使故障设备不再继续遭到损坏。
②当发生不正常运行状时,自动、及时有选择地发出信号,由运行人员进行处理,或者切除对系统继续运行会引起事故的设备。
可见,继电保护是电力系统必不可少的组成部分,对保证系统安全运行、保证电能质量、防止故障的蔓延及事故的发生,有其极重要的作用。
2继电保护的基本要求
对电力系统继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。基本要求之间,有的相辅相成,有的互相制约,需要针对不同的使用条件,分别地进行有机协调。
①选择性。选择性是指电力系统发生故障时,保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证电力系统中的无故障部分仍能继续运行。
选择性就是故障在区内就动作,区外不动作,当主保护未动作时,由近后备或远后备切除故障,使停电面积最小。因远后备保护比较完善(对保护装置DL、二次回路和直流电源等故障所引起的拒绝动作均起后备作用)且实现简单、经济、应优先采用。
②速动性。快速地切除故障可以提高电力系统运行的稳定性,减少用户在电压降低情况下的工作时间、限制故障元件的损坏程度,缩小故障的影响范围以及提高自动重合闸备用电源自动投入装置的动作成功率等。因此,在发生故障时,应力求保护装置能迅速动作切除故障。
③灵敏性。灵敏性是指保护装置对其保护区内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护区内短路时,不论短路点的位置、短路形式及系统的运行方式如何,都能灵敏反应。
④可靠性。可靠性是指在规定的保护区内发生故障时,它不应该拒绝动作,而在正常运行或保护区外发生故障时,则不应该误动作。
影响可靠性有内在和外在的因素:
内在:装置本身的质量,包括元件好坏、结构设计的合理性、制造工艺水平、内外接线简明,触点多少等;
外在:运行维护水平、调试是否正确、正确安装。
上述四点基本要求是互相联系而又互相矛盾的。如对某些保护装置来说,选择性和速动性不可能同时实现,要保证选择性,必须使之具有一定的动作时。可以说,继电保护技术就是在不断解决这些联系和矛盾中发展起来的,因此,对继电保护的基本要求是分析、研究、开发各种继电保护装置的基础。
在电力系统中,当确定继电保护装置的配置和构成方案时,还应适当考虑经济上的合理性。应综合考虑被保护元件与电力网的结构特点、运行特点及故障出现的概率和可能造成的后果等因素,依此确定保护方式,而不能只从保护身的投资来考虑。因保护不完善或不可靠而给国民经济造成的损失,一般会大大超过即使是最复杂的保护装置 的投资。
实践表明,继电保护装置 或断路器有拒绝动作的可能性,因而需要考虑后备保护。实际上,每一电气元件一般都有两种继电保护装置,主保护和后备保护。必要时还另外增加辅助保护。反映整个被保护元件上的故障并能以最短的延时有选择性地切除故障的保护称为主保护 。主保护或其断路器拒绝动作时,用来切除故障的保护称为后备保护。后备保护分近后备保护和远后备保护两种:主保护拒绝协作时,由本元件的另一套保护实现后备,谓之近后备;当主保护或其断路器拒动时,由相邻元件或线路的保护实现后备的,谓之远后备。为补充主保护和后备保护的不足而增设的比较简单的保护称为辅助保护。
3继电保护的发展
继电保护技术是随着电力系统的发展而发展的。电力系统的发展,使得系统容量不断增加,电压等级越来越高,系统接线及运行方式越来越复杂。为满足电力系统对继电保护提出的四个基本要求,继电保护也由简单的过电流保护开始,相继出现了方向性电流保护、低电压保护、距离保护、差动保护、高频保护、微波保护、行波保护等。
电力系统继电保护技术的发展,不仅与电力系统的发展密切相关,而且还与电子通信、计算机、信息科学等新技术、新学科的发展有着密切的关系。从20世纪最先出现的感应型过电流继电器,到50年代的晶体管及整流型继电保护,再到80年代的集成电路继电器,无一不反映了当时这些领域的新成果。
随着计算机技术、特别是处理器的迅速发展,微机保护在电力系统中逐步得到应用。自20世纪80年代以来,微机保护经历了几个发展阶段,现在技术已日臻成熟,在我国电力系统得到广泛应用。微机保护具有巨大的计算、分析和逻辑判断能力,有存储记忆功能,可用同一硬件实现不同原理的保护。微机保护除了保护功能外,还兼有故障录波,故障测距,事件顺序记录以及通过计算机与调度交换信息等辅助功能。这些辅助功能方便了保护的调试及事故处理。再加上微机保护本具有自检和互检功能,使保护的可靠性更高,也更易于安装、调试和维护。
参考文献
[1]李晓明.现代高压电网继电保护原理.[M].北京:中国电力出版社,2005.
继电保护灵敏性和可靠性范文4
[关键词]电力系统;继电保护装置;可靠性
中图分类号:TM77 文献标识码:A 文章编号:1009-914X(2016)30-0242-01
在电力系统运行时其个体发生了故障或者是电力系统在运行时自身发生故障,所发生的故障危及到整个电力系统安全时,继电保护装置能够及时的向值班运行人员发送警告信号,或者是能根据正在运行的程序直接向其所能够控制的断路器发送短路信号,使断路器执行跳闸命令从而终止故障的发生和事故的扩大。电力系统中的继电保护装置是一种自动化设备,在经过了长时间的不断改进后,如今电力系统中的机电装置已经逐步的稳定并且智能化了
1.继电保护装置的运行要求和指标
1.1 继电保护装置的运行可靠性要求
继电保护装置运行可靠性要求主要有以下四个方面:①时效性。如果电路运行或是电路元件出现故障,继电保护装置要能够在最短的时间内发现并且进行切断指令的发出,处理故障,从而降低电路出现故障时对电力运行造成的影响。②灵敏性。灵敏性方面的要求主要体现在继电保护装置要具有不同的灵敏系数,如果电路元件和线路发生短路故障时,继电保护装置要做出不同的反应,灵敏系数的大小也应该符合相关规范的要求。③稳定性。继电保护装置中的部件要协同合作,以发挥出装置的维护以及管理功能,保证设备和线路的正常运行。④选择性。如果电力系统出现了故障,继电保护装置要能够根据发生故障的地点,判断出离故障地点最近的断路器,并发出操作切断指令,保证未发生故障的电力系统可以正常运行。母线、变压器等电力设备都需要在安装了继电保护装置的前提下运行,如果电网的额定电压超过220 kV 则需要设置两套或是两套以上的继电保护装置,以便其中一套继电保护装置出现了问题,还有备用的保护装置继续保护电路,保证电路的正常运行。
1.2 继电保护装置运行的可靠性指标
评估可靠性时,主要通过参照评估指标,得出可靠性结论。就我国目前现有的可靠性指标以及研究成果来看,评估指标的侧重点不同,评估所得出的结论也存在较大差异。每种评估方法都有其特点,但是每种评估方法包含的内容都不够全面,与实际的继电保护装置运行可靠性存在偏差。这就使得评估结果与实际运行结果不相符的情况,为了解决这个问题给继电保护装置运行可靠性带来的影响,可以通过增加测试样本、优化评估方法的方式,进一步提高评估结论的准确性。
2.继电保护装置动作异常情况分析
继电保护装置在电力故障发生时需要迅速做出判断并且发出切断指令,如果继电保护装置没有做到这一点,说明继电保护装置出现了异常。对于这一问题,首先应该检查继电保护装置中的采样元件和系统是否是正确的,如果没有差错,则进一步检查设置的保护定值,尤其是其中的控制值是否正常。如果电力系统运行过程中硬压板处在投入位置上,而继电保护装置并没有检测出来,那么继电保护装置就处于异常状态。而影响继电保护装置检测硬压板位置的因素有很多,有硬压板接线的错接、虚接、电线短路等都会引起这一问题。除此之外,零序保护问题也是继电保护装置中常出现的问题之一。目前,我国零序保护方面采用的模式均为零序电流,为了能够保证继电保护装置起到保护作用,外接的零序电流回路应该能够通过零序电流。此外,影响继电保护装置正常运行的问题还有重合闸不动作的问题。可以通过检合闸充电情况,排合闸开入问题。如果这些检查都没有异常,则进一步监测保护装置产生动作的瞬间,重合闸是否进行了放电。继电保护装置在实际运行中可能常常遇到以上问题,工作人员一定要予以重视并熟练掌握排查方法。
3.力系统继电保护装置运行可靠性指标的优化措施
可靠性指标对于电力系统继电保护装置运行可靠性评估而言是至关重要的,它不仅关系到继电保护装置可靠性评价的准确性,同时也对继电保护装置的改进有着重要影响。本文从可靠性计算方面提出以下几条优化建议:
3.1 可靠性计算指标规范化
在电力系统继电保护装置运行可靠性指标中,区外正确无运行行为应该被囊括其中,这一指标的囊括能够促进指标的完善,进一步保证电力系统继电保护装置运行可靠性评估的准确性。其次,更加精细的划分出工作率方面的指标,对于区内外正确动作跟不正确动作详细标注其概念,如果能够做到的话,正反不同方向的动作也要区分开来,甄别出继电保护装置出现故障与其正常工作时的行为,以期能够进一步研究继电保护装置以及装置的可靠性。而电力系统继电保护装置可靠性指标与计算方法的规范,仍然是一个大课题,需要业内人士进行不断的研究探讨与改进。
3.2 人工智能技术的应用
随着科技的发展,人工智能应用的越来越广泛。智能控制器更有利于保护装置的操作。它不拘泥越控制对象的模型,可以通过工作人员的自行调整,并且根据各个部分不同的响应时间来迅速做出判断,大大提高了保护装置反应的速度。相比于传统的控制器而言,人工智能使人能够更好的接收,它忽略掉了很多不确定因素,根据装置本身的性能对数据的分析状态做出调整。它不需要诸多的电力方面专家在一旁进行专业指导也能够根据数据独立完成操作。智能技术的使用需要根据电力系统的实际运行情况进行选择,一些控制对象不一定需要使用人工智能才能解决,采用传统的控制方式也能够达到效果。但是对于其它的控制对象而言,只有人工智能才能够实现其自动化的目标。不同的情况选择不同的控制方法,才是保证电力系统继电保护装置平稳运行的有效措施。
4.结语
电力系统继电保护装置如果还能通过图像监控结合工作人员操作经验的优势和远程技术,也可以避免操作失误,减少系统故障造成的损失。通过图像监控、环境监测及警报来监测现场设备的安全,可以起到保护和预警的作用,系统信息数字化可使计算部门能够摆脱库房式管理方法。数据的排列完全虚拟化,按照设定的软件程序进行整理排序而输出,有利于提高信息的收集和使用效率,促进电力系统继电保护装置的稳定运行。
参考文献
继电保护灵敏性和可靠性范文5
【关键词】继电保护装置;电力系统;35kV变电站
随着我国社会经济的稳步发展,电力需求不断增大,越来越多的变电站不断建设起来。35kV变电站作为我国电网的重要组成部分,其安全性和可靠性是电能能否稳定传输的重要保障。电力系统在运行过程中,会因为各种各样的原因发生故障,由电力系统故障引发事故所造成的损失往往是不可估量的,因而,继电保护技术和装置的应用已成为确保电力运行安全和稳定的最迫切的任务。
一、继电保护装置的基本构成
通常来讲,完整的继电保护装置由测量部分、逻辑部分和执行部分三个部分组成。尤其是在微机继电保护装置中,上述三个部分更是不能够截然分离开的。
1.测量部分
测量部分由数据采集、数据处理、保护判据运算等部分组成。测量部分是针对测量得到的被保护对象的相关电气量进行计算,并将计算结果与给定的整定值进行比较,比较结果以“是”、“非”、“大于”、“不大于”等逻辑信号的形式表达,进而做出是否需要执行保护动作的判断。
2.逻辑部分
逻辑部分基于测量部分给定的各输出量的大小、性质及输出的逻辑状态和其出现顺序或组合,使继电保护装置按一定的逻辑关系进行分析和对比,最后确定是否应该发出报警信号或使断路器跳闸的动作信号,并将相关的信号指令传送给执行部分。
继电保护装置中常用的逻辑关系回路包括:“与”、“或”、“非”、“是”、“否”、“延时启动”、“延时返回”等。
3.执行部分
执行部分,即继电保护装置的输出部分,执行部分的任务是根据逻辑部分输出的信号,最终实现该继电保护装置所承担的保护动作。
二、电力系统中继电保护装置的动作过程
对于继电保护装置来说,其动作过程可分为启动、判断和闭锁三个阶段。
第一个阶段启动,当系统处于正常运行的状态下,继电保护装置的启动元件会将各个出口闭锁,只有当电力系统处于某种故障条件下,相应的启动元件才会具备启动条件,准备启动相应的出口。
第二个阶段判断,是指在满足了启动条件的前提下,由继电保护装置内部的逻辑判断部分进行分析和判断,而此时起到决定性作用的评判标准,便是前期输入到装置中的“整定值”。如果反馈没有达到整定值的标准,那么装置不会做出任何反映;如果满足了整定值的要求,则保护装置将进入最后的闭锁阶段。
第三个阶段闭锁就是在反馈满足了保护装置整定值的要求的前提下,在对相应出口发出启动指令之前进行的对电力系统中一些附加条件的自行判断的过程,一旦附加条件也得到满足,跳闸指令将被发出,进而实现保护动作。
三、在35kV变电站中继电保护装置的主要任务
1.监视系统运行状况
35kV变电站是电力系统的重要组成部分,承担了区域供电的任务,所以一旦发生重大故障,将严重威胁该区域的供电稳定和用电安全。而当故障发生时,继电保护装置将快速、准确地向距离故障点最近的上级断路器发出跳闸指令,以求尽可能地控制故障的影响范围,弱化故障对电力系统的影响。因此,在35kV变电站选用继电保护装置时,应该着眼于大局,合理地完成继电保护设计、装置选型和安装调试,使整个电力系统连接成为一个统一的整体,这样才能够确保对35kV变电站及相应电力系统进行合理、有效地跟踪和监视。
2.及时反馈电力系统的非正常状态
应用于35kV变电站中的继电保护装置的另一项主要任务,即及时反馈相应电气设备的非正常运行状态。当相关的电气设备及元器件出现异常状态或满足需检修的条件时,继电保护装置将通过通信系统将信息及时反馈给值守人员,以便做出相应处理。
四、35kV变电站对继电保护装置的基本要求
对于35kV变电站,继电保护装置的主要作用是:当元器件或外线路发生有可能危及电力系统运行的故障时,装置自动发出报警,并在一定条件下发出跳闸指令使相应断路器跳闸,以避免由于故障的进一步扩大化而造成更大的损失甚至事故。现阶段我国35kV变电站所采用的继电保护装置需要满足四项基本要求,即:灵敏性、快速性、可靠性和选择性。
1.灵敏性
灵敏性所指的是继电保护装置对发生在其保护的范围内的任何元器件故障,以及非正常运行状态的反应能力。
应用于35kV变电站中的继电保护装置,要对相关设备的正常运行及故障状态具有明确的感知、判断并做出相应的动作,从而最大限度地控制故障带来的隐患。一般来说,装置的灵敏性是要根据相关的灵敏度系数来设定的,而并非越高越好。
2.快速性
对故障部分迅速地进行切除,不但可以提高电力系统并联运行的稳定性,减少设备在低电压状态下的运转时间,也可以减小故障元器件的损坏程度,进而避免对电力系统更大规模的破坏。因而,当电力系统发生故障时,应力争使继电保护装置能够快速地动作,将故障切除。
故障切除的总时间,等于继电保护装置和断路器的动作时间的总和。通常情况下,继电保护装置的速断保护动作时间约为0.02s到0.04s之间,有些装置可以达到0.01s到0.02s之间;而断路器跳闸动作时间通常为0.06s到0.15s之间,比较灵敏的断路器可能达到0.02s到0.04s之间。
3.可靠性
针对发生在电力系统中的各种各样的故障或非正常模式下运行的状态时,继电保护装置要避免误动、拒动等情况的发生,在快速判断系统运行状态是否正常的同时,做出相应的正确且可靠的动作。
4.选择性
当运行中的电力系统发生故障时,继电保护装置在保证快速和可靠的同时,要有针对性地对故障段的供电进行切除,即选择距离故障点最近的开关设备进行关断处理,从而达到使故障影响范围尽量缩小、保障系统中没有故障的部分仍能够正常工作的目的。
参考文献:
[1]王文灿 35kV变电站继电保护装置的科学应用[J]. 中国高新技术企业 2011(20)
继电保护灵敏性和可靠性范文6
【关键词】220KV电网;继电保护;变压器;短路计算
1.继电保护的基本原理
继电保护装置应在系统发生故障或不正常运行时,迅速,准确的切除故障元件或发出信号以便及时处理,因此,继电保护装置是电网及电气设备安全可靠运行的保证。继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。电力系统发生故障后,工频电气量变化的主要特征是:
(1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
(2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
(3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20o,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60o~85o,而在保护反方向三相短路时,电流与电压之间的相位角则是180o+(60o~85o)。
(4)测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。
2.继电保护的基本要求
继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。
2.1 选择性
选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
2.2 速动性
速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。一般必须快速切除的故障有:
(1)使发电厂或重要用户的母线电压低于有效值(一般为0.7倍额定电压)。
(2)大容量的发电机、变压器和电动机内部故障。
(3)中、低压线路导线截面过小,为避免过热不允许延时切除的故障。
(4)可能危及人身安全、对通信系统或铁路信号造成强烈干扰的故障。
故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~0.06s。
对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。
2.3 灵敏性
灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。系统最大运行方式:被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大运行方式;系统最小运行方式:在同样短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。
保护装置的灵敏性是用灵敏系数来衡量。
2.4 可靠性
可靠性包括安全性和信赖性,是对继电保护最根本的要求。
安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。
信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。
继电保护的误动作和拒动作都会给电力系统带来严重危害。即使对于相同的电力元件,随着电网的发展,保护不误动和不拒动对系统的影响也会发生变化。
以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。
3.变压器中性点接地的确定
3.1 变压器中性点接地位置和数目的选择原则
电力系统中性点接地方式有两大类:一类是大接地电流系统;一类是小接地电流系统。
通常,变压器中性点接地位置和数目按如下两个原则考虑:一是使零序电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。
在中性点直接接地电网发生接地短路时,零序电流的大小和分布与电网中变压器中性点接地数目和位置有很大关系。在系统不失去中性点接地的前提下,安排一部分变压器中性点接地运行,另一部分变压器中性点不接地运行,并使变压器中性点接地数目及位置尽量不变,以保证零序保护动作范围的稳定和具有足够的灵敏性。
(1)在单母线运行的发电厂和高压母线上有电源联络线的变电站变压器中性点应接地。
(2)在具有两台以上的变压器,而且是双母线固定连接方式运行的发电厂和高压母线上有两回以上电源联络线的变电所,每组母线上至少有一台变压器的中性点直接接地,这样当母联开关断开后,每组母线上至少保留有一台变压器的中性点直接接地。
(3)在单电源网络中,终端变电所的变压器中性点一般不应接地。
(4)在多电源的网络中,每个电源处至少应该有一个中性点接地,以防止中性点不接地的电源因某种原因与其它电源切断联系时,形成中性点不接地系统。
(5)变压器低压侧接入电源,当大接地电流电网中发生接地短路而该电源的容量能够维持接地点发生的电弧时,则变压器的中性点应该接地,如果该电源的容量不是足以维持接地电弧时,则中性点不接地。
(6)为便于线路接地保护配合,在低压侧没有电源的枢纽变电所,部分变压器的中性点应直接接地。
(7)接在分支线上的变电所,低压侧虽无电源,但变压器低压侧是并联运行的,为使横差差动保护正确动作,变压器的中性点应接地。
(8)自耦型和有绝缘要求的其它变压器,其中性点必须接地运行。
3.2 变压器中性接地的数目和位置
主变中性点的投入数量和位置直接影响系统的零序阻抗,零序阻抗的变化又改变着零序电流的分布。考虑到零序保护的灵敏性和变压器中性点绝缘,系统过电压,保护整定配合等因素,零序阻抗应基本不变。如你厂接线为双母线,一般应保持一条母线上有一台变压器接地。如为单母线,有两台及以上变压器接在母线上时,就保持一台变压器中性点接地。备用变的220KV侧中性点接地也是算作220KV系统的接地点的,与主变的中性点接地无异。一般情况下,备用变与中性点接地的主变是分别运行于不同母线的。为了接地短路时,变压器不会受到过电压的危害,又能使零序电流的分布基本不变,系统中各变电站的变压器接地情况如表1所示:
表1 变压器中性点接地情况表
变电站名称 A B C D E
变压器台数 1 2 3 4 2
220KV侧中性点接地变压器台数 1 1 2 2 1
4.短路计算
4.1 短路概述
短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地之间发生通路的情况。产生短路的原因有元件损坏、气象条件恶化等。在三相系统中可能发生的短路有:(1)三相短路;(2)两相短路;(3)两相接地短路;(4)单相接地短路。电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路机会最少。从短路计算方法来看,一切不对称短路的计算在采用对称分量法后,都归结为对称短路的计算。
4.2 短路计算的目的
在设计中,短路计算是其中的一个重要环节。计算的目的主要有以下几个方面:
(1)以便选择有足够机械稳定度和热稳定度的电气设备,如断路器等,必须以短路计算作为依据。
(2)为了合理地配置各种继电保护和自动装置并正确整定其参数,必须对电力网中发生的各种短路进行计算和分析。
(3)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也包含有一部分短路计算的内容。
(4)确定输电线路对通讯的干扰,对已发生的故障进行分析。
实际工作中,根据一定任务进行短路计算时,必须首先确定建设条件。一般包括,短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施等。从短路计算的角度看,系统的运行方式指的是系统中投入运行的发电、变电、输电、用电设备的多少以及它们之间相互连接的情况,建设不对称短路时,还应包括中性点的运行状态。不同的计算目的,对应的计算条件不同。
4.3 短路计算条件
在实际工作中,根据一定的任务进行短路计算时必须首先确定计算条件.所谓计算条件是指短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施。为使所选电器具有足够的可靠性、经济性和合理性,并在一定时期内适应电力系统发展的需要,作验算用的短路电流应按下列条件确定:
(1)容量和接线:按本工程设计最终容量计算,并考虑电力系统远景发展规划一般为本期工程建成后的5-10年,其接线应采用可能发生最大短路电流的正常接线方式,但不考虑在切换过程中可能短时并列的接线方式。
(2)短路种类:一般按三相短路验算,若其它种类短路较三相短路严重时,则应按最严重的情况验算。
(3)正常工作时,三相系统对称运行。
(4)所有电源的电动势相位角相同。
(5)电力系统中各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化。
(6)短路发生在短路电流为最大值的瞬间。
(7)不考虑短路点的电弧阻抗和变压器的励磁电流。
(8)元件的计算参数均取其额定值,不考虑参数的误差和调整范围。
4.4 短路类型
由电力系统不对称故障分析,短路电流正序分量可以统一写成:
式中表示附加电抗,其值随短路型式的不同而不同,上角标(n)是代表短路类型的符号。上式表明,在简单不对称短路的情况下,短路点电流的正序分量,与在短路点每一相中加入附加电抗而发生三相短路时的电流相等。这个概念称为正序等效定则。短路电流的绝对值与它的正序分量的绝对值成正比,即:
式中,m(n)为比例系数,其值视短路种类而异,各种简单短路时的和m(n)如表2所示:
表2 简单短路时的和m(n)表
短路类型 m(n)
三相短路 0 1
两相短路接地
两相短路
单相短路 3
目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。
参考文献
[1]贺家李、宋从矩,电力系统继电保护原理[M].中国电力出版社.2004:74-41.
[2]毛锦庆.《电力系统继电保护实用技术问答》第二版[M],北京:中国电力出版社 1999
[3]谷水清、李凤荣,《电力系统继电保护》[M],中国电力出版社
[4]马长贵.《高点网继电保护原理》[M],北京:水利电力出版社,1987.