直流稳压电源的设计要求范例6篇

直流稳压电源的设计要求

直流稳压电源的设计要求范文1

【关键词】通讯设备;高压电源;结构设计

近年来,由于通信行业的发展迅速,通信设备等各方面要求也随之提高,使得对承担设备各方面运行的供电系统的要求也逐渐提升,其中包括高压电源的容量需求,还有可靠性和节能型等各方面要求也随之提高。其中,通信设备高压电源中采用高压直流供电系统HVDC是较好的解决方法。

1通信设备电源概述

生活中要保持正常工作的电子设备的运行就要有稳定的电源供电,针对市电的常规供电一般是50Hz的使用额定,而野外使用的电子设备,是通过发电机提供电源(如车载或船载设备)。除此之外特殊的通信设备也会要求直流电,对于这种情况需配有整流器,或逆变器。整流器的作用是可以将交流电变成直流电。如果要改变电压后再提供给用电设备,还需要增加一台变压器。交流电在日常工作中容易出现电压不稳定的情况,就需要调压器进行补偿,稳压器的作用能达到稳压效果,考虑谐波影响还要增加滤波器滤,因此变压器、整流器、滤波器、调压器、稳压器是通信设备电源的必备部分。此外,提供电源的用电设备在设计时应达到以下要求:(1)要有输送交流电和直流电给负载部分的能力,还要确保有稳定的最大负荷输出电流;(2)在输入电压存在波动的情况下,要确保输出电压稳定,并要求稳定系数达到较高数值;(3)传输至负载的直流电接近于恒定直流电流,因此波纹因素较小;(4)电源功率要符合要求。效率是判断电源性能的一项重要重要指标。效率高,意味着在电源正常运行时耗散功率小,热量少,有利于节约能源,保证设备的使用年限。对于电源的技术要求,不仅有电气设计,很关键的一部分还包括结构设计。能确保电气设计方案顺利实施的首要条件。特别是在高压电源设计过程中要选定正确设计结构,规划布局合理,使元器件固定妥当,考虑到通风散热、电磁兼容问题,以及隔振设计、三防设计、高压的安全防护设计等。

2高压电源结构设计

2.1组成高压电源的元件

常见的通信设备在安装速调管、分行波管和大功率晶体管时一般使用高功放管。除了电源灯丝外,都是上千伏的高压电源,对于一般慢波线和收集极电压高,大电流。比如3kW行波管收集极工作电压是14kV,电流则为1.8A;慢波线电压为18.5kV,电流为0.2A。因此高功放若是电子管(行波管和速调管)必须要确保能供上述高压电源。

2.2结构规划原则

(1)一般来说高压电源的主元器体积与重量都大。特别是大型电气设备变压器,总重达120kg。重型设备尽量装在下部。使整体重心低而稳定。布局要便于安装和维修。(2)电源变压器,存在大功率整流管及高压线圈等,正常运转时会产生较多热量,布局应考虑通风性。尽量装有风机冷却,或者空气流通的位置。(3)常出现故障的元器件,如压敏电阻器、隔离开关等应要安置有利于更换的位置。(4)规划设计高压电源的结构方面,首先要考虑用电安全问题。高压电设备在检修时可能会发生触电危险,因此要求控制机构在检修时要保证电流接地。对于高压端子及高压导线绝缘性能要求高,绝缘距离要求大,防止出现短路故障。严格遵守绝缘距离设定,确保人身安全。对于交流与直流部分注意区分,避免互相干扰。特高压情况,比如1kV以上的电源设备,要设有专门开关。当人为打开门或者抽屉柜时,门控开关启动断开电源,防止触电事故。金属面板上禁止直接安置电表,电位器调节旋扭等,要充分做好防护工作。(5)电源变压器的铁心部件会出现漏磁现象,当它连接低频放大器的部分元器件或导线时,会马上放大50Hz的电信号,因而产生交流声。由此,需要隔离低频放大器部分,如:控保部分和变压器使用同一底板,确保进行磁屏蔽。(6)通信设备使用的高压直流供电系统,存在输出正负极未接地的情况,这就要求在两极安置开关;如果部分单极断路器无法达到高电压等级要求,可以使用串联多极分担分断电弧电压。

3高压电源结构组装举例

此结构布局图的特点是:(1)便于散热。抽屉要做成密封式,首先要在上面加上盖板,为了便于散热,要形成一定的风道。在面板上开设通风孔,加上通风窗和滤尘网,在后面板装上轴流风机,作用是抽风。由于阻流圈和变压器的发热量比较大,因此安装设置更靠近风机位置,目的是尽快散热,防止其它元件受到影响。为了使高压电源的各元件散热更快,将风机于通风窗的位置对角放置,以此来加上风路,增加散热效率,改变后的风路流向如图中箭头所示。(2)屏蔽设计。通信设备要注意控制漏磁场,避免受到过多干扰,应将数字显示板和电路印制板加上磁屏蔽罩,才能避免此类问题发生。(3)绝缘设计。通信设备在电源高压影响下,首先要考虑绝缘设计,将8mm厚的环氧酚醛层压玻璃布板作为底板,可有效绝缘。此外,这种材料还有优良的介电性能、机械性能和耐水性。部分高压设备是不能直接接触地面的,需要加底板,如果用金属底板,会导致底板直接和机架相连接,因此设计时要注意做好绝缘处理,将结构设计科学化、复杂化。如果将环氧酚醛层压玻璃布板安装在高压器件下面,同时要维持高压设备之间一定的距离,还要保证高压设备和机架间的距离,防止两者间发生击穿放电现象,然后将各种设备科学地连接起来。

4以HVDC高压电源供电系统为例

(1)技术方面。针对目前使用的HVDC的供电系统,它的电源系统的系统结构与现在存在的48V通信电源的很相似,并且十多年来被广泛使用在国家电力行业部门,这种高压直流供电系统有很高的产品技术成熟,并且属于完全国产化的系统设施。(2)结构方面。HVDC供电系统的结构比较简单,一般来说结构简单的系统更能保证高效率的运行和更高的安全性。直流供电系统在模块化设计基础下,有实际运行了数十年的经验,更能证明其安全可靠和简单特性。同时直流供电系统的模块化设计还使该系统具有增加扩容和方面维护等优点。(3)效率及节能方面。HVDC系统在UPS系统的基础上去掉了UPS的逆变部分,将系统的谐波含量减少,因此相比传统UPS系统,不管在各部分效率还是整体效率方面都有较大的提升。

5结论

以上可得,高压电源的主要特点是电压高、发热量大、重量大、漏磁影响大。本文主要对高压电源结构设计原则进行了定性分析。随着近几年对高压直流供电的研究兴起,越来越多的研究者对高压直流供电的优势给予了肯定。

参考文献

直流稳压电源的设计要求范文2

伍水梅 广东省国防科技技师学院 广州同和 510515

【文章摘要】

电源是电路的核心,是电子电路制作过程中必不可少的设备。一个好的直流稳压电源能让电路制作事半功倍,效果显著。一般直流稳压电源由变压器、整流、滤波、稳压等几个部分组成。本文介绍了一种简单实用的直流稳压电源的制作。

【关键词】

直流稳压电源;变压器;整流;滤波; 稳压;7806

【Abstract】

Power which is the core of the circuit is the essential equipment for making electronic circuit. It will get twice the result with half the effort if a good DC power is supplied for the production of circuit.Generally speaking,DC power supply is mainly composed of transformer, rectifying,filtering and voltage-stabilizing. This article describes a simple and practical construction of DC power supply.

【Keywords】

DC Regulated Power Supply;Transformer; Rectifying;Filtering;Voltage-stabilizing; 7806

0 引言

科技在不断进步,人们对小型电器的需求越来越大,但不管是那种电器设备, 电源都是必不可少的,而且越是高端的电器,对电源要求越是严格。电源技术核心是电能变换与处理,广泛应用于教学、科研等领域,而直流稳压电源是电子技术中常用的仪器设备之一,几乎所有家用电器和其它各类电子设备都在使用直流稳压电源,它占着举足轻重的位置,是大部分设备与电子仪器的重要组成部分,是电子科技人员及电路开发部门进行实验操作和科学研究不可缺少的电子仪器。但实际生活中通常是由 220V 的交流电网供电, 直流电源需要通过电源系统将交流电转换成低电压直流电以供给各类电器设备使用。

直流稳压电源对电路调试、电路制作有决定性的作用,一个好的直流稳压电源,能让工作事半功倍。直流稳压电源系统主要由变压、整流、滤波和稳压四部分电路组成,其原理和制作过程比较简单, 如图1 所示。本文主要介绍一个能提供+6V、+1A 的串联型直流稳压电源的制作过程。

1 合适变压器的选择

变压器作为一个降压元件,主要是将初级电压(市电220V)转换为电路所需压降。根据电路要求提供+6V、+1A 的直流电源,所以在选择变压器的次级电压和次级电流时应适当增大,原则上次级电压应在所需电压的基础上多加3V,即次级电压应选6V+3V=9V,而次级电流应在所需电流的基础上乘以1.7 倍,即1.7A ;变压器的功率P 是初级线圈P1 和次级线圈功率P2 之和的一半,即:

P=(P1+P2)/2,

按照所选择的电压可计得:

P2=U2×I2=9×1.7=15.3W

P1=P2/ (0.8 ~ 0.9)=18W

这样可以选择变压器的参数是功率为18W,初级输入电压220V,次级输入电压9V。变压器应进行基本检测,如初级、次级线圈的分辨,最常用的方法有两个: 第一种是根据线圈电压与线圈匝数的比值V1:V2=n1:n2 可知线圈细的那边应为初级线圈(输入端);另一种方法是用万用表的电阻档比较两线圈的电阻值,阻值较大的那一端为初级线圈(输入端)。

2 整流电路的配备

整流电路的主要作用是利用二极管的单向导通特性将变压器输出的交流电压转换为脉动直流,是直流形成的第一站,它所提供的电压比最大输出电压值

图4.2 1ms 调频周期信号频谱 要略高,所以在选用四个二极管时要注意耐压值应比变压器的次级输出电压大3 倍以上,耐流值应略大于变压器的次级电流。按照变压器所取的数据:U2=9V、I2=1.7A,所选取的二极管耐压应大于27V,耐流值最小应等于变压器的次级电流。二极管需要承受较大的反向电压,假如二极管反接,将会造成二极管损坏,电路无法工作等严重后果,因此安装前要对二极管进行检测,确保极性。二极管的检测:用万用表测量二极管的正反向电阻, 根据二极管的单向导通特性可以轻易的判断出小电阻的那次黑笔所接是正极,红笔所接是负极;对于外观完好的二极管也可以从银色圈圈在哪边从而判出负极。

3 选用不同的电容器实现滤波

滤波电路是利用电容器将整流电路所输出的脉动直流存在的交流成份滤掉, 使输出波形变得平滑。不同类型的电容器有着不同特性,在电路中能起不同作用, 因此不同的电路应该选择不同的电容器; 但不管何种电容器,在电路中承受的电压都不能超过它自身的耐压值,否则电容器将受到损坏,甚至产生“放炮”现象。根据变压器的次级电压等于9V,选择电容器的耐压值应为1.42 U2,即13V,电容器的容量应为(1500 ~ 2000)I2 (I2 为变压器次级电流),即电容器可选用3300 ~ 4700μF 的。在本文所设计的电路中,前面的滤波电容C1 可适当选大到3300μF 以上,稳压出来的滤波电容C2 就要相对减小,可选择几十微法的。利用万用表的电阻档检测电容的好坏,判断电容有无短路、断路和漏电等现象:按电容量的大小用万用表不同的电阻档,红、黑表笔分别接电容器的两引脚,在表笔接通瞬间观察表针的摆动,若表针摆动后返回到“∞”,说明电容良好,且摆幅越大容量越大;若表针在接通瞬间不摆动,则说明电容失效或断路; 若表针在接通瞬间摆幅很大且停在那里不动,说明电容已击穿(短路)或漏电严重;若表针在接通瞬间摆动正常,只是不能返回到“∞”,说明电容有漏电现象。对电解电容更要分清楚正负极,避免反接。

4 稳压电路的研制

稳压电路是当电网电压波动或负载发生变化时,能使输出电压保持稳定的电路。根据电路的连接方式可分为并联型直流稳压电源和串联型直流稳压电源。并联型直流稳压电源所用元器件少,较经济;输出短路时元器件不易损坏,但效率低,调压范围小,负载变化容易引起输出电压的变化,适用于负载电流变化不大或极易发生短路的场合。相比之下串联型直流稳压电源可用在负载变化较大,稳压性能要求较高,输出电压可调等场合,所以建议安装串联型直流稳压电源。常用的稳压元件有稳压管、LM317、CW78××× (CW79×××)。

稳压管是特殊加工而成的二极管,和普通二极管一样具有单向导通特性,主要工作于反向击穿区,起稳压作用,通常并在负载两端使用。当它两端所加的反向电压达到反向击穿电压时,管子导通,电流急剧上升,达到稳压效果。只用稳压管工作的稳压电路一般较简单,性能也较差, 适用于输出电流不大,稳压要求不高的场合。为改善稳压效果,稳压管常会和复合管一起用,但稳压效果还是不理想。

LM317、CW78×××(CW79×××) 同属三端集成稳压器,都是将稳压电路通过半导体集成技术压制在一块半导体芯片中形成集成稳压电路[9]。LM317 是一种常用的三端可调稳压集成电路,输出电流为1.5A,输出电压可在1.25 - 37V 之间连续调节,调整使用方便。CW78××× 系列为输出正电压的固定式三端稳压器, CW79××× 系列为输出负电压的固定式三端稳压器,两者都包含了输入、输出、公共接地端三个引出端,具有限流和热保护的功能,且根据后序××× 不同各有不同的的输出电压和输出电流,第一个“×” 代表额定电流--- 字母L 表示输出电流为100mA,字母S 表示输出电流为2A, 没有字母表示输出电流为1A ;后面两个×× 表示额定电压---05 表示额定电压为5V,12 表示额定电压为12V,如此类推。根据要求,本文选用7806 集成稳压器(如图5 所示),其额定电压+6V,输出电流1A ;若是79S12 则额定电压为-12V,输出电流2A。在使用所选IC 前,应注意区分7806 的三个管脚和判断其好坏。区分管脚时可将三端稳压器正面竖起来面对自己, 从左到右依次为输入端、接地端、输出端, 使用加电压法测试三端稳压器好坏,在7806 的1 脚和2 脚按极性加上直流电压(9—35V),用万用表测3 脚和2 脚的电压, 如果所测电压数值与稳压值相近(大小不超出2V),则说明稳压器性能好。

5 附加电路的选用

根据电路的要求不同,也为了让电路能更好的工作,可以在原电路的基础上增加一些冗余电路,如电源指示电路,输出电压显示电路,散热电路等。

当电路完成后应重新检查一次所有元器件,如二极管的方向、电解电容的极性、集成电路的各管脚等,在检查无误后则可以进行通电调试,接通开关后若指示灯显示正常,则+6V、1A 直流稳压电源即可正常使用,其原理图如图2 所示。

6 结束语

通过对直流稳压电源的分析制作,总结出直流稳压电源的制作应从选材入手, 根据电路要求进行电路设计。只要认真扎实的进行制作,就能从中悟出很多有关直流稳压电源的制作技巧,使一些积累问题迎刃而解,推导出开关型稳压电路、串联反馈式稳压电路、输出正负电压可调的稳压电路等的制作,提高创作水平。

【参考文献】

[1] 田智文. 一种带有保护电路的直流稳压电源的设计[D]. 西安:西安电子科技大学,2011

[2] 孟祥印,肖世德. 基于先进集成电路多输出线性直流稳压电源设计[J]. 微计算机信息,2005,21(1): 154-155,180

[3] 金钊. 直流稳压电源的性能测试与优化[D]. 威海:山东大学,2012

直流稳压电源的设计要求范文3

Li Bingxiang1,Fan Chao2,Zhang Weina1,Zhang Wei1

(1 Xi’an Shiyou University,Shaanxi Xi’an 710065;2 Shaanxi Youth Vocational College, Shaanxi Xi’an 710068)

Abstract: In the process of oil production, sand production not only lead to the equipment damage and reduce the

production, but also can affect the life of the oil well, so take reasonable sand measurements and control is very important.

But the signals detected by the piezoelectric ultrasonic sensor contain strong fluid noise and electromagnetic interference,

in order to get the useful signals, the interferences must be removed. This paper uses wavelet transform, and simulate in the

MATLAB, and compares the de-noising effects with the Fourier transform, the results show that the wavelet transform

can effectively remove noises, and it also preserves the useful information of the signals. Through the data from laboratory

test and field test show that the wavelet transform have very good de-noising effect.

Keywords: piezoelectric ultrasonic sensor; wavelet transform; de-noising

基金项目:陕西省教育厅项目“油气井出砂实时监测方法研究”资助 (2010JK786)

1

2013.24 设计与研发

0 引言

控制器用电源和功率器件驱动电源是有源电力滤波器的主

要部分,其中控制器用电源主要用于控制器、传感器和包括触摸

屏在内的人机界面供电;功率用器件驱动电源顾名思义用于功

率器的驱动供电。传统的有源电力滤波器以对负载电流和电源电

压进行采样检测补偿的谐波分量,并获取电流基准为其主要的控

制策略。但实际工作环境中有源电力滤波器系统对于供电的稳定

性和可靠性要求非常苛刻,其中APF 挂网运行必须满足电力系

统,如控制电路和驱动电路要先上电等,的要求。而传统的控制策

略因其计算量大、控制器复杂以及实时性差等原因已经不能满足

有源电力滤波器的实际工作需求。如何有效的保障在电力系统故

障出现时,电源系统能够有效的将APF 从电力系统故障中切除,

并具有自动启动有源电力滤波器的功能,成为本文探讨的一种重

要方向。因此,有源电力滤波器的控制电源设计必须做到科学性

和有效性。

1 电源设计

整个有源电力滤波器的电源方案包括驱动电源、控制电源以

及驱动和控制电源的一次供电电路三部分。其中驱动板是驱动电

源和驱动电路设计在一起的结合物,也是整个电源系统组成中的

重要部分之一。控制电源有普通的开关电源组成,用于对控制器、

传感器和包括触摸屏在内的人机界面供电控制和服务。一般而

言,交流电网和有源电力滤波器功率直流母线双电源供电方式是

初级电源所采取的方案。由于开关调制频率疋远大于电网频率和

负载电流频率.因此可以假设在一个开关周期内负载电流不变,

所以电源电流上升和下降的斜率近似等于APF 交流侧电感电流

的上升与下降斜率,顾此方案能够满足有源电力滤波器对控制电

源稳定性的要求。

1.1 驱动电源设计

在驱动电源整体组成中,M57962L 是功率器件IGBT 驱动电

路的重要核心芯片。为满足供电特点的需求以及IGBT 驱动电路

的特殊性,驱动电源需要为3 桥臂的IGBT 提供6 路独立的26—

30 V 直流电。在系统运行过程中,稳压管分压起到在各路电源产

生IGBT 开通和关断需要的正、负电压,以确保驱动电源的有效运

行。

驱动电源采用单端反激式DC ∕ DC 变换电路。在整个电路中,

电压输入和电压输出在电路、功能等方面相互切合,形成互相配

合的整体。部分电压输出线路用于稳压管的分压,并相应产生正、

负电压。个别电路输出用于稳压控制作用。为有效实现对输出电

压以及初级电流的控制,一般采用脉宽调职芯片UC3844 用于控

制系统的芯片。输出电压通过电路反馈脉宽调制芯片的误差放大

器以此实现稳压控制的目的。初级电流通过电阻采样,采样值输

入到脉宽调制芯片UC3844 的相应位置,实现电路峰值电流控制。

此外,在驱动电源设计过程中,还采用由电阻、电容和三极管组成

缓冲电路,能够有效的实现当开关状态转换过程中产生的尖峰电

压进行筘位和吸收。

1.2 控制电源设计

在有源电力滤波器工作过程中,控制器需要的±15 V,±5

V 电源、传感器需要的±15 V 电源及触摸屏和接触器需要的24V

电源全部是由控制电源提供。在控制电源使用过程中,必须保障

控制电路先上电,以此完成对相关参数的设置和对开关器件的封

锁,以满足有源电力滤波器对在电力系统出现故障时及时从电力

系统中切除隔开,以及在排除电力故障后能够自动启动复用的要

求。开关电源产生控制器和触摸屏等各个部件所需要的各种电源

都能够从220V 的交流电通过普通开关电源分流,由此在采用普

通开关电源给控制电路供电时能够满足有源电力滤波器对电力

系统稳定性的苛刻要求,同时节约了成本。

普通电源开关具有操作简便、制作和使用成本低,安全性和

可靠性高等特点,而被用于控制电路供电,但当仅采用电网作为

初级供电时,在遇到电网掉电或者电网电压瞬时值过低的情况西

安,电路还需进一步改进,以满足特殊问题出现时的应急措施需

求。

1.3 基于双电源的初级供电设计

上文提到当仅有电网供电时,出现电网掉电或者电网电压

瞬时值过低的情况时,电路可能出现突发的问题。当电网突然掉

电时,开关电源失去对电能的有效控制盒输入,输出电压瞬间降

为零,最直接的后果是控制器因断电而无法继续对驱动电路进行

控制。更糟糕的事情是此时的APF 直流母线电压仍旧处于高压状

态,上下桥壁会在驱动信号干扰功率器件后而出现同时导通,由

此造成功率器的损坏。

而基于双电源的初级供电设计是指基于交流电网和APF 功

率直流母线双电源供电方案的一种方法,实践证明该双电源设

计方法能够有效的克服上述突发情况。其基本的设计思路为交

流电网和APF 功率直流母线分工合作负责不同情况下的电路供

电,电网主要负责在APF 正常工作时控制电路供电,而出现供

电异常后。截止功率器件的驱动信号。并将APF 直流母线的电

能通过DC ∕ DC 电路回馈给控制电路和驱动电路。需要注意的

是DC ∕ DC 转换电路因其输出为直流电而不能与220V 交流电

直接并联,为此,通过设计二极管进行220V 交流电整流,然后与

DC ∕ DC 转换电路因其输出为直流并联。

通常情况下,经过二极管整流并联后的输出电流在电容器上

能够得到310V 的直流电。在电路设计过程中,只要保障DC ∕ DC

转换电路输出电压的正极能够通过二极管与电容的正极相对应,

二者的负极直接相连,在DC ∕ DC 转换电路输出电压小于电容的

电压时,就可保障APF 正常工作时,DC ∕ DC 转换电路而停止工

作。此外,由于电容器的存在,保证了在电网出现突然供电异常

时,开关电源和驱动电源输入电压不会马上低于DC ∕ DC 转换电

路输出电压而造成,DC ∕ DC 转换电路无法正常的发挥功能。在

DC ∕ DC 转换电路会在电容电压低于DC ∕ DC 转换电路输出电

压的情况下开始工作,控制电路和驱动电路会接受来自直流母线

的电能,当电压恢复至安全值后,DC ∕ DC 转换电路停止工作。

单端反激式变换电路是对DC ∕ DC 转换电路在有源电力滤

波器工作时的一种补充。DC ∕ DC 转换电路的功能具有局限性,

只能够在电网出现供电异常的情况下,为控制电路和驱动电路

供电供电,导致其在实际工作中输出容量不足,效率低下的问题

出现。与驱动电源相比,单端反激式变换电路的输入电压范围更

广,对于工业电压等级的APF,直流母线电压在正常工作时约为

750V。而电网断电后,直流母线电能回馈到控制、驱动电路,电压

逐渐降至安全值,但DC ∕ DC 转换器是否能在此过程中输出较稳

定的约200 V 直流电压成为未知数。对此需保证DC / DC 变换器

在断续电流模式( 和连续电流模式(CCM) 两种模式下都能安全

工作。

对于工业电压等级的APF 而言,对于DC / DC 转换电路的开

关器件的选择非常的苛刻,而在单端反激式电路中则能够轻易满

足其要求。才外为满足DCM 和CCM 两种工作模式的需要,在单端

反激式电路设计中变压器采用EC3521 型磁芯、变比120:55:4,

在整体电路中,个别输出电路用于电压反馈控制,此外,利用

UC3844 脉宽调制芯片的控制芯片实现对稳压控制和峰值电流控

制的稳定输出。在设计中保障直流母线电压低于控制电压(约为

180V),以此保证在驱动信号不确定或者缺失时而不至于损坏开

关器件。

2 实验分析

选用磁芯EI33,频率40kHz.变比97:12:12:12:12:12:12:7,

初级电感量4.2mH ∕ 1kHz ;APF 功率单元为750V,输出电流60A

的七路输出的多路变压器用于测试该设计的有效运行性能。实验

过程中,在正常工作中APF 的功率单元为750V,在正常运行过程

中将电网电压突然跌至为0,其中DC ∕ DC 转换电路的输出设定

值为180V,DC ∕ DC 转换电压在电网突然停电的情况下,开始工

作,直流侧电能回馈到控制电路和驱动电路,经过一段时间后,直

流侧电压降至安全值,DC ∕ DC 转换电路停止工作。经现场进行

调试验证,采用交流电网和APF 功率直流母线双电源供电方式,

未出现因电网电压故障而导致器件损坏情况的发生,此外在电网

故障排除以后,有源电力滤波器(APF) 能够有效的运行。实验结

果表明:该电源方案,即该电源初级输入采用交流电网和APF 功

率直流母线双电源供电方式,其中驱动电源和直流母线反馈电源

均采用单端反激式DC / DC 变换电路。具有实现简单、工作可靠、

成本低的特点。

4 结论

有源电力滤波器(Active Power Filter,简称APF) 的控制

电源包括控制器用电源和功率器件驱动电源两部分,对控制电源

的要求非常的高,不仅需要其能够提供稳定安全的电压以供系

统正常的运行,此外对于零器件的选择和使用上也要求求经济性

和安全性,依据APF 供电电源的要求,为IGBT 驱动电源设计了一

种基于单端反激拓扑的多路输出DC ∕ DC 电源,为控制器选用了

通用开关电源。该系统电源初级输入采用交流电网和APF 功率直

流母线双电源供电方式,其中驱动电源和直流母线反馈电源均采

用单端反激式DC / DC 变换电路。由本文的研究结论我们不难发

现,采用用交流电网和APF 功率直流母线双电源供电方式的电源

初级输入,别且驱动电源和直流母线反馈电源均采用单端反激式

DC / DC 变换电路的有源电力滤波器对控制电源具有非常明显

的优势,适合在电网,尤其是工业用电网中的推广应用,具有非常

巨大的推广意义。

参考文献

[1] 刘进军,刘波,王兆安. 基于瞬时无功功率理论的串联混合型

单相电力有源滤 波器[J]. 中国电机工程学报1997(12):

37-41.

[2] 吕利明,肖建平,钟智勇,等.高频开关电源单端反激变压器的

原理与设计方法叨.磁性材料及器件,2006,37 :36-38.

[3] 刘建宝,赵录怀,邹晓松.基于双极型模式的新型定频积分有

源滤波器[J].电力电子技术,2004,38(2) :32—33.

[4] 钱挺,吕征宇,胡进,等.基于单周控制的有源滤波器双环控

制策略[J].中国电机工程学报,2003,23(3) :34—37.

[5] 钱挺。吕征字.新型有源滤波器的双向互补控制方案[J].中

直流稳压电源的设计要求范文4

【关键词】 煤矿 直流设备 试验 控制技术

随着电力行业的迅速发展和新能源发电的技术限制,使得电力行业对于煤炭的依赖程度不断提高。煤矿井下工作环境中含有大量瓦斯、煤尘等可燃性气体和混合物,电气设备短路、过载等故障可能直接导致井下安全生产事故,所以对井下电气设备的可靠性和安全性要求较高。矿用架线机车、蓄电池机车作为井下运输工具,车辆的稳定运行对于井下安全生产和避免安全隐患具有也十分重要的意义。

一、整流技术

变流电路用于实现电能(交流(AC)和直流(DC))之间的变换,属于电能转换过程常用的电路。根据电能输入输出形式不同,变流电路可以分为AC-DC转换、AC-AC转换、DC-DC转换和DC-AC转换。本文涉及的变流电路为AC-DC,即整流电路,其目的是将交流电转变成直流电,为煤矿直流设备控制装置试验提供电源。传统的整流装置大部分采用二极管不可控整流技术或晶闸管相控整流技术,这类技术控制过程简单、效率较高,但功率因数较低,且输入电流的谐波含量比较高,对电网具有不良的影响。本文选用四个绝缘栅双极型晶体管(IGBT)两两串联Q1、Q2及Q3、Q4串联后并联组成桥式整流单元(如图1所示),并设计RCD缓冲电路避免瞬态操作电压对IGBT管的冲击,降低IGBT的开关损耗,保护整流单元安全、可靠运行,在IGBT关断过程中,电容C通过二极管充电,吸收关断过程产生的du/dt,在IGBT开通后,电容C两端的电压通过电阻R放电。

图1桥式整流电路原理图

二、控制单元设计

煤矿直流设备控制装置试验电源控制单元用于实现电源的控制和保护,主要由操作面板、处理器、IGBT驱动单元、显示单元、电压和电流检测单元等组成,其中操作面板用于控制指令的输入;处理器是整个控制系统的核心,用于实现数据的计算、处理、实验过程控制和输出电压调节;IGBT驱动单元用于驱动IGBT可靠导通和关断;显示单元用于显示电源的电压、电流、状态等信息;电压和电流检测单元用于检测电源的电压、电流信号,并将信号进行隔离放大处理后发送给处理器。

2.1 电压反馈电路

煤矿直流设备控制装置试验用电源需要稳定、准确的电压输出,并且要根据不同型号产品的需求调节电压幅值,所以需要设计可靠的电压反馈电路,处理器计算反馈值与需求值之间的偏差,然后对输出电压进行动态调节,保证试验电压的准确性。由于电源输出电压最高可达600V,所以不能从端口直接获得电压信号,设计由大功率电阻分压后得到处理器AD可以接收的电压信号。为了保证电路的稳定性,在电路中加入一个高输入阻抗的电压跟随器来获取电压信号。电压反馈电路如图2所示,图中C5作用是滤除信号中的杂质,

图2 电压反馈电路

稳点电路输入电压,减小信号漂移,通常选取高频无感电容。电阻R5、R6起到分压作用,电压反馈电路测量电压等于电阻R6两端电压,其电压值为总电压的R6/R5+R6。稳压二极管D5和电容C6起到保护作用,防止运放输入电平高于其供电电压。

2.2 电流检测电路

煤矿直流设备控制装置过载试验是在额定电流的1.6倍、3倍和5倍条件下进行,试验过程对电流值具有明确要求,所以试验电源应该具有稳定、可靠的电流检测电路。为了降低主电路对电流信号的干扰,提高电流检测的精度,选用基于霍尔效应电流传感器采集母线电流。CS600E2型电流传感器原边额定输入电流600A,原边测量电流范围0~±1000A,响应时间小于等于5μs,工作电源为±15V,传感器输出电压范围0-4V。传感器输出信号经过隔离和LM324组成的电压跟随其处理后发送给处理器的AD转换引脚,电路检测电路原理图如图3所示。

图3 电流检测电路

2.3 温度保护电路

直流电源内的整流开关管和变压器在工作过程中产生的热量会导致工作环境温度升高,影响控制系统的稳定性,此次除了采取常规散热措施外,还需要设计温度保护电路对电源的温度进行控制和动态调节。温度控制电路工作过程:电源上电后温度保护电路开始工作,当温度值高于设定值时,热敏电阻阻值变大,这时在运放M的同相输入端电压高于0V,信号经过放大后输出到N,使得运放的同相输入端电压高于反相端,运放输出+5V的电压驱动场效应管导通,热电制冷器开始工作降低系统温度,当温度达到正常温度时场效应管截止,热电制冷器停止工作。

同时,系统设置有温度采集电路,处理器对高精度温度传感器的信号进行计算处理,并发送给显示屏进行系统温度实时显示。

三、结论

矿用直流架线电机、矿用蓄电池车辆是我国中小煤矿井下主要的运输设备之一,其安全性直接关系到煤矿安全生产工作能否顺利开展,本文设计的煤矿直流设备控制装置试验电源满足国家标准要求,符合矿用直流设备控制装置检验需求,具有输出稳定、安全可靠等特点。

参 考 文 献

[1] 贾德利.IGBT逆变电源的设汁与应用[M],哈尔滨工业大学出版社,2012.

直流稳压电源的设计要求范文5

关键词: 煤矿用直流稳压电源 井下通信专用开关电源本质安全

1.引言

煤矿用直流稳压电源是保证煤矿监控系统安全、有效、准确工作的重要设备。它广泛应用于井下通讯、信号采集处理、过程监控等环节,它的技术先进性、功能适应性,以及产品的质量对整个系统的可靠性和性能价格比有着重要的影响。根据资料显示,电子设备的故障大约70%是由于电源引起的[1]。所以,直流稳压电源的性能将直接影响煤矿的安全生产。

2.通信电源系统及电磁兼容和防雷设计

通信电源系统由交流供电系统、直流供电系统和接地系统组成,交流供电系统由主用交流电源、备用交流电源、高压开关柜、电力降压变压器、低压配电柜、低压电容器屏和交流调压稳压设备及连接馈线组成的供电总体[2]。由整流设备、直流配电设备、蓄电池组、直流变换器、机架电源设备和相关的配电线路组成的总体称为直流供电系统[3]。

根据对象不同,可采取不同的供电方式,主要供电方式有:整流器独立供电方式,也称没有蓄电池的直流供电方式。电信系统经过整流器,从市电直接获得直流电的供电。高频开关整流器,也称无工频变压器整流器[4],主要有三部分组成:主电路、控制电路和辅助电源。

电磁兼容(EMC)是表示一种状态的特征,即各种电气设备正常工作互不干扰,它们对其它电气设备不产生电磁干扰,并具有抗外界电磁干扰的能力,因而在同时运行时,各自的功能不受到影响,同时也不受到自然电磁现象[5],如闪电雷击的影响。

电磁骚扰分为传导骚扰和辐射骚扰。

(1)骚扰限值

电源端口传导骚扰值。当采用准峰值检波测试仪所测试的骚扰值不大于平均值限值时,则认为受试单元满足了两种极限值,就不必在用平均值检波测试仪进行测试。如果测试仪上所示读数在极限值附近波动,则读数的观察时间不少于15s,记录最高读数,孤立的瞬间高值读数忽略不计。电信电源设备信号/控制端口的传导骚扰限值待定。

(2)辐射骚扰限值

在电源系统中经常受到过电压的干扰,过电压产生于下列主要原因。

(1)雷电过电压,包括受直击雷和感应雷产生的雷电过电压。

(2)电源系统内部过电压,包括工频过电压、操作过电压和谐波过电压。

按照YD5078―98通信行业标准《通信工程电源系统防雷技术规定》根据电源设备安装地点条件和额定工作电压的不同,在电信工程中,电源系统按耐雷电冲击指标分为5类。氧化锌压敏电阻是电信电源设备主要采用的避雷器,由于它性能优越、结构简单、小型可靠,得到广泛应用,并有替代过去使用阀式避雷器的趋势。压敏电阻的规格以压敏电阻值和耐流能力表示。主要技术指标有冲击击穿电压、残压和耐流能力,与放电管比较,响应速度快,耐流能力可达10 K(8/20 μs电流波形)。

作为本质安全防爆开关电源,其设计和评价本质安全电路的基本依据是电火花的最小点燃能量。当电路中的电火花能量达到一定数量级时,将会引燃爆炸性混合物,造成不可估量的损失。因此,在设计本质安全防爆开关电源时,必须严格按照本质安全防爆的要求进行设计,也就是其放电火花能量不能大于最小点燃能量。

3.电信电源设备和系统的可靠性分析

可靠性就是在规定的条件下和规定的时间区间内完成规定功能的能力。可靠性对于电信十分重要,这是因为电信设备乃至由它构成的电信系统日趋电子化,电信设备乃至由它构成的电信系统越复杂,出现故障的概率越高。

可靠度,产品在规定的条件下,规定的时间内,完成规定功能的能力的概率称为该产品的可靠度。

(1)平均失效率

λ(t)==

将上式改写成微分方式,得到:

λ(t)=-

(2)平均寿命与平均维修时间。使用寿命是产品在规定的条件下从规定时刻开始,到失效密度变到不可接受或产品的故障被认为不可修理时的时间区间。

根据可靠度的定义,一种产品在t时刻内正常工作的概率为R(t),则按照统计理论,该产品寿命的数学期望值亦即使用寿命T可表示为:

T=?蘩R(t)dt=?蘩edt=

电信电源系统的可靠性估算。

对于电源系统,则要根据具体的电路结构、构成系统各种电源设备在考察情况下的可靠性用估算的方法估算其可靠性。为此,必须把物理结构的供电系统图,改变成表示构成电源系统的各个部分在电路中关于可靠性的逻辑关系的方框图。其供电方框图如图1所示。

(1)交流电源部分的稳态不可用度U和平均恢复前时间MTTR。二类市电的年稳态不可用度应小于3×10,平均故障持续时间应不大于6h;柴油发电机组运行过程中的故障率极低,其平均失效间隔时间MTBF应不小于600 h,远低于启动失败率,可靠性估算中可予忽略。由于市电与柴油发电机组并联,再与交流配电屏串来联,先计算并联柴油发电机组的U。

计算市电与柴油发电机组并联的MTTR为:

MTTR===0.462

由于市电与柴油发电机组并联后,再与交流配电屏串联,故交流电源部分的平均恢复前时间MTTR为:

MTTR=

==0.534

(2)整流器以前部分的稳态不可用度U和平均恢复前时间MTTR。首先计算两台整流器并联的稳态不可用度Uzs。

单台整流器的平均失效间隔时间MTBF为5×10 h。由以下公式可求出单台整流器的MTTR:

U=

MMTR==0.33(h)

由于两台整流器并联,故:

MTTR=×0.33=0.165(h)

交流电源部分与整流器串联,故整流器以前部分的稳态不可用度U为:

U=U+U=4×10+ 4.356×10≈ 4×10

整流器以前部分的MTTR为:

MTTR=

==0.534

4.主电路设计

4.1充放电控制电路的设计

系统选择的STSR12M7.0AT型蓄电池在使用时要防止过充电和过放电,一般限制在±10%左右的额定电压以内。对于12 V的铅酸蓄电池,其充电电压最高为13.2 V,最低放电电压为10.8 V,三个12 V铅酸蓄电池串联使用时,则最高充电电压为39.6V,最低放电电压为32.4 V。

4.2DC/DC变换器的设计

AC/DC是交流和直流连接部,此时的额定电压为220/380ACV,模拟雷电压冲击波电压峰值为2.5kV(1.2/50μs),模拟雷电流冲击波电流峰值为1.25 kA(8/20 μs)。选择相应的避雷器产品满足其要求[6]。

单片开关式集成稳压器被誉为新型高效节能稳压电源,其电源效率可达90%以上。由于它把开关电源所需的基准电压源、锯齿波发生器、脉宽调制器(PWM)、功率输出级(即开关功率管)和各种保护电路全部集成在芯片中,实现了单片集成化,因此它在各种开关电源中的集成度最高、功能最全、性能优良而电路非常简单[7]。

5.结语

煤矿用直流稳压电源是保证煤矿监控系统安全、有效、准确工作的重要设备。长期以来一直是井下监控系统稳定、可靠工作的关键所在。它广泛应用于井下通讯、信号采集处理、过程监控等环节,它的技术先进性、功能适应性,以及产品的质量对整个系统的可靠性和性能价格比有着重要的影响。

本文创新点:针对煤矿井下湿度大、矿尘大、电磁干扰大,以及空间小、工作场所分散等这些特殊要求,设计了井下通信专用开关电源,符合本质安全型输出的要求,特别是本质安全信号在传输电缆断裂等各种故障情况下,均不能导致燃烧和爆炸事故的发生。还可在75%―115%的输入电压范围内能稳定工作,并有足够的功率输出,满足不间断供电,安装使用也比较方便,可靠性和供电质量都非常高。

参考文献:

[1]户永清.高性能开环直流稳压器设计[J].微计算机信息,2006,(02).

[2]张立森,王立志,邵一丹.基于CMOS的开关电容DC-DC降压变换器[J].微计算机信息,2007,(20).

[3]朱雄世.新型电信电源系统与设备.人民邮电出版社,2002.

[4]李爱文.现代通信基础开关电源的原理和设计.科学出版社,2001.

[5]白同云,吕晓德.电磁兼容设计.北京邮电大学出版社,2001.

[6]张卫平等.绿色电源―现代电能变换技术及应用.科学出版社,2001.

[7]王英剑,常敏慧,何希才.新型开关电源使用技术.电子工业出版社,1999.

直流稳压电源的设计要求范文6

关键词:开关电源;反激式;Flyback;LNK364

中图分类号:TM464 文献标识码:A

1 前言

开关电源的设计涉及到的知识方方面面,不仅涉及到模拟数字电路,半导体元件特性,电磁学知识,还需要考虑产品散热,安全要求、电兼容性能等。传统的设计需要人工来完成,其步骤繁琐,工作量大,效率低。传统控制电路的器件多,结构繁冗,一个环节出现问题,电源就无法正常工作,产品可靠性差。

为了解决上述问题,本文特别选择PowerIntegrations公司的一款反击式开关电源控制芯片LNK364。该器件在一个单片IC上集成了一个700 V的功率MOSFET、新颖的开/关控制状态机、一个自偏置的高压开关电流源、频率抖动、逐周期的电流限制及迟滞热关断电路,仅需要搭配少量阻容原件,即可和脉冲变压器配合实现基本开关电源的所有功能。并且其内部具有一个5.8V的自稳压电路,能够为芯片提供电源,并且提供一个1mA的输出,给反馈电路供电,从而省去了脉冲变压器的一个电源次级绕组,使得电源的设计电路更加简化。

2 整体结构设计

作为一款微功率的电源设计,首选的拓扑结构为反激式,其拓扑结构简单,设计适应范围广,是一般小功率电源的首选拓扑,选用LNK364作为控制芯片。电路设计如图1所示。

整个电路分为缓冲保护部分,EMC部分,整流滤波部分,PWM变送部分,整流输出部分和稳压反馈部分来进行设计。交流电源经过缓冲保护,EMC电路和整流滤波后转化成高电平直流信号,高电平直流信号经过PWM调制和脉冲变压器,转化成低电压交流脉冲信号,低电压交流脉冲信号经过整流输出部分转化成所需要的直流信号,直流信号上再接稳压反馈通过光耦将隔离后的开通/关断信号传输给开关电源控制芯片,从而完成输出端不同负载下的稳压功能。

3 硬件设计

3.1 缓冲保护电路设计

缓冲保护电路共包括两个原件RQ1和MOV1。其中RQ1为辅温度系数电度,其主要用于缓冲开关电源上电瞬间电容充电电流,对电容起到一个保护作用。MOV1位压敏电阻,用于防止雷击等情况发生时的差模干扰,当有差模高电压进来的时候,其与RQ1共同形成一个电阻稳压电路将差模高电压信号滤除。RQ1 选型为MT72-10D7,MOV1选型为14D471K。

3.2 EMC电路设计

EMC电路共有两个元件L1、C1,它们的主要作用为提高电源的电磁兼容性能。其中L1为环形共模电感,C1位X1型安规电容,L1和C1组合成为一个低通滤波电路,从而衰减外部差/共模高频干扰对电源性能的影响。L1选择5.6mH/1A的环形共模电感,C1 选择0.1uF/275V的X1行安规电容。

3.3 整流滤波电路设计

整流滤波电路主要是将交流电源转换成直流,其由DB1、L2-3、C2-3组成。其中DB1为整流桥,根据开关电源控制芯片特性,控制芯片过流保护阈值为250mA,所以此处设计容量为1A就能满足要求,因此整流桥额定电流等于1A,反向击穿电压大于400V(275V*1.414)即可,此处选型GBP08(2A、800V)。L2-3选型为1mH/1A工型电感,C2-3选型为6.8uF/450V电解电容。

3.4 PWM变送电路设计

PWM变送电路由主控芯片,脉冲变压器和续流电路三部分组成。其中主控芯片(LNK364)内部包含一个700V的MOSFET及其控制器。内部连接到漏极的高压电流源在启动阶段提供偏置电流,从而省去了外部启动电路。其内部集成的振荡器能够给输出MOSFET提供132kHz的输出脉冲。

此外,IC还集成了一些功能用于系统级的保护。自动重启动功能可以在过载、输出短路或开环条件下限制MOSFET、变压器及输出二极管中的功率耗散。自动恢复迟滞热关断功能还可以在温度超过安全限值时禁止MOSFET开关。芯片通过控制内部的开关管不断的开通关断,将上级输出的高压直流信号转化成132kHz的脉冲信号。当开关管开通的时候,脉冲变压器的初级内流动的电流增加,达到峰值Ip。当开关管关断的时候,反激电压使输出二极管进入导通状态,同时初级线圈存储的能量为1/2LI^2传递到次级,提供负载电流,同时给输出电容充电。通过电压反馈电路可以调节初级脉冲的占空比来调节Ip的大小,从而起到稳压输出的作用。

这其中关键在于脉冲变压器的选型,根据功率要求我们选择EE16磁芯,材料为PC47,初级绕组为87匝,5V次级6匝,12V绕组14匝。D1为续流二极管,在这里选择超快速二极管MUR160。R2为10K/1W,C4为102/1kV高频瓷片电容。D1、R2和C4共同组成了一个续流缓冲电路,防止开关管关断的时候变压器初级产生瞬间反向高压烧坏开关管。

3.5 整流输出电路设计

整流输出电路设计主要包括单向整流电路和滤波输出电路,单向整流主要是利用二极管的单向导通能力,当一次关断期间,次级整流二极管导通,将铁心中存储的磁能释放,再经过滤波输出电路输出稳定直流电压。二极管选用SF24超快速整流二极管。滤波输出电路由L4-5、C6-9组成,L4、L5为6.8uH磁棒电感。C6-7选用470uF/16V电解电容,C8-9选用220uF/35V电解电容。

3.6 稳压反馈电路设计

稳压反馈电路包括一个TL431,一个反馈光耦和一些阻容组成。是一个典型的稳压开关反馈电路,当输出电压达到5V的时候,U2导通,U1内的MOSFET关断,直到下一个开关周期的到来。U2选用PC817,R7=R9=10K,R6=150R,R8=1K,C=102。

结语

设计中采用了LNK364单片开关电源控制芯片,其内部集成的全部开关电源控制及保护功能,使得开关电源的集成度进一步提高,性价比增强,电路简化,可靠性增强,使得小成本、高要求、高可靠性电源更好地选择。

参考文献

[1] Power Integrations. LNK362-364 Datasheet[Z].

[2]安森美半导体.TL431 datasheet[Z].