高分子材料的发展现状范例6篇

高分子材料的发展现状

高分子材料的发展现状范文1

【关键词】高分子材料;功能助剂;现在发展趋势

1 高分子材料功能助剂行业现状

(1)高分子材料的发展对于化学助剂行业有高度的关联性。高分子材料化学助剂已经成为现代化学工业体系和材料科学体系的重要交叉领域之一,在高分子材料生产、储运、加工、使用过程中的作用愈加突出,几乎每一种高分子材料的每一种性能都依赖相对应的化学助剂实现。

(2)化学助剂行业发展的专业性越来越强。随着经济水平对于高分子材料要求的提高,新材料技术和化工产业的不断进步,高分子材料化学助剂产业整体呈现快速发展的态势,表现为化学助剂新品种的不断出现,需求数量的较快增长,以及化学助剂性能的不断改进。国际同行业巨头往往根据自身技术优势和经营特点选择几大类别的化学助剂进行生产经营,呈现出化学助剂行业发展的较强专业性。

(3)中国化学助剂行业发展市场潜力巨大。中国在高分子材料领域的高速发展,使我国已成为全球高分子材料化学助剂需求的增长重心。

(4)中国高分子材料化学助剂行业处于加速发展阶段。由于我国高分子材料化学助剂行业起步晚,行业的整体发展水平与国际水平还存有差距,一方面单一企业经营规模较小、新结构物产品匮乏、化学助剂应用技术服务能力较差、行业集约化程度不够、产品未形成集约化规模经营、高端产品少、许多产品品种形成系列化。另一方面,中国化学助剂行业呈现快速发展的态势,专业化、规模化、技术型企业不断出现和发展,部分企业已经在全球具有很好的知名度。

2 高分子材料功能助剂的发展分析

2.1 分离纯化技术

分离纯化技术是指将特定化学物质与周边干扰物质彼此分离,获得单一高纯度化学物质的技术。分离提纯的方法主要包含两大内容:一是研究获得高纯度物质的分离提纯方法,二是研究如何将这种分离提纯方法,实现大规模的工业生产。分离提纯的方法不拘泥于物理变化还是化学变化,在可能的条件下使样品中的杂质或使样品中各种成分分离开来的变化都可使用。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、中间体、产成品进行纯化,使其满足工艺过程和质量指标的各项要求。

2.2 化学合成技术

化学合成技术是指利用现有化学物质创造出具备特定结构和性能的化学物质技术,主要包括:卤化技术、磺化技术、硝化技术、酯化技术、氧化技术、还原技术、烷基化技术、酰化技术、氨解技术、羟基化技术、缩合技术、聚合技术、官能团的引入和选择性转换技术等单元反应技术。化学助剂生产就是利用前述一种或几种技术的组合对产品原料、半成品进行化学合成,进而得到成品或中间体的过程。

2.3 检测分析技术

检测分析技术是指针对特定目标物质,获得其成分、结构、性能、纯度等具体参数的技术手段,主要包括:高效液相色谱分离检测技术、气相色谱分离检测技术、原子吸收光谱检测技术、气-质联机差热分析技术、热失重检测分析技术、激光粒度检测技术、X 衍射分析检测技术、红外和紫外光谱分析检测技术及其他一系列化学或物理分析技术等。化学助剂的生产需要选用适当的检测技术或几种技术的联合,对原料、中间体、产成品和生产过程控制的各项指标进行分析检验以确保符合客户和生产的需要。

2.4 化学助剂应用技术

高分子材料化学助剂应用技术是在化学助剂复合技术基础之上发展而来,其主要内容包括:一是指化学助剂在完成化学合成之后的剂型选择和确定,比如造粒、乳化、微粒化等,以使化学助剂适宜于在高分子材料中更好发挥作用;二是指为确保不同的高分子材料获得特定的功能和用途,需要添加不同品种、不同功能、不同剂量的各种化学助剂来实现高分子材料的性能改善目标,

3 高分材料功能助剂的发展趋势

(1)高效化。高效化是指在确定助剂用量的情况下实现效果最大化。主要途径为助剂的高分子量化,普通的助剂分子量较低,容易挥发迁移、渗出,降低了助剂的效能,而高分子量化可减少挥发性、迁移性,提高热稳定性、耐水解能力、与材料的相容性,而使助剂的效能得以充分发挥。

(2)多样化。高分子材料化学助剂的多样化不仅在于新品种的出现和应用高分子材料范围的扩大,更在于其作用途径的多样化。高分子材料化学助剂的功能是由其相应的官能团结构决定的,一方面,传统的官能团结构不断得到改进和完善,使产品序列不断丰富,另一方面,新的官能团结构不断被发现,使助剂发挥作用的途径呈现多样化。

(3)复合化。复合化的是各种高分子材料化学助剂的共混物,目的是令高分子材料化学助剂具有多功能性和增强协同效应,使应用简单方便。现代的复合技术已非初期的几种助剂简单混合,已发展成为多组份协效性能的研发,各组分之间协同机理的研究和协同组分的开发将是高分子材料化学助剂复合应用技术研发的关键。

(4)系列化。系列化指通过对同一类助剂产品的结构和其应用性能发展规律的分析研究,将系列化的新助剂产品的主要参数、类型、性能、基本结构等作出合理的安排与计划,以协调同类产品、配套产品和目标高分子材料之间更加合理的协同关系,从而充分发挥助剂产品的协同效应和协配性,获得更好的市场通用性。

(5)环保化。随着环保法规日益严格和可持续发展需要,环保化将成为化学助剂发展的重点。一方面是化学助剂制造过程的清洁生产工艺的开发,节能减排;另一方面主要为发展环境友好助剂,限制或禁止使用对人体和自然环境有毒有害的助剂。

4 结束语

随着高分子材料化学助剂高效化、多样化、复合化、环保化、系列化的趋势不断发展,高分子材料化学助剂的各类相关技术也沿着上述趋势不断演变进步。高分子材料化学助剂企业只有在掌握化学助剂主体技术的基础之上,沿着发展趋势不断研发新技术,才能在未来的竞争中获得优势地位。

参考文献:

[1]白凡飞,贺平,贾志杰,黄新堂,何云.原位生成法制备单分散的纳米氧化锌分散液[J].材料科学与工程学报,2005(05).

高分子材料的发展现状范文2

关键词:高分子材料 形状记忆效应 自拆卸

中图分类号:TS195 文献标识码:A 文章编号:1672-3791(2014)05(c)-0009-02

形状记忆高分子材料(SMP,Shape Memory Polymer)是一种新型的智能材料(Intelligent material),它能感知外部刺激,从而恢复自身形状的功能材料。形状记忆高分子材料种类繁多,用途广泛,其应用在商品防伪、医疗卫生、航空航天等不同领域。形状记忆高分子材料具有形变量大、赋形容易、形状恢复温度易于调整、电绝缘性好等优点[1];且易于制备具有形状记忆性能的复合物。现在,电子产品(如智能手机等)的升级、换代越来越快。废弃电子产品的回收、处理问题日益突出。废弃电子产品中,含有很多重金属,对环境的潜在危害巨大。垃圾的收集、分类耗费大量的人力、物力;在人力成本大大增加的当下,发展能够自拆卸的构件、器件甚至产品将大大缓解这个问题。形状记忆高分子材料具有的回复自身初始形状的特性,使其在自拆卸构件的设计上具有很大的潜力。本文在讨论形状记忆高分子材料形状记忆效应的基础上,对形状记忆材料在设计、制造自拆卸构件中的应用进行了综述。

1 形状记忆高分子材料的记忆效应及其机理

1.1 形状记忆效应

形状记忆材料是一种刺激、响应型的功能材料。这类材料能够“记住”自己的初始形状。形状记忆效应就是指材料在外界的刺激下,能够改变自身的形状并回复初始形状。不同的材料可以根据外部环境产生的不同刺激(如热、磁、光、化学等),回复自身的初始形状。如果在加热的情况下,回复自身的初始形状,则称之为热驱动的形状记忆效应或热致形状记忆效应。以此类推,可以产生磁致、光致、化学驱动的形状记忆效应。

1.2 形状记忆高分子材料的形状记忆机理

Huang等提出:可以将形状记忆高分子材料看成由两相组成,一相为固定相,另一相为可转变相。当材料受外界环境刺激(如,加热、光照等)时,可转变相变软,聚合物变形后,处于能稳定存在的临时形状;当材料再次受外界刺激后,高分子链运动,驱动聚合物回复初始形状[3]。目前,形状记忆高分子材料仍以热致响应型为主,其产生形状记忆效应的分子机理如图1所示[4]。

当形状记忆聚合物材料加热到转变温度以上时,材料能容易地产生形变(如图1黑色部分所示);当温度降低到转变温度以下时,材料处于临时形状(如图1灰色部分表示)。图1(a)表示转变温度为熔点的嵌段共聚物。当温度低于可结晶组分的熔融温度时,这些晶体形成物理交联点,使材料能够保持临时形状,并使材料具有一定的机械强度;当温度高于熔点时,晶体相熔融,在链段运动下,材料恢复初始形状。图1(b)表示转变温度为熔点的共价交联聚合物。当在高温拉伸后的高分子链冷却到转变温度以下时,高分子链段产生应变诱导结晶,形成结构不完善的结晶。这些不完善的晶体以及共价交联点,使材料处于稳定的临时形状。当材料处于转变温度以上时,不完善的晶体融化,链段运动,材料回复初始形状。图1(c)表示转变温度为玻璃化温度的高分子材料。该材料可以是共价交联高分子,也可以是无定型高分子。当材料在高于玻璃化转变温度拉伸时,高分子链伸长,产生一定的相对位移;当温度低于玻璃化转变温度时,材料中的无定形高分子链段运动受限,在共价交联点或者纠缠的高分子链(形成物理交联点)作用下使材料获得稳定的临时形状。加热时,这些冻结的无定形高分子链段再次运动,使其恢复到初始形状。

2 自拆卸构件中的形状记忆高分子

自拆卸[5]是指用形状记忆材料制成的自拆卸构件代替传统的连接件,当材料被加热到形状记忆高分子材料的回复温度时,自拆卸构件的连接部分被激发回复初始形状使其失去连接功能,实现产品的主动拆卸。随着研究的深入,自拆卸构件的拆卸方法实现了多样化。通常研究者会通过对热致形状记忆高分子材料进行整体加热以达到激发温度实现自拆卸,加热的方式主要有空气对流加热、水浴加热、红外加热。当然,不同的加热方式,材料实现自拆卸所需时间也不相同。应根据不同的工作环境选择不同的加热介质。自拆卸构件可大大提高废弃产品的拆解效率,促进材料的回收再利用,有助于保护环境。近年来,基于形状记忆高分子材料设计、制造自拆卸构件越来越受关注。

刘志峰、李新宇等利用辐照分别对PVC、PE改性,研究利用辐照高分子制造的可自拆卸构件的形变回复率与回复速度。结果表明:形状记忆高分子的形状记忆效应与聚合物的交联程度密切相关。通过调节辐射剂量来改变高分子的交联程度,可调节材料的激发温度。经4KGy剂量辐照的PVC,其激发温度为85℃;而经100KGy剂量辐照的PE,其激发温度为95℃。此外,形状记忆材料在形变恢复率小于最大变形的80%时变形恢复速度较快,之后回复速度明显下降。且拆卸时间和主动拆解率与加热方式有关,水浴加热方式要优于空气加热,可能与水的传热效果好有关[6]。

还有研究者采用电热激发,来实现产品自拆卸[7]。他们将电热片贴在形状记忆高分子卡扣根部来激发材料回复形变,实现零部件的分离。通过调节电热元件的功率,控制自拆卸的时间,并实现了产品的多级拆卸。实验表明:达到第一级主动拆卸时间为7 s,电热片的功率为0.06 W;达到第三级主动拆卸时间为17 s,电热片的功率为 0.025 W。研究者还利用热风枪加热材料,回复需22 s,而电热片只需7s,可见电热激发效率更高。左兰等[8]提出可以利用PUs的形状记忆效应来制造液晶显示器的支架,将互联网通讯产品上的液晶显示器(LDC)等一些小的电子产品清洁地、无破坏地、快速地剥离下来。ChiodoJ.D.等[9]对利用聚氨酯设计自动拆卸技术做了可行性研究。宋守许等[10]利用形状记忆材料作为液晶显示器支架之间的自拆卸单元,运用ADSM方法对液晶显示器支架进行重新设计,确定了主动拆卸结构的最优尺寸。由此可见,形状记忆高分子材料在工业产品设计、特别是电子产品的应用有巨大的发展潜力。

3 基于形状记忆效应的自拆卸构件的展望

形状记忆聚合物自身具有很多突出的优点,但同样也存在形状回复的精度低、回复响应滞后、形状记忆性能的稳定性等需要改进的地方。目前已有越来越多的研究者利用纳米材料与形状记忆高分子复合制备形状记忆复合物,在保持材料形状记忆特性的基础上,进一步提高材料的其他性能,以适应不同环境下的需求。基于商用高分子材料制备形状记忆高分子复合物材料,将会大大促进形状记忆高分子材料的商业应用。新型智能材料的发展给传统材料的设计观念带来更大的突破。形状记忆高分子材料必将在众多领域(如,电子设备、航空航天、自修复体系、医疗救护等)中得到更加广泛的应用。

(致谢:非常感谢江苏省高等学校大学生实践创新训练计划项目(201311276047X)以及南京工程学院人才引进科研启动项目(YKJ201207)的大力资助。)

参考文献

[1] 左兰,陈大俊.形状记忆聚氨酯的研究与应用[J].弹性体,2002,12(6):56-60.

[2] Hu J,Chen S.A review of actively moving polymers in textile applications[J].Journal of Materials Chemistry,2010,20,3346-3355.

[3] Sun,L.,Huang,W M.Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers[J].Soft Matter,2010,6,4403-4406.

[4] Lendlein A.,Kelch S.Shape-memory effect[J].Angewandte Chemie International Edition,2002,41,2034-2057.

[5] Chiodo J D, Billett E H,Harrison D J.Preliminary investigations of active disassembly using shape memory polymers[C]//Environmentally Conscious Design and Inverse Manufacturing,1999.Proceedings of EcoDesign'99:First International Symposium on IEEE.1999:590-596.

[6] 刘志峰,李新宇,赵流现,等.SMP主动拆卸结构激发效果影响因素的试验研究[J].中国机械工程,2010(18):2243-2246.

[7] 刘志峰,成焕波,李新宇,等.基于电热激发的主动拆卸产品设计方法及其设计准则研究[J].中国机械工程,2011,22(19):2359-2364.

[8] 左兰,陈大俊.形状记忆聚氨酯的研究与应用[J].弹性体,2002,12(6):56-60.

高分子材料的发展现状范文3

[摘要]在过去的15年中,纳米尺度控制技术得到持续不断地发展,促进了新的聚合物/层状硅酸盐纳米复合材料的迅速发展。文章综述了关于聚合物/层状硅酸盐纳米复合材料的基本理论和技术的最新进展。[关键词]聚合物;层状硅酸盐;纳米复合材料;研究进展[中图分类号]TQ323.6[文献识别码]A[文章编号]

作者简介:陈兴华,湖南科技职业学院高分子工程与技术系教师基金项目:湖南科技职业学院院级课题(KJ0604)十多年来的研究显示纳米材料会显著地影响二十一世纪世界经济的各个方面。这类材料现在已用于阻隔薄膜、阻燃产品和承重部件等领域。其别引人注目的是最近发展起来的聚合物/层状硅酸盐纳米复合材料,因为与纯聚合物和传统的复合材料相比,这类材料力学性能和其它性能的改进非常明显。本文综述了关于聚合物/层状硅酸盐纳米复合材料的基本理论和技术的最新进展。1历史回顾在半个世纪前的专利文献中可以发现,人们曾尝试过制备聚合物/层状硅酸盐复合材料。人们将40-50wt的粘土矿物加入到聚合物中,但结果不理想:在粘土含量达50wt时,复合材料的最大模量只提高200。这是因为粘土颗粒在基体中并没有实现良好的分散,而是团聚成团。分散不好的粘土颗粒能提高材料的刚性,但肯定会牺牲材料的拉伸强度、断裂伸长率和韧性。由于亲水的硅酸盐和亲油的塑料相容性很差,硅酸盐片层很难在聚合物基体中均匀分散或剥离。日本Unitika公司曾尝试过解决这个难题,在大约30年前他们通过分散有蒙脱土的已内酰胺原位聚合制得了尼龙6/层状硅酸盐复合材料,但结果并不理想。1987年,这个问题才发生重大突破,丰田中心研究和发展公司的Fukushima和Inagaki仔细地研究了聚合物/层状硅酸盐复合材料后,用季铵盐取代粘土片层间的无机离子,成功地改善了粘土与聚合物基体的相容性。1993年,丰田中心研究和发展公司的Usuki、Fukushima[1]和他们的同事第一次报告通过已内酰胺的原位聚合制备了剥离型的尼龙6/蒙脱土纳米复合材料(季铵盐改性的蒙脱土事先被均匀地分散于已内酰胺中)。2层状硅酸盐及其改性剂的结构用于制备聚合物/层状硅酸盐复合材料的常用的粘土属于同一个硅酸盐大家族。它们的晶体结构包含由两个硅氧四面体和一个铝氧或镁氧八面体构成的片层。片层厚约1nm,长宽30nm到数微米不等,有些特殊的层状硅酸盐甚至更大。这些片层规则地层叠在一起。片层中存在部分同位置换(如Al 3被Mg 2或Fe 2置换,Mg 2被Li 1置换),导致片层带负电,片层所带负电荷由片层间隙中的金属阳子来平衡[2-5]。最常用的层状硅酸盐是具有不同化学组成的蒙脱土。这类粘土具有适中的离子交换容量(80-120mequiv/10g)和层状结构。这些粘土只和聚环氧乙烷、聚乙烯醇之类的亲水聚合物相容。为了改进与其它聚合物的相容性,人们必须改变蒙脱土的表面性质,使其由亲水变为亲油。通常,可通过与阳离子型表面活性剂发生离子交换反应来实现这一目标,这些阳离子型表面活性剂包括伯、仲、叔、季铵盐和烷基膦盐。烷基铵和烷基膦离子在有机化硅酸盐中的作用就是降低硅酸盐片层的表面能、增加其与聚合物的亲和性、增加片层间距。人们可以计算出,Na 密度为0.7Na /nm2的钠蒙脱土发生离子交换后,相当于每个片层吸附了约7000个烷基铵离子(片层面积约100*100nm2),活性表面积约700-900m2.g-1。这个结果表明有机粘土片层表面是凹凸不平的。片层表面羟基浓度可以通过三乙基铝滴定来确定。假设羟基随机地分布在片层侧面,可以计算出Si-OH密度为5Si-OH/nm2,也就是说每个片层侧面(侧面积约1*100nm2)有500个羟基[6]。亲油-亲水平衡是有机粘土片层能否均匀地分散于聚合物基体中的关键。另外,烷基铵或烷基膦离子能提供一些能与聚合物反应或引发单体聚合的官能团,这种反应能提高硅酸盐片层与聚合物间的界面强度。由于许多有机化粘土在温度高于200℃时会发生热降解,人们期待出现具有更好热稳定性的有机化粘土。最新的方法是制备低聚物改性的粘土。聚(二烯丙基铵)盐和苯乙烯低聚物基铵盐已经被制备出来并已被用于制备聚合物/层状硅酸盐纳米复合材料。Fisher提出了一个更有趣的想法,即引入相互排斥的粘土片层。粘土片层间的阳离子与带有两个官能团的有机物其中的一个官能团(如铵离子)发生离子交换,而另一个官能团则附着在粘土片层表面,这个官能团可以带负电荷,也可以带正电荷。4-氨基-1-萘磺酸就是其中之一。3新的复合工艺Hasegawa和Usuki报告了一种利用钠蒙脱土悬浮液制备尼龙6纳米复合材料的新的复合工艺,利用这种工艺制备的复合材料中,粘土片层部分发生剥离,并以纳米尺度均匀地分散于基体中。这种复合工艺最大的优点是由尼龙6和钠蒙脱土构成的纳米复合材料在制备时不加任何表面活性剂或其它添加剂。然而,通过这种方法制备完全剥离的复合材料非常困难。由于侧边羟基间强的相互作用,粘土片层也许原本就很难完全剥离,就象vanOlphen所报告的,几乎在所有的聚合物基体中,粘土片层总存在部分团聚。最近,一种用超临界CO2做为辅助手段的原位聚合方法实现了在高含量下粘土在纳米复合材料中的均匀分散。Zhao等人提供了明确的证据,表明以超临界CO2为媒介,聚环氧乙烷分子插入了钠蒙脱土片层之间。与熵驱动的溶液插层不同,这种插层是焓驱动的。4结构与性能研究新进展4.1过程与形态Maiti等人报告了聚丙烯/层状硅酸盐纳米复合材料在高结晶温度(≥110℃)下在结晶期间会发生熔融插层。在高结晶温度下聚丙烯结晶速率很慢,几乎观察不出来。插层的驱动力来源于聚丙烯接枝的马来酸酐基团与极性粘土表面亲水性的相互作用。随着结晶温度的提高,X-射线衍射峰移向小角区域,表明复合材料的插层程度增加了。根据Khare的预测,聚合物分子链在粘土片层间所受的限制会增加体系的粘度和力学性能。有证据表明,随结晶温度的提高,聚丙烯/层状硅酸盐纳米复合材料的插层程度增加,其动态储能模量也增加。透射电镜照片显示单个粘土片层在复合材料中存在明显的弯曲,这种弯曲主要是由硅氧四面体中Si-O-Si键角变化引起的,而不是由键长变化引起的,这与原子力显微镜观测结果吻合。4.2结晶行为在尼龙6/层状硅酸盐纳米复合材料中,由于粘土的存在,尼龙6会形成γ晶型,这一点是广为人知的。γ晶型与α晶型的本质区别是分子堆砌方式的不同,在α晶型中,亚甲基链段和酰胺基团处于同一平面内,分子链之间由氢键联结,成为平面片层。γ晶型通常是不太稳定的晶型,分子链间的氢键方向是接近垂直碳骨架平面的,联接成打褶的片层。Okamoto和Maiti观测了在170℃和210℃结晶的尼龙6纳米复合材料中片晶形态和粘土微粒的分布。在粘土片层两边生成了片晶,粘土片层被夹在中间,形成夹心结构。在高温结晶的复合材料中,从夹心的片晶两侧又生成了向外延伸的γ型的片晶,从而形成了羊肉串型的结构。这种结构增强了复合材料的力学性能,粘土片层在其中相当于骨架材料。这种夹心结构非常刚硬,从而提高了复合材料的热变形温度,而周围的无定形区又维持了其它的力学性能(如冲击强度),最终在复合材料中形成了一种完美的体系。Kim和Kressler[6]在尼龙12纳米复合材料中也观测到尼龙12垂直于聚合物/粘土片层界面生成了片晶,也就是垂直于注塑方向生成了片晶。复合材料中存在一种纳米尺度的网络结构,这种网络均匀地分布于基体中,由均匀取向的粘土片 层和与之垂直的聚合物片晶构成,两者强有力地键合在一起,从而实现了高刚性。4.3团聚大多数的纳米复合材料研究者固执地相信制备完全剥离的复合材料是获得更好的全面性能的终极目标。然而在几乎所有的纳米复合材料中,粘土接近完全剥离时,性能并没有出现显著的变化。尽管增加剥离程度有利于提高复合材料的阻隔性。在聚丁二酸丁二酯/层状硅酸盐纳米复合材料中,由于侧面羟基相互作用引起的粘土片层的团聚大幅度地增加了粘土片层的径厚比,因此与聚丙烯/层状硅酸盐、尼龙6/层状硅酸盐、聚乳酸/层状硅酸盐等纳米复合材料相比,其模量反而增加得更加明显。5新材料Okamoto和他的同事利用超临界CO2做为物理发泡剂开创性地将纳米复合材料制成了泡沫塑料。另外,有些文献报导了纳米复合材料的反应挤出发泡工艺。HaoFong[7]等人通过电纺丝将尼龙6/蒙脱土纳米复合材料制成了纳米纤维(直径在100-500纳米之间),这些纳米纤维可用于制作无纺布和复合纤维;他们还发现尼龙6/蒙脱土纳米复合材料不仅可制成圆柱形的纤维,也可制成带状纤维(宽约10微米,厚100-200纳米)。Brown等人报告了一种利用热固性环氧树脂/粘土纳米复合材料制备多孔陶瓷材料的新路线。Ray和他的合作者通过燃烧含3wt无机粘土的聚乳酸/层状硅酸盐纳米复合材料制备了新的多孔陶瓷材料。扫描电镜照片显示,在多孔陶瓷材料中,硅酸盐形成了蜂窝状结构,孔壁长宽约1000nm,厚30-60nm,表明硅酸盐片层在燃烧期间发生了聚合,这种聚合是由于硅酸盐片层羟基间缩水造成的。多孔陶瓷材料是开孔的,具有良好的应变回复和能量消散能力,具有良好的弹性、绝缘性、阻燃性和很轻的重量。6新性能6.1生物降解能力纳米复合技术的另一个令人兴奋的方面是生物降解聚合物与有机粘土制备成纳米复合材料后其生物降解能力会显著提高。脂肪族聚酯是环境友好的生物降解塑料中最有前途的一种材料。脂肪族聚酯的生物降解性是广为人知的,细菌产生的一些酶能分解脂肪族聚酯,从而使其降解。Tetto和他的同事首先报告了有关聚已内酯纳米复合材料的生物降解性,结果显示聚已内酯纳米复合材料的生物降解能力比纯聚合物明显提高。生物降解能力的提高可能是由于有机粘土的催化作用。然后,有机粘土到底是怎样提高聚合物的生物降解速率尚不清楚。Yamada和Okamoto[8]等人报告了聚乳酸及其纳米复合材料(加三甲基十八烷基季铵盐改性蒙脱土)。所用的堆肥用食物垃圾制成,测试在58±2℃的的温度下进行。聚乳酸制成纳米复合材料后生物降解能力显著增强了。聚乳酸在堆肥中的降解主要包括四个步骤:吸水,水解形成低聚物,低聚物溶解,溶解的低聚物由细菌分解。因此,增加水解速率的因素最终都会加快聚乳酸的降解。硅酸盐片层侧边羟基的存在可能会加降聚乳酸的水解。6.2光降解能力Hiroi和Oamoto等人报告了纯聚乳酸及其纳米复合材料的光降解性,这种复合材料是以有机改性层状钛酸盐做为新的纳米填料。这种材料的作用之一就是象锐钛石型TiO2一样具有光催化活性。锐钛石型TiO2的光催化反应(如从水中分解出氢气、有机化合物的氧化降解等)已经引起人们极大的研究热情,因为它有可能用于将太阳能转化为化学能。实验显示,纳米复合材料对紫外线的吸收率明显高于纯聚乳酸,相应地,在光照下,复合材料的降解速率也明显快于纯聚乳酸。7展望聚合物/层状硅酸盐纳米复合材料的出现是聚合物技术领域革命性现象之一,它为拓宽传统聚合材料的应用范围提供了一种富有吸引力的途径。有些聚合物/层状硅酸盐纳米复合材料已在市场上出现,并已用于制造工业产品。可生物降解的纳米复合材料具有广阔的应用前景。这是一类基于植物和天然矿物材料的新型材料。当在垃圾堆中处理时,在微生物的作用下,它们会降解为安全的CO2、水和腐殖质。CO2、水会通过光合作用重新转化为粮食。毫无疑问,这种源于纳米复合材料的独特的性能为塑料和复合材料开辟了更广阔的应用范围。据报导,预计今后聚合物纳米复合材料的产值每年会增长约100,到20__年,产值会达到15亿欧元/年,产量会达到50万吨/年。聚合物基纳米复合材料在中长期将会遍及人们生活的各个方面,飞机、汽车、包装、电子电器、家俱等产业将广泛受益于这种新型材料。参考文献:[1]Y.Kojima,Usuki,M.Kawasum,etal.Mechanicalpropertiesofnylon6-clayhybrid[J].JMaterRes,1993,8(5):1185-1189.[2]陈光明,李强,漆宗能,等.聚合物/层状硅酸盐纳米复合材料研究进展[J].高分子通报,1999,(4):1-10.[3]王新宇,漆宗能,王佛松.聚合物-层状硅酸盐纳米复合材料制备及应用[J].工程塑科应用,1999,(2):1-5.[4]黄锐,王旭,李忠明.纳米塑料-聚合物/纳米无机物复合材料研制、应用与进展[J].北京:中国轻工出版社,20__.10-12.[5]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-143.[6]G.-M.Kim,D.-H.Lee,B.Hoffmann,etal.Influenceofnanofillersonthedeformationprocessinlayeredsilicate/polyamide-12nanocomposites[J].Polymer,20__,42(3):095-1100.[7]HaoFong,WeidongLiu,Chyi-ShanWang,etal.Generationofelectrospunfibersofnylon6-montmorillonitenanocomposite[J].Polymer,20__,43(3):775-780.[8]S.S.Ray,K.Yamada,,M.Okamoto,etal.Newpolylactide-layeredsilicatenanocomposites.2.Concurrentimprovementsofmaterialproperties,biodegradabilityandmeltrheology[J].Polymer,20__,44(3):857-866.

高分子材料的发展现状范文4

[论文摘要]目前,静电在生物工程中有着重要的应用。介绍高分子抗静电的方法,阐明高分子材料抗静电技术在我国的发展和策略。

静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。

一、高分子抗静电的方法概述

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.

高分子材料的发展现状范文5

关键词:热致型形状记忆;高分子材料;制备技术;智能材料 文献标识码:A

中图分类号:TB324 文章编号:1009-2374(2015)11-0009-02 DOI:10.13535/ki.11-4406/n.2015.11.005

具备形状记忆功能的材料是新型感应型材料,是属于智能材料的范畴,因其能够感应环境变化并能对变化作出相应的响应,并且可据以调整位置、形状、应变等力学参数,可在特定条件下恢复到原先设定的状态。相当于具备一定的固定原始状态的材料经过特定形变并固定成为另外一种形状后,通过处理有条件可以恢复到原始状态的材料。热致型记忆高分子材料制备方法简便,控制形变的方法较易,应用范围非常广泛,因而成为目前研究与开发领域较活跃的形状记忆高分子。本文对热致型形状记忆高分子材料的形状记忆原理、制备方法和其中的几种重要类型进行综述和评论。

1 热致型形状记忆原理

热致型形状记忆高分子的形状记忆与其玻璃化转变温度有关。在高分子材料的内部存在着不完全相容或完全不相容的两相或多相,一般称作固定相(记忆初始状态)和可逆相(可随温度变化发生固化或软化)。

当外界温度在分子的玻璃化转变温度以下时,分子的可逆相和固定相都处在冻结的状态,即其分子链被冻结,整个材料分子均处在玻璃态;对应地,当外界温度在玻璃化转变温度以上时,分子链段发生运动,材料分子处于高弹状态,此时加以外力,材料分子可发生形变。温度下降过程中,材料分子会逐渐冷却,若保持外力一直存在,材料的形状可维持不变,冷却完成后,材料分子链段冻结,相当于可逆相处在冻结的状态,在高温时被赋予的形状可保持。

温度再次达到玻璃化温度以上时,材料分子的链段会解冻并逐渐恢复运动,同时在固定相的作用下,高分子材料的形状可以恢复到初始形状。由此可知,组成可逆相的分子结构对记忆温度有影响,组成固定相的分子结构影响形变的恢复。

2 热致型形状记忆高分子材料的制备技术

2.1 交联

聚合物改性的一种常用方法是交联。交联目的是使聚合物的线形分子之间相互结合,从而使线形分子联结成为网状的结构,若加热升温至Tg及以上时进行伸长处理,其交联网状结构将伸展,与此同时结构的内部会产生回复力,温度降至Tg以下时,分子链冷却成为结晶态或玻璃态,从而使变形固定,回复力在分子结构内部冻结,当再次升温,分子可恢复到原始形状。其基本方法是通过外界的反应条件(如温度)提供能量,使得分子产生自由基,进而发生自由基结合反应,使聚合物交联。此种交联方法的优点是可以使聚合物性能改善,且在分子内部不存在其他化学物质的污染。但因辐射的能量过高,聚合物虽然会发生交联反应,但也有部分聚合物发生降解反应,对聚合物有一定损伤,影响聚合物的性能,产量相应的也会降低。除了辐射交联,也可以使用化学交联的方法。例如,丙烯酸与丙烯酸十八醇酯可发生交联反应,以亚甲基双丙烯酰胺为交联剂,可以合成具备形状记忆功能的高分子材料。

2.2 共聚

分子结构中存在着两种或多种不完全相容或完全不相容的部分,使得分子结构中不完全相容的相分离,通常情况下玻璃化温度低的相叫做软段,玻璃化温度高的相叫做硬段。共聚反应可以通过调节软段的结构组成、分子量、软段的比例来调节形状记忆材料的回复应力、软化温度等,进而改变聚合物的形状记忆功能。具体方法是用两种玻璃化温度不同的材料进行聚合反应,生成具有交联嵌段结构的共聚物。据报道,PEO-PET的共聚物包含两部分,作为硬段部分的PET具有较高的玻璃化温度,主要是形成物理交联,从而保证共聚物可以具备较高的硬挺度;PEO是聚合物的软段部分,其玻璃化温度较低,是提供弹性的部分;在此种聚合物中,如果增加PET的含量,物理交联便会提高;相应地,如果增加PEO的长度,分子链更易运动,共聚物能表现出良好的形状记忆功能。

2.3 分子自组装

分子自组装(self-assembly)是指在无外力参与的情况下,分子借助其内部能量发生自发的聚集、联接并形成规则结构的现象。例如,分子的结晶现象就是一种典型的自组装现象。彭宇行等人第一次利用了聚丙烯酸-co-甲基丙烯酸甲酯分子与溴化十六烷基二甲基乙铵分子间的静电引力制得了具备超分子结构的且有形状记忆功能的高分子材料。这也是首次将超分子自组装引入到智能记忆材料的领域。其制备不仅可依赖分子间的静电引力,氢键、范德华力等也可作为其反应内力。

3 几种重要的热致型形状记忆聚合物

3.1 聚降冰片烯

聚降冰片烯树脂是世界上第一种具有形状记忆功能的高聚物,其成品具备形状记忆功能,即其形状变化很大,但经加热,可立即恢复至原来形状。聚降冰片烯通常由乙烯与环戊二烯发生缩合反应得到,其分子量一般在300万以上,玻璃化转变温度(Tg)约为35℃,可逆相是玻璃态,固定相是分子链的联结点,具备超分子的结构。在聚降冰片烯分子的内部不存在极性结构与分子间相互联接的交联结构,故可以通过真空成型或注射等方法加工成型,但是因为分子量过高,所以在加工时较

困难。

3.2 形状记忆聚氨酯

聚氨酯全称为聚氨基甲酸酯,是一种含部分结晶的线型聚合物,其制备是先由二异氰酸酯与低聚物多元醇反应生成聚氨酯预聚体,再用多元醇、氨基酸、羧酸等可进行扩链反应或交联反应生成具备联接嵌段结构的聚氨酯聚合物。聚氨酯聚合物以其柔性链段(多元醇部分)作为可逆相,刚性链段(二异氰酸酯和扩链剂)作为物理的交联点,作为其固定相。也可通过合成是选择的原料及原料的比例来调节Tg,即可得到响应温度不同的具有形状记忆功能的聚氨酯。

3.3 生物降解形状记忆材料

具备形状记忆功能的生物可降解材料可用于术后处理,其最终分解产物是小分子,能随新陈代谢排出体外。可生物降解的热致型形状记忆材料基本上是两种或两种以上的聚合物通过嵌段或交联的方式得到的。主要有下面两类:

3.3.1 聚乳酸类。用紫外光照射使其交联的方法可得到生物可降解形状记忆材料,如聚乳酸和聚乙二、聚乙醇酸、聚氧乙烷等聚合。混聚是为了能达到材料的玻璃化转变温度可调的目的、降解速度可调等。

3.3.2 聚亚氨酯类。聚亚氨酯存在硬度比较低的缺点,纳米级的纤维素可以作为其增强相与聚亚氨酯复配。在组成的复合物中,聚亚氨酯分子链是软段,其熔点随着纳米纤维素含量的增加而增加。

4 结语

热致型形状记忆高分子材料有许多明显的优点,如形变量较大、加工制成成品的性能良好、能量消耗低等,所以它在许多领域具备很高的应用价值和广泛的应用前景,经济效益极佳,社会效应显著,故成为当前形状记忆高分子材料的研究热点。

参考文献

[1] 詹茂盛,方义,王瑛.形状记忆功能高分子材料的研究形状[J].合成橡胶工业,2000,23(1).

高分子材料的发展现状范文6

纳米技术正全力推动着化学工业未来的发展。随着一些纳米技术的工业产品问世以及所显示出的诱人前景,现在“纳米技术”已经成为家喻户晓的名词。纳米技术能在<100nm的水平上合成、处理和表征物质,这是一个涉及多门学科的广阔领域,它包含有:纳米材料(nanomaterials)、纳米生物技术 (nanobiotechn010gy)、纳米电子学(nanoelechonics)和纳米系统(nanosystem),如纳米电子机械系统nems和分子机械(m01ecular machine)等。而纳米技术在化学工业中的应用,主要是新型催化剂、涂料、剂,过滤技术以及一些最终产品,诸如纳米多孔材料制品和树状聚合物制品已成为化学工业的创新点。

一、化学反应和催化方面应用

化学工业及其相关工业,特别是一些化学反应起着关键性作用的产业盛行用纳米技术来改进催化剂性能。纳米多孔材料中的沸石在原油炼制中的应用已有很长历史,纳米多孔结构新型催化剂的发展,为许多化学合成工艺的创新提供了机会,或者使化学反应能在较温和条件下进行,大幅度地降低工艺成本。例如用此类催化剂可以将甲烷有效地转化为液体燃料,作为柴油代用品,而现用的方法比较昂贵。

纳米粒子催化剂的优异性能取决于它的容积比表面率很高,同时,负载催化剂的基质对催化效率也有很大的影响,如果也由具有纳米结构材料组成,就可以进一步提高催化剂的效率。如将si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。在某些情况下,用si02纳米粒子作催化剂载体会因sio2材料本身的脆性而受影响。为了解决此问题,可以将sio2纳米粒子通过聚合而形成交联,将交联的纳米粒子用作催化剂载体。

在能源工业中,shenhua集团公司、hydrocarbon技术公司和美国能源部在中国进行煤液化项目建设,采用了纳米催化剂,取得了20亿美元效益。此工艺可以生产非常清洁的柴油,在中国许多地方它可与进口原油或柴油(以全球平均价格计)竞争。燃料电池也是纳米催化剂起重要作用的领域,当前工业样品应用的是铂催化剂,约2nm宽。

二、过滤和分离方面应用

在过滤工业中,纳米过滤(简称纳滤,nanofiltration)广泛应用于水和空气纯化以及其它工业过程中,包括药物和酶的提纯,油水分离和废料清除等。还可以从氮分子中去掉氧(氧与氮分子大小差别仅0.02nm)。应用此方法生产纯氧可不需要采用深冷工艺,因而可以降低成本。法国于2000年在generale des eamx建成世界上第一座用纳滤技术生产饮用水的装置,所用聚合物膜其孔径略<lnm。与传统净化工艺相ll,虽然电能消耗较高,但带来一些其它的好处,如不需要用氯。

由于可以精确地控制孔径,所以具有可观的近期应用前景。美国pacific northwest国家试验室已经创制一类称之为samms结构,为在介孔载体上自组装的单层结构,含有规整的1-50nm的圆柱形孔,孔上用自组装方法涂上活性基团单层,可用于不同领域。已经利用samms成功地从水溶液和非水溶液中萃取出各种金属和有机化合物。

纳米多孔材料的吸收和吸附性能也提供了在环境治理方面应用的可能性,如去除重金属(如砷和汞等)。使用其他纳米材料的过滤技术也取得了长足进步。例如入rgomide纳米材料公司开发的用直径为2nm纤维制成的高产率系统,可以过滤病毒、砷和其它污染物。

一些聚合物—无机化合物复合材料也可用作气体过滤系统,而且效率也很高。如有一种用排列成行的碳纳米管(nanotllle)制成的膜,由于纳米管与气体分子间互不作用,可以高产率地分离出气体。此种材料可满足高流速低压气体的分离需要。此种膜可以从气流中去除co2,或从co中分离h2。这种技术可应用于新一电厂、煤液化工厂或气体液化厂。

由精密控制尺寸的纳米管组成的膜在分离生物化学品方面也具有很大潜力。

三、复合材料方面应用

在复合材料中使用纳米粒子可以提高材料强度,降低材料的重量,提高耐化学品、耐热和耐磨耗能力,而且还可赋于材料一些新的性能,诸如导电性,在光照和其他幅照下改变其反应性能等。

以粘土为基础的纳米复合材料在不久将来会有很大的市场。以碳纳米管为基础的新型结构复合材料的开发也为期不远,它的主要问题是成本较贵,要用好的填料(单壁纳米管)。大规模应用较大而不太完善的碳纳米纤维可望在2004年实现,此发展可能会给纳米粘土复合材料的应用形成冲击。

一些公司计划扩产纳米粘土也反映出其发展潜力。如nanocor公司已转产纳米粘土,每年2万吨。许多主要聚合物公司也在开发纳米复合材料技术。rtp公司已将有机粘土/尼龙纳米复合材料制成薄膜和片材。triton

system公司应用纳米二氧化硅与一种聚合物材料制成纳米复合材料,开发成一种涂装材料。其它honeywell,ube工业和unitika等公司已工业规模生产尼龙纳米复合材料用作包装hbp材料,nanocor最近与三菱气体化学公司联合

制造并出售hbp包装材料。用于食品和饮料行业。bayer打算用尼龙6纳米复合材料制造多层包装膜,此膜的氧穿透率减少l/2,透明度和韧性有提高。近期,人们关注的另一种纳米复合材料的填料物质,是一种较为复杂的分子多面齐聚物(polyl、cdral 01ig(meric silsc5quioxanes,poss)。hybrid塑料公司称其可以大量生产poss,并与塑料生产厂商和用户进行合作。

四、涂料方面应用

在涂料行业ctj。纳米粒子已经起着很大的作用,但是,类似于能生成抗刮痕和不粘表面的涂层的溶胶—凝胶单层(solgcl monlolaycr)还在研究。用树状聚合物可以弥补不足,并且可与纳米粒子技术结合应用。

以纳米粒子为基础的涂料具有各种优异的性能,比如:强度、耐磨耗、透明和导电。拜耳公司与nanogntc公司合作开发导电和透明的涂层。纳米粉体是难以储运的,美国海洋部门采用微型凝聚(microscale ngglomerate)方法,即在应用时用等离子(一种热的离子化气体)技术或热喷涂技术,使粉体被融熔,形成涂层。拜耳公司与hansa metallwerke公司用纳米粒子进行抗水和抗灰尘涂料开发。据中国环氧树脂行业在线()记者了解,2002年basf公司推出一种用纳米粒子和聚合物制备的喷涂涂料,在干燥时自组装成一种纳米结构的表面,呈现出类似荷叶的效应,即当水落到表面上,由于与表面的互粘性甚小,可以形成水珠而流去,并把灰尘带走。

inframat公司用纳米涂料作为船壳防污涂料。以防止海藻、贝类附着生长。此种涂料很坚硬。但并不发脆。该公司的纳米氧化铅-氧化饮基陶瓷涂料已获得美海军部门400万美元订货,主要用于涂装潜水艇的潜望镜。应用纳米粒子技术可以制造氧化铝纳米粒子,用于地砖的抗划痕涂层。nanogate公司为西班牙地砖制造商提供纳米粒子涂料,使之容易清洗,并还为眼镜工业提供抗划痕涂料。

用纳米粒子强化的涂料还可能在生物医用方面应用。例如铜的纳米粒子可以降低细胞在表面上生长,从而解决移植上的一个主要问题。

五、添加剂和树状聚台物的作用

在复合材料领域中,纳米粘土和poss已经取得进展。在不远的将来,碳纳米管可能产生较大影响。但是,各种不同形状的树状分子结构以及它能易于功能化的性能,可以创制特殊结构的复合材料,使之具有各种性能。早在上世纪90年代中期,bertmeijer教授就阐明了树状聚合物的结构,它是一群小分子,或是小分子的容器。一个“树状聚合物箱”(i)endrimer box),如同有一个硬壳建于软性树状聚合物周围。如果一个小分子,如染料分子进入树状聚合物中,即可被封装在空穴中。通过对其末端基因的化学改性,全部或部分烷基化,树状聚合物就可以形成与线型聚合物可化学兼容的物质,以改进混合性能。在此情况下,树状聚合物的作用在于创建了分子微观环境,或是在塑料原料中形成“纳米观口袋”(nanoscopic pocket)来聚集染料分子。作为一种形态的、结构的或是界面改性剂,树状聚合物还可提高材料韧性,而对其加工性没有影响。在材料共混和复合中,它们还起着材料组分间的兼容剂和粘接剂的作用,因此可用于工程塑料添加剂。树状多支链聚合物已经被用作环氧树脂的增韧剂,加入重量比5%的树状聚合物可显著提高材料的坚韧性。通过可控相分离工艺,可以使树状聚合物良好地分散在树脂中,树状聚合物和树脂作用可以使接枝在树状结构上的环氧基团的化学键得到加强。杜邦公司制造和应用多支链结构物质作为聚合物共混中的添加剂,可以改善聚合物的加工性能。dsm公司已经将多支链的聚丙烯亚胺(ppl)聚合物工业化,主要用于廉价塑料和橡胶制造中作为添加剂,降低粘度。在涂料、油墨和粘合剂生产中也可应用。美国宇航局向dow corning公司和matcrials electrochemical

research公司进行项目投资,开发等离子沉积树状聚合物涂料和树状聚合体富勒烯纳米复合材料,以用作微型和亚微型表面。

六、树状聚台物及去污作用

树状聚合物特别适用于去污,它起着清道夫的作用,可以去掉金属离子,清洁环境。改变一种介质的酸度可以使树状聚合物释放出金属离子。而且树状聚合物可以通过超过滤进行回收和冉用。树状包覆催化剂可用此同样方法从反应产物中进行分离。回收再用。密西很大学的生物纳米技术中心计划开发树状聚合物加强超滤方法,作为新的水处理上艺.从水中去掉金属离子。树状聚合物可以在其分子小间或是在它们的经改性的终端基团上捕捉小分子。

使其能适用于吸收或吸附生物和化学污染物。美国军事部门对它的应用前景作了好的评价。

七、纳米保护(nano- protection)方面应用

树状聚合物在护肤膏中作为一种反应型的组分是很有效的。此应用可以扩展到保护衣服。固定的树状聚合物层可以抗洗和耐环境气候条件变化。有一种称之为“类似树状聚合物”(amphilic dondrimcr),它一半是树状聚合物,另一半具有末端结构,用以在保护膜中固定活性树状聚合物。

近年来,“一些部门在研究用纳米粒子来监测和防止化学武器袭击。nanospherc公司不久前推出一个系统,可以用来监测生物武器,如炭疽菌。该系统采用美国西北大学开发的金纳米粒子传感器。altair纳米技术公司和西密西根大学联合开发用二氧化钛钠米粒子为基础材料的传感器,可用来监测生物和化学武器。nanosphere材料公司开发氧化镁纳米粒子用于口罩的过滤层,因为它能杀大细菌(包括炭疽杆菌)。深圳新华元具纳米材料公司和nucrgst公司生产银纳米粒子用于抗菌服。nanobio公司推出一种抗菌液,可以破坏细菌孢子、病毒粒子和霉菌,它的作用是让表面张力发生爆炸性释放,而这种产品对人体组织不起伤害,现在主要用户是美国军事部门。

八、燃料电池方面应用

随着对便携式电子产品电能需求不断增加。要求降低供电元器件的重量和尺寸,由此而开辟广纳米粒子的新市场。

ap材料公司与millennium电池公司合作执行美国军方一份合问。开发纳米级二硼化钛用于高级电池组和其它储能系统。altar公司最近宣布该公司高级固体氧化物燃料电池系列示范试验获得成功,包括联结器、电解质、阴极和阳极等都是由微米和纳米级材料构成。而且,还开发了纳米锂基电池电极材料,其充电和发电率都比当前所用锂离子电池材料快l倍。

有一些公司计划工业生产甲醇基燃料电池,在2004年前后应用于便携式电子设备。在这类电池中,所用催化剂是处在淤浆状态的铂纳米粒子。针对电池应用,brookhaven国家试验室已制成锂-锡纳米晶体合金,用作高性能电极。用氢化锂与氧化锡反应,前者需过量使反应完全。生产的锂—锡合金中含有剩余氧化铿。重复用氢处理最后生成粒径为20~30nm纳米复合材料,形成稳定金属氢化物的其它元素也可用此法制造纳米复合材料,未来的应用不仅在电池领域,还可以用在催化方面。