航天工程技术范例6篇

航天工程技术

航天工程技术范文1

【关键词】航天工程;指标体系;研究

0 引言

航天工程项目属于高精尖领域,具有系统复杂、规模庞大、安全性及可靠性要求较高的特性,且航天工程项目一般具有一定的风险性及挑战性。航天工程项目管理能力的高低对项目是否成功具有决定性的作用,客观、合理、科学的项目管理评价能够实现项目管理能力的实时评估,从而帮助高层决策者及时发现项目实施过程中存在的缺陷及不足,找出关键影响因素,为项目的及时调整提供改进依据,弥补管理缺陷。

没有合理的评估标准,就没有合理的航天工程项目管理评估。一个合理、完善的评价指标体系能够实现评价对象的有效区分,最终实现可观、公正的评估,从而为管理层的各种决策提供科学的依据。

1 航天工程项目组织管理能力评价指标体系建立原则

航天工程项目管理评价是一个复杂的系统工程,评价指标的建立应该在明确目的性的基础上遵循一定的原则。总体来说,可以有以下几个原则:

(1)客观性原则

客观性即指指标体系的构建应该从客观实际出发,能够实事求是地反映航天工程项目方案投入、运行及产出的实际情况。

(2)完整性原则

完整性即指指标体系需要全面反映航天项目各方面的特征,综合考虑经济、社会、技术及风险等多方面的特征,还要同时考虑直接影响及间接影响。

(3)简易性原则

简易性原则是指指标设置应简便易获取,突出重要考察点,不能片面强调全面、详尽。

(4)可比性原则

可比性原则即指设置的指标应该使得在航天项目评估过程中时间、成本、费用等方面具有可比性,实现指标体系内部各指标之间的横向及纵向比较。

(5)可操作性原则

可操作性原则指所设计的指标体系应该是便于判断或测度的。这就要求建立指标体系时,应考虑到实际数据是否能够获得。

2 航天工程项目组织管理能力综合评价指标范围确定

航天工程具体是指航天系统的研究、设计、实验和生产活动,属于高精尖领域,在对航天工程项目管理进行评估时,主要注意以下几点要求:

第一,应该考虑技术层面的指标,这既是航天工程项目管理的基础要求,也是实践要求,技术是航天工程项目考核指标中最为关键的层面;

第二,与其他工程项目相比,航天工程项目具有多种型号,型号管理是航天工程管理最重要的特征,型号方面的考虑满足了航天工程的研制任务要求;

第三,结合项目管理的特点,参与航天工程项目的组织机构也应该作为项目管理最重要的一个部分,组织机构是服务于项目工程实施的,组织机构管理水平的高低对于航天工程项目的完善具有至关重要的作用。

(1)技术管理方面

技术管理是航天工程项目管理最重要的管理内容,结合航天工程项目技术特征分析,本文主要讲评价指标包括以下5个:技术先进性、技术可靠性、技术成熟度、创新管理以及科技影响。

(2)型号管理方面

航天工程项目管理一个重要特征就是型号管理非复杂性,型号管理具体是指对航天多种型号任务的项目管理,要求在计划进度约束和经费预算的范围之内,按照性能指标完成相关研制等任务,针对多种不同型号的航天工程项目,本文主要考核型号管理层面的6个指标包括:研制周期、总投资额、费用现值、质量监控、经济收益及政治军事影响。

(3)组织机构管理方面

航天工程项目最重要的是人员,而人员是组织机构的组成部分,因此组织机构管理是航天工程管理至关重要的组成部分。本文结合现有研究成果,在评价组织机构管理层面设置以下6个指标:人员协作、任务的分配、信息的传达、进度管理、安全风险管理以及社会反馈。

3 航天工程项目组织管理能力综合评价指标定义阐述

主要针对航天工程项目管理在技术管理、型号管理以及组织机构管理3个方面的17个指标的具体定义进行了阐述,具体内容如下:

(1)技术管理指标设计

A.技术先进性:通常是指项目实施过程,采用的技术能够在一定程度上体现现有的航空航天发展水平,具体可用技术含量的影响力来衡量;

B.技术可靠性:主要是指该项目运用的技术,能够保证完全航天工程项目的实施目标,具体可参照国际现有规定来进行衡量技术的可靠性;

C.技术成熟度:主要指项目所涉及的技术已经得到航空航天领域专家的认可,即已经得到了较为广泛的运用,具体可用该种技术的普及程度来衡量;

D.创新管理:是指在航天工程项目实施过程中,对于具体技术创新性的开发与管理,该项指标可以采用其技术专利的数目来衡量;

E.科技影响:科技影响能反映某一航天工程项目的技术水平和实力,以及其在航天领域所产生的科技影响力,具体可以用媒体专家的评价作参考。

(2)型号管理指标设计

A.研制周期:研制周期是指该航空航天项目研制任务的进度问题,该项指标反映了项目管理中的时间概念,具体可以用的项目研制时间来表示;

B.总投资额:总投资额即指研发并实施该型号所消耗的总预算投资,可以在一定程度上反映项目的成本,具体可以用项目耗费总体费用;

C.费用现值:费用现值即指当期的花费,考虑到不同时期项目耗费费用具有较大的差异,可以应用预算额与实际支持来衡量;

航天工程技术范文2

过去的痛苦即是快乐。

生命不可能从谎言中开出灿烂的鲜花。

航空vs航天

先来解释一下航空航天专业究竟指的是什么。其实,航空和航天有很大区别。航空技术主要是研制军用飞机、民用飞机及吸气发动机,航天技术主要是研制无人航天器、载人航天器、运载火箭和导弹武器,最能集中体现两者成果的是航天器和航空器。

举个直观的例子,所有航空器都是在稠密大气层中飞行的,其工作高度有限。现代飞机最大飞行高度也就是距离地面30多千米。即使以后飞机上升高度提高,它也离不开稠密大气层。而航天器冲出稠密大气层后,要在近于真空的宇宙空间以类似自然天体的运动规律飞行,其运行轨道的近地点高度至少也在100千米以上。对在运行中的航天器来讲,还要研究太空飞行环境。还有,动力装置不同。航空器都应用吸气发动机提供推力,吸收空气中的氧气作氧化剂,本身只携带燃烧剂。而航天器其发射和运行都应用火箭发动机提供推力,既带燃烧剂又带氧化剂。吸气发动机离开空气就无法工作,而火箭发动机离开空气则阻力减小有效推力更大。除此之外,在飞行速度、工作时限、升降方式等多方面,航天器和航空器都有差异。所以,航空航天类既是一个整体,两者又要独立对待。

前景篇

航空航天事业对国家,无论从军事国防还是经济国力上讲,都有着中流砥柱的地位。

从军事意义上讲,在现代战争中,空战已经占据着主导地位。像军用飞机、导弹、航母这些衡量着一个国家的国防力量的重要指标,和国家的航空航天技术水平有着直接的联系。

从经济意义上讲,航空航天事业是一个国家制造业生产力的重要标志,因为航空航天产品往往综合了许多高、精、尖的先进技术。在这些技术上的突破不仅仅对航空航天事业是意义重大的,更重要的是对国家科技实力的提升是一个有力的促进。另外,航空航天中像民用机这样对经济产生直接影响的行业的发展对国家经济的影响力也是十分巨大的,如大型客机。

就我国现状而言,航空航天水平还很落后,尤其是航空业,战斗机主要还是依靠国外进口发动机。航空航天科技工业极具发展前景,对人才的需求会持续旺盛,在最新的调查中,航空航天专业已经成为最被看好的专业之一。

学习篇

航空航天类专业主要包括飞行器设计与工程、飞行器动力工程、飞行器制造与工程、飞行器环境与生命保障工程4个专业。第一个专业做的是飞行器的总体设计,包括外形和结构设计;第二个做的是飞行器动力装置和动力装置控制系统,属于核心技术;第三个在于“制造”,对飞行器的零件加工与成型工艺、装配工艺独成一门;第四个是学习民用领域的热能利用、空调、供暖等系统设计,到了研究生阶段还要深入学习航空航天环境模拟与控制系统设计、航空航天生理和生命保障。但要注意的是,航空航天并不局限于这几个专业,它更包含像信息、能源、制造等的技术综合。

飞行器设计与工程

简单地讲,飞行器设计与工程最主要指的就是对飞机、导弹等飞行器的设计。这个广泛的概念既包括飞行器整体的设计,也包括飞机的结构设计与研究。可想而知,这样的工作肯定不像网上的军事迷个性化地画一些飞机设计图那样简单有趣,而是需要在十分深厚的理论知识的指导下,综合一切实际因素进行最优化设计的十分复杂繁琐的工作。

本专业学生主要学习飞行器设计方面的基本理论和基本知识,受到航空航天飞行器工程方面的基本训练,具有参与飞行器总体和部件设计方面的基本能力。需要学生对数学、物理、力学等有比较浓厚的兴趣。

飞行器动力工程这个专业从广义上讲就是能源动力工程,而对于航空航天飞行器来讲,就是飞机和火箭上的发动机。航空发动机是提供飞行器所需的动力装置,被称为“飞机的心脏”。 对于一架飞机而言,往往发动机的成本占了飞机总成本的一半,而发动机的制造技术又是飞机制造中难点中的难点。

本专业学生主要学习有关飞行器动力装置的基础理论和基本知识,受到机械工程设计、实验测试和计算机应用等方面的基本训练,具有飞行器动力装置及控制系统的设计、实验和运行维护等方面的基本能力。需要提醒大家的是,学生应具备扎实的数学、物理等方面的理论知识,掌握外语、计算机等必备工具。

飞行器制造与工程能够设计出来的东西往往不一定能够制造出来。因此,许多关键技术的制约瓶颈不是在设计能力上,而是在制造能力上。制造能力越强,可设计的空间就越大,技术水平就越高。制造技术不仅仅制约着飞机制造行业,更影响着国家制造业的整体水平,也就是标志着汽车、船舶、航空航天的制造能力。

本专业学生主要学习自然科学基础知识、制造工程基本理论和飞行器制造的基本理论和知识。通过各种实践性教学环节,培养学生运用所学的基本知识和技能,分析和解决飞行器制造工程中实际问题的能力。如果对飞机机械原理感兴趣,希望做一名飞机设计师,这个专业就适合你了。

沉沉的黑夜都是白天的前奏。

成功往往是最后一分钟来访的客人。

飞行器环境与生命保障工程

本专业培养具备航空、航天环境模拟及控制、生命保障系统设计与研究能力,能在航空航天领域从事环境控制与生命保障系统设计,在民用领域从事热能用、空调、供暖等系统设计的工程技术人才。

本专业学生主要学习航空航天生理、空间环境工程、热控系统理论、控制理论、人机系统工程等基础理论,掌握从事航空航天环境模拟、控制与生命保障系统设计与研究所必需的基本知识和技能。

具体来讲,航空航天专业普遍对力学和数学、物理的要求非常高,这些课程往往比较难。更因为是工科,因此学生的课程学习会非常繁重。也就是说,如果考生的数学、物理基础不好的话,很难学好这些专业。

航天工程技术范文3

关键词:民用航天产业;社会发展;高新技术

民用航天产业肩负着促进创新型国家建设,推进全面建设小康社会进程提升国家综合竞争力的历史贵任,加快发展航天产业是落实科学发展观的客观要求。

一、民用航天产业的发展前景

一是根据《国民经济和社会发展第十一个五年规划纲要》《国家中长期科学技术发展纲要》《国家高技术产业发展十一五规划》和(《国家航天发展十一五规划》十一五及其后的12年时间我国民用航天产业一是要坚持远近结合,自主开发和国际合作相结合,推进航天产业由事业型向业务型转变加速建立适应社会主义市场经济要求的航天产业发展新机制,加快建立航天产业的市场开发,科研生产和服务体系。

二是要优先实施载人航天工程、探月工程北斗导航工程和高分辨率对地观测等四大工程建设连续、稳定、安全和自主的广播电视、导航定位卫星遥感体系三大空间基础设施集中建设国家卫星地面系统形成覆盖全国的卫星数据接收网络和空间数据综合处理与服务能力,推进卫星信息资源共享。

三是要大力促进卫星通信产业、卫星导航定位产业和卫星遥感产业的快速发展,整合和开发卫星通信资源,积极发展卫星直播业务,提升卫星的传输能力,加速卫星导航定位在国民经济和社会发展各领域的应用。

四是“十一五”期间,民用航空产业要扩大国际合作,初步形成民机市场开发、产品研制生产和客户服务三大体系;发展具有自主知识产权的先进涡扇支线飞机,促进通用飞机、直升机的规模生产。民用航天产业要构建和完善通信广播电视、导航定位、遥感三大卫星应用业务体系;进一步强化卫星、运载、地面设备的研制;完善国家陆地卫星数据中心、卫星服务等设施;促进卫星地面系统产业化。

二、航天产业机制的转变

航天产业要完成从事业机制向业务机制的转变。要建设支撑国民经济和社会发展的业务卫星体系。把航天事业发展成为航天产业,当务之急是要加快建立民用航天发展的新机制和提升民用卫星创新与产业化能力。

(一)转变观念。将支撑和发展作为民用航天产业发展做大做强的基本原则。我国正在积极推进新型工业化和信息化建设,努力实现和谐社会和节约型社会的目标。工业交通、商业金融、文化教育、宣传娱乐、资源环境、区域规划等领域的发展,对民用航天产业的发展提出了迫切的需求,因此,落实民用航天发展十一五规划的各项任务,要以应用为中心,以市场为导向,与国民经济和社会发展的需求相衔接,将市场和应用贯彻到航天制造业的各个环节,使航天产业发展的重大工程能够促进和支撑我国信息化现代化的建设,真实起到支撑国民经济和社会发展的作用。

(二)转变机制。创造有利于航天产业发展的政策环境。民用航天是高投入、高风险的产业,具有战略性和公益性的特点,也有显著的市场化特点。在国家对航天技术产业化扶持和投入不断增加的同时,完善我国民用航天产业发展的政策环境,促进企业为主体、社会化多元投资多方式融资的运作模式,鼓励民间资本进入民用航天产业,参与航天产业发展.鼓励开放式创新和国际合作,是发展航天产业的必然选择。为此,国家发改委和国防科工委正在积极研究制定包括促进卫星通信、卫星导航和卫星遥感在内的民用卫星应用产业发展的相关意见

(三)要强化创新和产业化能力,将提升民用航天产业业务服务能力和规模化发展作为产业发展的中心任务。我国航天经过50年的发展,取得了巨大的成就,但与发达国家相比,与经济社会发展的需求相比,我国民用航天产业的发展还面临,创新能力不足、业务支撑体系不强、产业发展规模不大的问题,只有以应用为主导,加快发展新一代高可靠、长寿命、高性能、大容量的广播通信卫星,发展导航定位应用卫星系统,实现气象、海洋、资源等遥感卫星和低成本多功能的小卫星及微小卫星的系统化生产,建立可支撑经济社会发展的业务系统,促进产业的规模化发展,才能够形成良性发展的局面。为此,要加大力度,加快实施自主通信广播系统、北斗导航系统等的建设,鼓励终端设备产业化,促进市场应用。

三、民用航天发展的要求

(一)建立产业链完整的航天产业体系

从整体上要初步实现由试验应用型向业务服务型的转变,形成具有一定经济规模、产业链完整的航天产业体系。

(二)实现自主创新与经济效益的良性循环

建立我国长期、连续、稳定、自主的空间基础设施为目标,建立稳定运行和协调配套的卫星对地观测系统,完善卫星通信广播系统,满足卫星导航应用,促进卫星应用的商业化、产业化发展,显著提高卫星应用产业的规模和效益。

(三)优先实施四大工程项目

为保障现代通信、公共交通、数据传输等系统正常运行,实现卫星导航、灾害预警等高端技术的广泛应用,提高我国综合国力,发改委将优先实施载人航天工程、探月工程、北斗导航工程和高分辨率对地观测系统工程。

四、我国航空航天发展的目标思路

一是坚持以我为主,积极开展多种层次、多种形式的国际合作,主要面向国内市场,同时做好国际市场开发工作;坚持以市场需求为导向,追求项目商业成功,积极推进技术进步,型号开发和技术研究协调发展;坚持突出重点,有限目标的原则;鼓励机制创新,鼓励投资多元化。二是以支线飞机为重点,按国际标准和市场运作,广泛开展国际合作,研制生产具有市场竞争力的新型涡扇支线飞机,同时积极开展技术研究,突破支线飞机、发动机以及部分机载设备研制的关键技术,积极推动民机转包生产形成专业化和规模化,并对现有运输机、通用飞机和直升机进行市场适应性改进、改型和产业化;进一步巩固和扩大市场占有率。

1.加强自主创新。中国航空工业发展将结合中国国情,继续有选择地发展民机技术和民机型号,逐步建立和完善自己的民用飞机技术体系,研制有自主知识产权的民用飞机,并逐步实现民用飞机、发动机和机载设备的协调发展。

2.扩大国际合作与交流。通过与世界各国的合作与交流,引进先进技术,发展联合开发和联合生产,扩大产品技术出口,开拓发展空间。

3.完善投融资政策。中国政府将加大对航空工业技术研究的支持力度,鼓励对航空产品开发的投资多元化;积极创造条件,支持组建中国的民机租赁公司;支持企业对转包生产项目进行必要的技术改造。

4.建立新的运行机制和人才激励机制。中国政府积极推动企业在民机研制生产中建立符合市场经济规律的运行机制。鼓励新上项目采取股份制方式运作。精化民机科研队伍,提高科研人员待遇,重视管理和市场营销队伍建设,吸引优秀人才投身民机事业。

5.促进空域管理科学化。积极培育通用飞机和直升机市场,促进低空空域管理更加科学化,提高空域资源的利用率。

6.加大市场开放。加强行业管理,鼓励地方企业、私人企业和国外企业以合资、合作等多种方式与国内航空工业企业联合发展中国的民机制造业。

中国航天产业发展的指导思想是:坚持长期、稳定、持续的发展方针,使航天事业的发展服从和服务于国家整体发展战略;坚持独立自主、自力更生、自主创新,积极推进国际交流与合作;根据国情国力,选择有限目标,重点突破;提高航天活动的社会效益和经济效益,重视技术进步的推动作用,尤其注重航天活动在维护国家利益、实施国家发展战略中的积极作用;坚持统筹规划、远近结合、天地结合、协调发展。

中国航天产业近期发展目标是:建立长期稳定运行的卫星对地观测体系;建立自主经营的卫星广播通信系统;建立自主的卫星导航定位系统;全面提高中国运载火箭的整体水平和能力;实现载人航天飞行;建立协调配套的全国卫星遥感应用体系;发展空间科学,开展深空探测。

1.合理部署各种航天活动。采用“优先安排”、“积极支持”、“适度发展”和“跟踪研究”四种不同方式部署航天各个领域的各类活动,以实现航天事业的全面协调发展。

2.加强预先研究和技术基础建设。集中力量攻克重大关键技术,掌握核心技术,形成自主知识产权;同时加强航天活动三个领域的技术基础建设,继续保持中国航天的发展势头。

3.加速航天科技队伍建设,构筑航天人才优势。采取有力措施,培育航天人才,加速造就一支高水平的航天科技队伍,动员社会各界力量支持航天事业的发展。

4.加强科学管理,提高质量和效益。针对航天活动投资大、风险大、技术密集、系统复杂等特点,运用现代管理方法,加强科学管理,提高系统质量,降低系统风险,提高综合效益。

五、实行民用航天军民结合

第一,将发展军民两用技术作为实现“军民结合、平战结合”的国家发展战略考虑。发展军民两用技术必须由国家综合部门、军工部门及有关行业部门等共同来策划和实施,制定扶持技术发展的政策、法规,将军民两用技术计划纳入到国防科技计划范畴,并给予相应的经费支持,并创造有利于军民两用技术发展的良好环境与条件。

第二,应将开发军民两用技术和产业作为军工集团公司的主业来抓。军工集团公司要统一思想,创建有利于军民两用技术发展的良好环境与条件。国家在发展军民两用技术方面支持军工企业发展,增强在这一方面的能力。在管理层面上,要建立完善的军民两用技术实施的规章制度,从体制、机制、所有制等方面创建有利于两用技术发展的良好环境和条件,要打破军用的界线,不能强行把军工技术和民用技术截然分开,应该密切合作,相融相补,并确定发展军民两用技术优先权的原则。通过几年的努力,可以进一步培植一大批军民两用技术,既可以解决军用的方面工作,也使民用方面的技术越来越优质。

第三,拓展军民两用技术发展的思路。要根据国防和经济建设的需求预发展,组织各行各业的专家、学者和科技力量进行探讨,采用原始创新、集成创新、改进等方式,对于重点发展的航天军民两用技术进行深入研究,要优先发展适宜军用、民用且市场前景好的军民两用技术,加速实现产业化。例如:航天技术支持三农,再生能源开发,节能、智能交通等方面的应用;又如,利用军民两用技术研究开发防恐、反恐的装备;突发事件应急系统和紧急救援装备等。采用合适的体制、机制,组织全社会力量,选择一些项目,打破一些界限,多一些沟通与交流,多渠道统筹资金,与各行业加强联合,积极扩大国际合作,参与国际竞争,并在军民两用技术发展和应用中,努力培养和造就一批军民两用的专门人才,使我国的两用技术在军、民两条战线上获得最大的综合效益。

六、对航天产业的建议

壮大航天产业关键是要提高我国航天制造自身的能力。如在民用产业方面,要实现由发展民品到发展民用产业的转变,发展方式由粗放型到集约型的转变,由计划经济传统管理到市场经济规划管理的转变,并以航天制造的发展为牵引,促进我国航天企业能力建设的转型升级,这对于我国航天产业的发展壮大尤为重要。

1、国家运用规划、计划、行政、法律、经济等手段对航天科技及其产业的发展进行领导、组织、管理、调控、支持、投入是必要的。同时,国家应对发展中的幼嫩的航天高科技及其产业采取保护政策,使新兴的民族高技术产业得以持续、快速、健康地发展。

2、加速科技成果转化为现实生产力,力求航天效益工程结出累累硕果。加速科技成果转化是贯彻落实中共中央、国务院《关于加速科学技术进步决定》的一个重要内容,也是实现科教兴国的必经步骤。因此必须下大力气抓科技成果转化工作,千方百计地筹措和建立科技成果转化基金,选好项目,搞好中试,贯彻科技与经济相结合、科研与生产相结合的原则,出产品、出商品、出效益。

3、以航天产业基地为平台,以产业集群为牵引,发展航天设计、研发等航天制造产业。发展航天制造必须以产业基地为发展平台,以航天技术和产品为核心,形成带动上下游的产业链和技术链,发挥产业基地的聚集效应。

4、以产业链延伸为方向,加大服务比重和增值,向制造服务转型。航天制造既生产制造有形产品,也提供从产品开发、销售到报废、回收全生命周期的服务保证,将过去单一的产品实物扩展到为用户提供全面解决方案,努力为客户提供以知识密集、附加值高为特征的服务项目,保证航天制造企业实现可持续发展。

航天工程技术范文4

【关键词】总装工艺;发展;信息化

1.引言

随着世界高新技术的发展和全球经济一体化进程的加快,各个国家在高新科技领域的发展态势和深层次竞争日趋激烈,尤其在某些国防尖端领域,如高性能战机、导弹、卫星等方面更是不惜投入力量竞相发展,因此,先进的工艺和制造技术为研发制造这些高科技产品的军工企业提供了支柱作用。

2.航天总装工艺在航天器研制中的性质

航天系统总成是航天器研制全生命周期的最后重要一环,是航天器整体质量保证的最后一道屏障,前期所有的技术手段都要在这一阶段接受考验,最终形成一介成功的产品。

而且越到研制阶段最后,可靠性模型越复杂,这就决定了航天器系统集成阶段的每一项工作都要有严格的质量保证和可靠性、安全性保证。航天器的总装过程贯穿了系统集成过程中的装配、测试、试验,以及发射场的再组装和测试的全过程,总装质量直接影响到航天器的质量和飞行试验的成败。

航天器总装工艺工作是连接设计与制造的桥梁,工艺问题不仅仅局限于工艺文件的编制,而应实现基于产品生命全周期的工艺流程设计、过程管理、技术问题处理、数据分析和信息处理。产品的加工工艺是企业指挥生产的灵魂,产品的工艺设计方案是产品生产的神经。

3.航天总装工艺的发展面临的问题

在我国航天事业高速发展的今天,传统的工艺设计也不可避免地面临着许多问题,主要体现在以下几个方面。

3.1 工艺技术发展相对滞后,难以满足航天产业发展要求

当今的航天制造业,新技术、新设备、新材料、新理论被不断运用,而工艺技术发展的落后则会制约航天产品的研制质量和效率。在实际工作中,“重设计、轻工艺”现象依然存在,致使设计师往往重视文件、图纸的“纸上谈兵”,而忽视科研生产中产品加工及试验过程的实际情况,最终导致产品质量不过关。这方面,我们是有深刻教训的,采用成熟平台技术的型号的失败,很大一部分就是这方面的原因。

3.2 缺乏工艺技术创新和工艺精细化研究

由于产业规模迅速发展,一线技术人员新老更替加快,存在着工程经验不足、技术没有完全吃透、工艺技术文件不完善的现象,从而导致质量事故时有发生。技术人员的经验和技术成熟度虽然不能在短时间内完成积累,但是可以通过信息、技术的快速沟通和响应弥补,这也是信息化的工艺技术工作所起的作用之一。

3.3 传统工艺设计方法和工艺管理方法存在的问题

在具体的航天器总装工艺设计和工艺管理工作中,过去的传统方法存在着如下不足:

a.工艺文档编制方式落后,工艺标准化程度不高,导致工艺设计效率低;

b.工艺设计流程不优化、工艺术语不规范,导劲工艺指导性不高;

c.企业传承的工艺技术和经验不能得到有效管理和利用;

d.没有有效的文档管理和查询工具,无法进行工艺知识的积累和复用,现场反馈的数据和信息缺乏数据库管理;

e.工艺管理不到位,工艺技术文件流通不充分,各方信息传递不充分,工作进度信息、技术问题处理响应速度慢;

f.标准工艺总结困难,工艺支撑数据缺乏科学汇总和管理,不能对总装工作进行科学有效的评估。

4.航天工艺技术及工艺管理的信息化

在航天器总装工艺工作中,要对工艺工作中的各种信息和过程进行管理,主要包括管理体系、工艺文件、工艺纪律、工艺技术、工艺服务、工艺师队伍等方面。管理体系及对工艺文件的管理是工艺管理中最主要的方面。管理体系以体系文件为基础,从工艺工作的各方面规范工作的方法、流程和结果,优秀的管理体系必然具有完备、便于操作的体系文件。大量的各级标准(如国军标、航天部标、中国空间技术研究院院标等)是体系文件的重要组成部分,同时,还包括根据厂、所不同的环境和条件不断积累和总结而形成的具有良好适应性的规范性文件。工艺文件属于广义的范畴,主要包括工艺总方案、物料清单、工艺规程、技术通知单、工艺文件更改单等各种工艺规程类和技术文档类文件。工艺文件应具有完整性、正确性和统一性。

航天器总装工艺信息化系统建设是根据航天器研制的整体信息化建设目标,结合工艺信息化需求特点,本着先进实用、集成开放、安全可靠的指导思想,对航天器总装工艺设计、工艺管理等进行全面的科学管理和规划。

本方案具有以下特点:

4.1 建立以标准工艺为基础的工艺设计平台,实现工艺文件数字化及成本控制航天器总装数字化的建设,除了实现工艺规程、技术文件、图纸以数字化形式到达生产现场,并实现按工艺规程按权限在线签署外,还提出了基于标准工艺文件基础之上的工艺设计系统。

在工艺设计过程中,对于某些装配加工方法相同、工艺路线相似的工序可以引用标准工艺文件,在其中加入加工数量、材料、规格等信息来生成工艺文件。生成的工艺文件反映了库房物料、耗材等成本信息,因而也实现了工艺设计阶段的成本控制。

4.2 基于面向对象的管理思想,进行有效的工艺数据管理

航天器总装工艺信息种类繁多,主要包括装配加工工艺信息、工艺定额信息以及工程管理信息等,通过基于面向对象的思想,将所有工艺信息围绕型号对象进行有机的组织。

在工艺信息合理组织的基础上,通过快速有效的历史工艺文档检索和查询手段,实现工艺信息的借用和复用。

4.3 采用项目管理的理念,实现工艺任务的自动分派和工艺过程的可控

针对航天器的工艺设计和总体装配任务,根据生产计划流程建立工艺路线代号与工作任务的对应关系,自动产生任务分派,实现技术流程和计划流程的统一。另外,对生产过程进行控制和管理,对项目完成情况进行统计汇总,为企业的绩效管理提供依据。

参考文献

[1]郑渝.机械结构损伤检测方法研究[M].太原理工大学,2009.

[2]杨春雷.浅谈机械加工影响配合表面的原因及对策[J].中华建筑报,2010.

[3]瞿继九.合理确定机械加工余量的意义[J].科技资讯,2010(12).

作者简介:

航天工程技术范文5

1相关研究现状及发展动态

基于上述简要分析,影响航天器安全可靠运行的因素很多,但按其来源及影响过程大致可以分为3大类:事故或故障、状态异常变化以及空间环境变化.围绕上述3个方面,简要述评相关领域的国际研究及其进展.

1.1事故调查与故障处置

航天工程系统的事故与故障是影响航天器安全的主要方面之一.据资料统计[2],1995年底之前,美国和前苏联的249次载人航天发射飞行,出现重大故障166起,1965—1990年,25年间国际卫星组织200多颗地球同步轨道通信卫星和广播卫星,发生的严重故障就多达350余次.近年来,尽管航天器材料、制造、工艺、控制和管理等技术都有显著发展,但国际国内航天界依然故障不断,损失和影响巨大.能否准确查明航天器在轨运行过程中出现的各种事故或故障,及时发现航天器运行过程中隐藏的危险苗头或可能发生的故障,有效地防范后续类似故障发生,或正确地对当前的故障实施有效处置,对保障航天安全至关重要.相关技术的探索和研究一直受到国际学术界和工程界的高度关注.在20世纪40年代或更早,航天器出现之前,人们就为航空器安全运行大伤脑筋,并开始探索飞机运行过程安全管理.飞机出现后的半个世纪历程中,由行过程故障和灾难成为影响航空安全的头号杀手,各航空大国高度关注并着力开展事故调查研究.20世纪30年代,美、英等国花费大量人力和财力加强对重大飞行事故的记录和调查,英国于1937年专门成立航空事故调查组,1944年英国皇家空军还专门成立飞行安全机构,负责军用飞机的重大事故调查,《飞行安全》杂志同年在美国创刊,推进了航空安全事故的调查与分析.二战后至20世纪60年代中期的20多年时间里,美、英空军在不断完善事后追究式的事故记录、调查和分析方法.例如,利用事故调查和分析得到的信息,探究引发系统发生事故的可重复性或共性起因,研究和建立纠正措施,以期从源头上防止类似故障再次发生.这种间接性“事故预防”式处理思路改变,对后续事故的预防带来的效果有明显改进.例如,1955年美国启动“先驱者”号地球卫星计划,进行的11次试验中,发生了8次事故,仅有3次发射成功,其主要原因恰是没能很好地吸取之前经验教训,进行防范,事故预防或预案措施不力,以前出现过的零部件质量控制不严、系统关键部件没有保留设计余度等共性问题一再发生.鉴于此,在随后“大力神”火箭和“双子星座”飞船计划实施过程中,吸收“先驱者”计划的经验教训,采取更严格的事故预防措施,严控质量关,并对导航和供电等关键子系统都采用双余度设计,一系列故障预防措施保证了后续“大力神”火箭在14次飞行试验中仅发生2次事故.这种建立在对历史事故调查和分析基础上的事故预防模式[3],对探索基于数据挖掘和典型故障案例的航天安全技术有重要的参考借鉴价值.这一阶段形成的事故调查分析法,被美国NASA和欧空局等继承并沿用至今,并推广到航天安全领域.例如,2007年Hubble望远镜故障调查和2010年欧洲对“阿丽雅娜5号”火箭故障调查等,都显示了事故调查法的重要性和实用性.但是,对航天器的安全运行管理而言,由于航天器部件多、结构复杂、功能多样、运行环境千变万化、控制操作遥不可及,事故调查与分析工作无疑要远比飞机故障调查艰难得多.当然,无需讳言,事故调查法本身固有的弱点,譬如事后分析模式不可能用于事故预防,调查分析过程通常持续时间跨度长,存在时间滞后等局限性也一定程度上影响了其时效.20世纪60年代,伴随着系统论和系统思想的提出和广泛被接受,系统安全作为一种新的安全管理思路和模式,受到航空航天领域的关注.20世纪60年代初期,美国空军“民兵”洲际导弹的研制首先引入系统安全原理,并颁布“空军弹道导弹系统安全工程”等军用规范;1969年7月,美国国防部制定“系统及其有关分系统、设备的系统安全大纲”作为军用标准MIL-STD-882,明确规定了系统安全管理、设计、分析和评价的基本要求;NASA在参照MIL-STD-882标准的基础上,于1970年颁布面向航天工程的“系统安全”标准NHB.1700.1(V3),并在“阿波罗4号”发射失败后全面采用系统安全的思想,对后续“阿波罗”计划进行了包括故障模式、故障影响及其危害性分析和故障树分析在内的系统安全分析,严格的安全性设计与评价,定性与定量相结合的风险评估,以及全过程的质量管控,收到了好的效果.NASA的“阿波罗”飞船飞行安全程序负责人Lederer曾明确指出,系统安全覆盖了风险管理各个方面,远远超出了设备硬件及与之关联的系统安全工程过程[3].伴随着系统安全标准的全面贯彻和实施,NASA分别于20世纪70年代末和80年代中期又颁布NHB.5300.4(ID-2)“航天飞机的安全性、可靠性、维修性和质量条例”以及NHB.1700.1(V7)“系统安全手册”.另外,欧空局在“使神号”航天飞机计划中,吸收美国在系统安全方面的成功经验,也制定专门的安全性设计分析与管理程序.纵观美国和欧空局的做法,可明显感觉到系统安全的核心是系统的思想和系统工程的方法.采用系统工程技术,将航天器从设计、发射、测控、管理到最后变成空间垃圾的完整过程作为一个不可割裂的航天器生命周期,将保障安全贯彻在航天器全生命周期的各个阶段、各个环节,在系统的全寿命周期中都必须识别、分析和控制危险与灾变.这种面向系统生命过程的系统安全工程技术和方法,对保障航天器在轨安全运行无疑是有帮助的.20世纪70年代以后,故障检测、诊断与处理技术研究成为跨多个学科的持续性研究热点,同时也逐步成为系统安全技术关注的核心内容之一,既有明确的带共性的研究目标,又有大量兼具基础性和应用性双重特征的科学问题,逐步形成较为复杂的研究体系和多学科知识融合的研究群.在故障检测与诊断(FDD)技术研究方面,自1971年前后Beard和Britov分别提出基于解析冗余的FDD这一创新思想,突破早期设备FDD依赖硬件冗余的局限性之后,经40多年持续发展,现已基本形成的体系:按研究内容分,包括故障在线检测、影响分析、朔源定位、时间推断、幅度辨识、模式识别和反演推演等;按技术手段分,包括基于冗余法(物理、解析、信息、知识冗余等)、关联分析法(故障树推理、Petri网、有向图、等价关系、等价空间)、信号处理法(特征分析、残差分析、检测滤波/观测器、统计诊断、模式识别等)和仿真对比法等;按研究领域分,有设备/装备、过程和流程FDD等;按时间关系分,有在线、离线FDD和故障预测等;按量化程度分,有定量和定性FDD等[4-8].并且,大量学者结合不同应用背景,进行了卓有成效的开发应用,例如,航天工程领域,美国在饱受“阿波罗”登月工程期间的系列重大事故困扰后,NASA和美国海军研究室成立机械故障预防小组,在卫星故障的机理分析、在轨检测、诊断、预测等方面取得大量卓有成效的研究成果;美国HRL实验室的PeteTinker等建立卫星快速类比推理系统,结果显示可达到80%的准确度;德国Maieijvic在20世纪90年代初就开发了基于模式识别的故障诊断专家系统,用于对液体火箭发动机的故障诊断;法国马特拉空间系统中心Dinh等开发基于案例推理技术,建立协助卫星测试期内应对突发性事件的故障诊断系统,分析异常事件成因,能够在异常事件发生时提取事件特征并与相关的历史类似事件检索匹配,融合案例推理、规则推理与模型推理等技术形成一个混合知识系统推理核心,并在异常事件发生时自动生成基于多推理技术融合的诊断方案;国内在测控过程的安全监控、基于系统仿真的FDD[6]和容错设计等方面也有卓有成效的研究进展.在故障处理技术研究方面,典型方法有故障硬处理和软处理两大类.其中,硬处理的常规方法包括故障设备修复、备件替换和故障系统组成的重构等,例如,设计航天器自主自组装可重构模块[8]、采用多Agent优化方法等实现多体航天器重构[7]、建立适当形式的混合控制策略[9]实现将多体航天器从一种形态改变到另一种形态,并使系统达到新的稳定状态等,都不失为可尝试的技术途径;软处理的典型方法包括功能重置、功能降级与被动容错等.无论是硬处理还是软处理,通常是建立在模块设计或一定形式冗余基础上的,冗余是实施故障处置的基础.面向航天工程的冗余技术,途径很多,如物理、结构、时间、数据、解析和知识冗余等.适当形式的冗余,可以为选用合适方式进行故障处理(特别是容错处理)提供有利条件.所谓容错,顾名思义就是要求处理手段能容允系统已经发生或正在发生故障,至少不会因为系统故障而发生功能失调或算法崩溃.具体地,在系统或部件发生故障的情况下,仍可利用冗余资源将制定的控制策略、处理流程、软件算法等继续完成.容错处理技术核心就是防范故障和避免非致命性故障带来的不利影响.基于冗余的容错是一种先进理念和提高系统可靠性的先进技术,通过合理的系统设计,使系统在出现某些局部故障时能借助“冗余”实现对故障进行有效处置.容错技术通常可以分为主动容错和被动容错两大类.主动容错大多是以故障检测与诊断为基础,通过对系统进行适当形式重构,达到避免或削弱故障影响的目的[10];被动容错主要是基于有界影响分析与设计、鲁棒控制、补偿技术和完整性设计等方法,使被控系统对某些类型故障或某些环节故障具备不敏感性、完整性和免疫性[10-11].近30年来,冗余与容错处理的思想在美国和俄罗斯等航天大国得到广泛应用.例如,美国曾大力研制可用于控制航天器飞行的容错计算方法和容错机,对可靠性要求高的系统用双重、三重、四重甚至五重冗余;前苏联“联盟”TM型载人飞船上也曾使用了三重冗余的主电气系统以及双重冗余的气动液压管路和生命保障系统.至行器故障的容错处理技术,美国NASA的专题技术报告[12]介绍了多个成功实例:一是故障检测和容错计算技术在空间试验室、空间飞船、Hubble望远镜、Galileo卫星、Landsat-7卫星,以及A320和波音777飞机等航天、航空工程中应用情况;二是容错计算等技术在Landsat-7卫星试验中的应用情况,容错系统可进行72h自主安全模式的操作,能满足卫星任何单个部件故障恢复的处理需求,并具备危险分析能力;三是A320飞机飞控等多个子系统进行了容错设计,机上计算机系统具备运行自检功能,若各通道之间的差异超出门限值则隔离自检,并自动地从已检出问题的计算机控制对象切换到另一个,显示了良好的工程价值.此外,在提高航天器在轨运行过程可靠性与安全性方面,“挑战者”号航天飞机爆炸后,促使NASA重新考虑原来的可靠性管理方法有效性,加强对卫星在轨可靠性管理的研究.1991年,美国国防部颁布标准《综合诊断MIL-STD-1814》,作为提高新一代卫星可靠性和降低使用维修费用的重要途径,标志着美国卫星可靠性管理研究进入了一个新阶段.近年来,NASA专家还提出了以可靠性为中心的维护(RCM)和可靠性/可维护性/可用性(RMA)方法,以提高卫星在轨运行可靠性.由于拥有低轨运行的航天飞机并参与了国际空间站工程,NASA据此提出建立在轨诊断维修基地(ORB)的系统可靠性管理构想,该构想把航天飞机和轨道空间站作为维修低轨道故障卫星的基地.

1.2状态监控与健康管理

本节所谓状态是一个相对广泛的概念,包括航天器在轨运行状态(如轨道位置、空间姿态),航天器构成部件或子系统的工作状态(如是否正常工作、是否功能衰减),航天器运行趋势,以及航天器各系统或结构部件所处寿命阶段.评估在轨航天器所处状态、分析其运行过程的状态演化趋势、预测其未来时刻状态变化、预估其故障后的剩余寿命、监视与诊断其运行过程及可能的异常变化,不仅是保障航天器按照预期目标安全可靠运行的前提,也是保障航天安全的技术基础.状态监控的核心技术是异变检测.异变检测又称变化检测,是检测和分析系统在其运行过程中发生变化,以及变化的发生时间、部位、表现形式、作用方式和影响大小等相关问题的一门新兴学科.异变检测的理论最早可追朔到20世纪50年代中期Page等[13-14]的奠基性工作,但作为一门独立学科则应归功于1993年Basseville和Nikiforov在专著《突变检测———理论与应用》中建立的系统性框架和精巧的研究思路[15].异变检测技术应用面很广,诸如设备运行过程的状态检测、计算机集成制造系统的有条件维护、生产过程质量控制、复杂系统实时监控、核电站安全保障、运载火箭安全控制、载人飞船安全管理、导航系统监视、气候与环境变化监测和预报、地震等灾变预警、人体病理检查、图像边界确定和控制系统故障检测等,都可以在变化检测的框架下探索和研究.最近10年多来,变化检测的理论研究和应用开发一直受到国际统计界和控制工程界广泛重视.国内关于异变检测的技术研究,起步于2000年前后系列文献[16-20]系统地对系统输出、输入-输出和输入-状态-输出等3种不同情形展开研究,并建立了在线检测、幅度估计和突变时间辨识等一系列新方法和算法,提出的“安全管道”设计等方法突破了门限监测模式的局限性,初步实现了门限内异常变化的在线监控.但是,从总体上看,仅处于起步阶段,见诸报道的研究成果大多混杂在故障检测与诊断技术文献中;另一方面,故障检测与诊断领域的大量研究成果中,也有相当部分属于过程与数据异变检测的范畴.健康管理是近30年基于管理工程发展起来的研究热点之一.美、俄等航天大国为保障航天器安全和满足在轨卫星运行管理需要,采用系统分析、管理工程、信号处理和风险评估等多种不同方法与技术,围绕着航天器的运行管理问题,对状态评估及相关问题进行了系统研究,提出和形成了包括趋势分析、过程监控、寿命预测、状态预诊和健康管理等在内的一系列新方法与技术,人们将上述研究统一在健康管理这一研究框架下,形成了有一定影响度和参与度的研究方向.广义的健康管理是一项多功能聚成的综合分析与评估技术,包括了趋势分析、过程监控、余寿预测、影响分析、异变预警、健康状态分析与评估、风险分析与综合管理等作为其重要构成部分的综合性技术,核心是基于智能系统的预诊,从反应性定期维护转向在准确时间对准确部位进行主动的准确维修,借助各种算法(如Gabor变换和FFT变换)和智能模型(如神经网络和模糊逻辑等),预测、监控和管理飞行器状态,实现由事件主宰式事后/定期维修转向基于状态与健康状况维护.健康管理技术较早用于直升机系统,例如,美国海军有综合状态评估系统、P-8A多任务海上飞机有飞机健康监测系统、陆军有诊断改进计划、NASA第2代可重复使用运载器有飞行器综合健康管理系统、航空无线电通信公司飞机状态分析与管理系统近20年来,健康管理技术被推广应用到航天器安全运行管理中,发挥越来越重要的作用.20世纪90代中期,NASA在戈达德航天飞控中心、休斯敦任务控制中心、马歇尔航天飞控中心等建立具有卫星健康状态综合分析、状态评估、寿命预测、降级运行策略分析制定等功能的在轨卫星运行管理系统;俄罗斯借助自身在健康监控技术方面的先进技术和丰富实践经验,Katorgin等开发了大功率液体火箭发动机RD-170健康监测和寿命评估与预测系统,Vasilchenko等开发了“暴风雪”号航天飞机轨道实时自动监测、预测系统,并向航天员提供可视化信息,便于其监测和控制航天飞机运行状况.近10多年,NASA通过在轨卫星运行管理系统实时对在轨航天器健康状态进行综合分析、评估、寿命预测、故障预防预警,并对已丧失部分功能的在轨卫星采取合理、有效的测控,有力地保障了在轨航天器的稳定、可靠运行,充分发挥在轨航天器应用潜能,取得了巨大效益.近年来,美国投大量资金用于研制集成健康管理系统(IVHM),包含机载健康管理分系统和地面健康管理分系统(IGHM),机载健康管理分系统负责实时监视和管理航天飞机的运行状态,对异常现象进行本地诊断后,诊断结果连同其他信息下传至IGHM,该系统则依据航天器下行健康信息,进行远程专家会诊,诊断结果用作航天飞机机载诊断系统诊断结果的补充和校核,连同处理策略被回传至航天飞机,整个IVHM系统实际上是一系列使航天器健康管理行为自动化工具和过程的集合.据资料介绍,IVHM系统的投入应用,使航天飞机飞行风险降低了50%,运行预算降低了1/3.

1.3环境监测与碎片规避

复杂多变的空间环境也是影响航天安全的重要因素.本文所谓的环境不仅包括航天器运行过程依存的自然环境,也包括长期航天工程产生的外在环境以及航天器本体的内部环境.文献[21]中指出,空间环境对卫星等各种航天器安全运行带来的潜在威胁和影响是不可忽视的,根据统计卫星故障的40%与空间环境有关.例如,对于高轨道航天器,高真空度环境的压力差效应可能会导致机载设备因外压力的剧变而变形、损坏、泄露,美国第一颗航天飞机爆炸致7人罹难的事故,就是因泄漏引发爆炸造成的;对于低轨航天器,低真空范围的放电效应和辐射传热效应,会直接影响到航天器安全运行.另外,太阳辐照、太阳风暴、空间碎片也无时不威胁着航天器在轨安全运行.例如,2010年4月,国际通信卫星组织Intelsat公司“银河-15”卫星故障,就是因4月3日—5日期间太阳风暴引起的[22],类似事故还多次发生在国内外不同卫星上,如1998年“银河-4”卫星.至于空间碎片引发事故和灾害性事件以及对卫星通信系统的破坏性影响,更是司空见惯.对于空间环境异常变化对航天安全的影响和空间碎片对航天器的威胁,从安全技术的角度必须区别对待.环境扰动是不可控的,其影响与危害多采用提前预测和区别性防范.对太阳及空间环境变化及其对航天器影响,美、俄、韩等国家多位学者围绕太阳活动周期性、地磁活动、辐射带电子通量模型AE-8和离子通量模型AP-8及改进南大西洋异常区检验、大气密度影响和空间环境对航天器安全运行的影响等,从不同角度进行了多项研究[22-23].并且,为研究和利用空间环境,多个国际组织在全球各地布设了广泛的地面站(如NOAA空间气象预报中心和NWRA/SWS)与天基观察网(如美国行星际、地球同步轨道、中轨、低轨等不同轨道天基空间环境监测系统),监视太阳活动、行星际扰动和近地空间环境扰动.对大量存在于太空中的各种碎片或垃圾,多采用提前预示和及时规避等方法,防范其威胁航天器的运行安全,国际学术技术界对此有大量研究,通过数学模型或数学方法描述空间的分布、运动和物理特点,建立可用于预示确定域10年内空间碎片分布和碎片数量的短期碎片环境状态模型和预示空间碎片10年以上环境演变数学模型,采用屏蔽防护和规避机动等不同的方式规避其对航天器安全运行的威胁.其中,屏蔽防护法是采用屏蔽方式对微小碎片进行防护;规避机动法则是对直径大于10cm的大型空间碎片进行碰撞规避.规避机动决策方法,主要有Box区域判定方法和基于碰撞概率法等.Box区域判定法通过定义航天器周围警戒区域和规避区域,用以判断航天器与空间碎片之间的距离是否构成碰撞危险,进而采取相应对策,属平均方法,偏保守;碰撞概率主要考虑两目标交会时的位置、速度、几何关系以及危险目标的位置/速度的不确定性以及误差协方差矩阵等信息,当碰撞概率大于黄色门限时,在机动动作不会对主要任务和有效载荷造成冲击就进行机动规避.空间环境研究是一项长期的研究工作,特别是空间环境对航天器的安全可靠运行方面,需要长期地观察数据的积累.

2几点思考

航天工程技术范文6

海陆空系――各领域大显神通

在交通运输类专业里,有一些专业因开设院校的不同,培养的人才将适用于不同的交通领域,有的是民航运输,有的是铁道公路,还有的是海洋船舶……虽然这些招生专业名称相同,但培养目标、主要课程和就业领域却有着极大的差异。

【交通运输】

交通运输是一个培养具有统筹、管理等方面知识,能在各级交通运输管理部门、交通运输单位等从事交通运输组织、指挥、决策,交通运输企业生产与经营管理的高级技术人才。换句话说,交通运输的专业人才,就是要有合理组织运输生产以获得最佳社会与经济效益的基本能力。

交通运输专业具有极强的交叉性,首先体现在学科性质上――既有一般工科特性,又有管理学科特性,还有系统工程学科特性。比如开设的专业课程既有电路与电子技术基础、城市轨道交通设备、交通工程学基础,又有运输市场营销学、管理学原理等。其次体现在人才培养上――该专业培养的人才是一种复合型人才,不仅掌握工程技术方面的基本知识、具体的专业知识和操作技能,能胜任交通运输部门的技术工作,而且具有系统工程师的素质,能在大型的规划设计中担当“总体”的角色。

由于交通的涵盖面极广,在不同的院校,交通运输专业的内涵有所差异。比如西南交通大学的交通运输专业由早期的铁道管理系发展而来,是交通运输工程一级学科下设的一个重要专业。该专业以铁路运输管理为主,同时覆盖了道路(含城市交通)、航空、水运等现代运输方式,具有大交通特色。从西南交通大学该专业毕业后,主要面向铁路运输和城市轨道交通就业。铁路运输方向的毕业生主要面向铁路局或公司、设计研究院、大型工矿企业、教育院校等交通运输企事业单位就业;城市轨道交通方向的毕业生主要面向交通管理部门、科研院所、城市轨道交通设计单位、地铁公司、教育院校等企事业单位就业。

但南京航空航天大学的交通运输专业却因为学校的学科特色,更倾向于天空,如学校在“交通运输”专业下,分别设有空中交通管理与签派、民航运输管理、民航机务工程、民航电子电气工程、适航技术与管理、机场运行控制与管理六个本科专业方向,每个专业方向都与航空有关。那不用多说,从南京航空航天大学交通运输专业毕业的学子,就业领域与西南交通大学则大相径庭。

由于不同院校专业方向的不同,也导致了在不同院校学习的课程也有所不同。除了运筹学、管理学、交通运输组织学等主干课程相似外,西南交通大学该专业的课程主要围绕行车组织、货物运输组织、旅客运输组织、铁路车站及枢纽等展开,而南京航空航天大学该专业的课程则根据不同的专业方向有所不同。因此建议对该专业感兴趣的考生,在了解该专业的基础上,还要到开设该专业的院校去查询该专业具体的培养目标和就业方向。

陆地系――飞奔在阳光大道

陆地交通是人类最早发现的运输方式,也是目前最常用的交通运输方式,那么与陆地交通运输相关的专业都有着什么特点呢?

【物流工程】

现在电子商务已经融入人们的生活,成为不可或缺的一部分。当你的鼠标在淘宝、京东等电子商务网站轻轻一点,你所购买的物品不久后将由快递人员送到家门口。与对物品的流通进行设计与规划相关的专业就是物流工程专业。

物流工程是交通运输工程、机械工程、土木工程、信息科学与技术、管理科学与工程、经济学、法学等的交叉学科。学习内容偏工程,主要有物流系统仿真、预测原理、电子通讯技术等技术性课程,以及物流设施设备、货物运输组织、物流中心规划与设计等的需要较高专业技术的规划设计课程,涉及物流规划的编程设计与运算。该专业需要学习者拥有良好的计算机能力以及制图等工程类基础知识,侧重于技术人员的培养,突出的是技术设计能力。

这个专业基础课主要包括现代物流学、系统工程、运筹学、数据库等常见的物流作业需要使用的技术和方法,以及采购与供应管理、供应链管理、物流成本控制、生产运作管理、项目管理等侧重于企业内部物流流程方面的知识介绍以及方法,其中涉及专用的物流模型和软件(如FLExsIM),还有一些是如国际物流和物流系统规划等的从大环境出发为企业进行设计和规划的课程。

物流人才在全国来说非常缺稀,因此物流专业的就业面很广,生产、运输、仓储都有涉及。本科毕业生的就业单位主要有铁路局和大型重工企业,以及各汽车企业,后者往往是大多数毕业生偏爱的。还有许多近些年发展快速的专业物流企业、第三万物流企业等对于专业的物流人员的需求量也非常大,而这种企业的待遇相对更好,对毕业生的综合素质要求也会更高。

【交通设备信息工程】

交通设备信息工程专业开设和我国高速铁路的蓬勃发展息息相关,而铁路正是陆路交通运载量最大的一种运输方式。本专业要求较系统地掌握专业领域宽广的技术理论和基础知识,主要包括机械学、电子学、光学、信号分析、测量与控制、计算机网络技术等基础知识,在此基础上掌握光、机、电、计算机相结合的当代信息技术和实验研究能力,具有本专业所涉及到的信息系统与技术应用、设计和开发能力,同时要求较强的外语应用能力。本专业最主要的特色是交通设备的测试、控制、信息系统的设计、制造和应用并重;软件技术和硬件技术并重,掌握与本专业紧密相关的电、算、机、光等技术。

其专业设置的主要目的是为高速铁路建设提供多学科交叉的高级技术人才,专业方向包括车辆工程、载运工具运用工程和精密仪器及机械等。主干学科由交通工程、控制科学与工程和仪器科学与技术组成,模拟电子技术、数字电子技术、机械设计基础、车辆构造及原理、计算机软件技术、信号分析与处理、控制工程、交通设备控制技术、电子测量技术与仪器、振动与噪声测控技术和交通设备动力分析等是必学的课程。

由于专业中设计多个方向的课程,载运的学生在本科毕业后有很多的选择,比如选择继续读研同学既可以选择学习本专业的三个方向,也可以选择机械设计及其自动化方向、电气系统及其自动化方向、电力电子与电力传动方向、计算机技术方向等。在就业中能适应多个岗位的要求,在许多行业都有本专业的学生,而并不是局限在铁路行业,比如交通运输领域(包括汽车、铁路、航空)的中外各生产和管理部门、电子电器研究和开发部门、测控和仪器仪表研制单位、计算机和网络通讯公司等,也可进入高校从事管理、科研和教学工作,因此本科毕业生就业率一直比较稳定。而对于希望出国继续深造的学生来说,专业的选择将有更大的空间,可以选择EE(Electronic

Engineering)、ME(Mechanical Engineering)、CS(Computer Science),甚至有学生申请成功MFE(Master of Financial Engineering)。

海洋系――欲乘风破浪

水是地球最重要的资源之一,地球表面积的70%左右都是被水域覆盖的,所以,要实现异地物与物的空间转移,不征服海洋可不行。

【航海技术】

说起航海技术专业,可能很多考生的第一印象就是“开轮船的”,这一习惯思维是由于该专业在我国就是从海洋船舶驾驶转设而来的,比如大连海事大学的航海技术专业的前身就是海洋船舶驾驶专业。但随着该专业的日趋发展成熟,该专业的要求也不仅仅限于海洋船舶的驾驶,还包括对船舶运输的管理、对航海等法规的了解等。

当然,该专业的基础还是技术,这些技术包括能操作海洋船舶驾驶,能设计航线,能识别和运用各种航图、导航仪器仪表和GMDSS通信设备。在此基础上,还要懂得船舶运输管理,组织船舶航行。同时,由于该专业毕业后,所工作的环境是公海和内海,因此还要了解航海和海商法等法规,以免错误操作而引起争端。

由于技术是基础,所以航海技术的专业课程首先就由船舶操纵、电工技术、航海力学、航海仪器、GMDSS设备及通信业务、船舶无线电技术基础等构成。为了对船舶的熟悉,还要学习船舶原理、船舶结构与设备等课程。另外,航海英语会话和阅读是奠定海外沟通的基础,航海气象学与海洋学是安全顺利航海的前提,船舶安全与管理船舶货运、远洋运输业务与海商法、航运经济与航运市场管理等是合法航行和经济价值最,大化航行的参考依据,这些课程也是必学的。

目前国内开设航海技术的院校并不多,一般可将其归为两类,第一类是依靠学校相关优势学科而开设的,如重庆交通大学、武汉理工大学等;另一类是结合学科及地域优势而开设的,如大连海事大学、上海海事大学、集美大学、烟台大学等所在地都是我国著名的港口。

考虑到航海技术就业领域的特殊性,目前招生批次大多位于提前批次,由于工作环境的特殊性,在体检方面有比较严格的要求。大连海事大学要求报考航海技术专业的考生身高1.65米以上、五官端正、无平足、无口吃、无色盲(弱)、双眼裸眼视力均在4.7及以上,且矫正视力均能达到4.9及以上的身体健康、学习英语的男生。其他院校的标准也并不多,以学校《招生章程》公布的信息为准。

【轮机工程】

如果说航海技术专业还能从名称上大概判断出专业是学什么的,那么轮机工程就往往会让初次接触的学生不知所以然,听起来仿佛很熟悉,但要说明白轮机工程是学什么的却只能摇摇头。

从学校的专业介绍中,轮机工程是培养具备机械原理和轮机系统等方面的知识,符合国际海员培训、发证和值班标准公约(sTCW78/95)和我国海船船员适任标准的要求,基本具备A类船舶二管轮任职资格,并能在海洋运输各事业单位从事轮机操纵、维修和船舶监修、监造工作的高级技术人才。更简单地讲,轮机工程培养的学生就是管理船舶所有机电设备和动力装置的技术人员。

该专业在大多开设院校中都设有不同的专业方向,如大连海事大学轮机工程分为轮机管理和船机修造两个方向,前者主要专业基础课和专业课有:工程流体力学、电路与电子技术、工程热力学及传热学、轮机工程材料、机械设计基础、轮机监控技术及应用、船舶电气设备及系统、船舶柴油机、船舶辅机、轮机自动化、轮机维护与修理、船舶动力装置技术管理等。后者课程的课程包括理论力学、材料力学、机械原理、机械设计、轮机工程材料、工程热力学与传热学、电路与电子技术、微机原理与应用、船舶柴油机、船舶辅机、轮机自动化、船机制造工艺、船机检修工艺、船舶检验、船舶动力装置设计、摩擦学、故障诊断技术等。重庆交通大学则设有轮机管理与船舶动力装置设计与制造两个方向,但两者的培养目标、主要课程和就业领域没有较大的差别。

轮机工程与航海技术是两个紧密联系的专业,因此一般开设了航海技术专业的院校,也开设有轮机工程专业。由于轮机工程专业毕业后所就业的领域与航海技术一样,因此在体检要求方面也与航海技术相似。

从该专业毕业后,找工作基本上是不用愁的,但工作强度比较大,一般靠离码头需要加班(及时对轮船的情况进行检查、维护和修整),环球航行需要倒时差,如果遇到旧船,工作强度会更大。再者,机舱高温、高噪音。虽然有集控室,但平时保养仍需亲临一线。另外,航海还有其特殊性,譬如说,长期远洋不能经常和家人团聚。所以在选择时,考生要综合考虑自己的兴趣、特长和未来的就业领域再谨慎填报。

天空系――借我一双翱翔的翅膀

曾几何时,飞上蓝天是人们遥不可及的梦想,但随着科技的发展和航空运输的发展,坐飞机已经不再是一件奢侈的事。而载领人们翱翔蓝天的飞机操作员,就是飞行技术专业所培养的人才。

【飞行技术】

飞机技术简单地说就是培养飞行员的专业,也就是说培养会开飞机的人的专业。也许有许多人认为该专业只注意培养飞行技术,但事实上还会培养对飞机性能的了解。

飞行技术专业的学习由三大模块组成,其一是理论学习,主要包括陆空对话、民用机飞行原理、航空气象学、空中领航学、机组资源管理、航图、航行情报学、空中交通管制学等对飞机的了解,对飞行气象的了解和一些基础知识。在完成一到两年的理论学习后,就要上飞机进行飞行训练。飞行训练结束后,还要进行毕业设计才算整个学业的完成。一般来说,理论学习和毕业设计是在招生院校进行,飞行训练是由与招生院校联合培养的航空公司指定训练地点。

目前,想报考飞行技术专业,首先要在招生院校报名,再经过院校的体检、面试和背景调查,通过后才能填报志愿。同样,飞行技术专业毕业后的工作环境比较特殊,因此对考生的体检要求特别严格,如北京航空航天大学就要求身高170~187厘米,任何一眼裸眼远视力(C字表)不低于O.5,且没有做过视力矫正手术的才具有报考资格。