剪力墙结构范例6篇

剪力墙结构

剪力墙结构范文1

论文摘要:剪力墙结构设计包括墙肢、连梁布置、截面计算及配筋构造等。本文着重论述剪力墙设计中应着重注意以下问题:

1、剪力墙的布置;

2、有关短肢剪力墙设计。

一、剪力墙布置

剪力墙布置除应符合规程中有关规定外,在本文中进一步对剪力墙的布置提出了一些要求,其中关于短肢剪力墙和梁、墙布置都属于本文着重阐述的内容。

1、双向布置剪力墙及抗侧刚度

高层建筑应有较好的空间工作性能,剪力墙结构应双向布置,形成空间结构。在抗震结构中,应避免单向布置剪力墙,并宜使两个方向抗侧刚度接近,即两个方向的自振周期宜相近。

另一方面,剪力墙的抗侧刚度及承载力均较大,为充分利用剪力墙的能力,减轻结构重量,增大剪力墙结构的可利用空间,墙不宜布置太密,使结构具有适宜的侧向刚度。

2、竖向刚度均匀

剪力墙布置对结构的抗侧刚度有很大影响,剪力墙沿高度不连续,将造成结构沿高度刚度突变,所以应要求剪力墙自上到下连续布置。允许沿高度改变墙厚和混凝土等级,或减少部分墙肢,使抗侧刚度沿高度逐渐减小。

3、墙肢高宽比

细高的剪力墙容易设计成受弯曲破坏的延性剪力墙,从而可避免脆性的剪切破坏。在抗震结构中剪力墙结构应具有延性,设计中墙的高宽应比不应小于2。当墙的长度很长时,为了满足每个墙段高宽比大于2的要求,可通过开设洞口将长墙分成长度较小、较均匀的独立墙段,每个独立墙段可以是整体墙,也可以是联肢墙。

4、剪力墙洞口的布置

剪力墙洞口的布置,会极大地影响剪力墙的力学性能。因此,布置剪力墙洞口时应满足以下3方面要求。

(1)规则开洞,洞口成列、成排布置,能形成明确的墙肢和连梁,应力分布比较规则,又与当前普遍应用程序的计算简图较为符合,设计结果安全可靠。同时宜避免使墙肢刚度相差悬殊的洞口设置;

(2)对于错洞剪力墙和叠合错洞墙,二者都是不规则开洞的剪力墙,其应力分布复杂,容易造成剪力墙的薄弱部位,常规计算无法获得其实际内力,构造比较复杂。其主要特点是洞口错开距离很小,甚至叠合,不仅墙肢不规则,洞口之间形成薄弱部位,叠合错洞墙比错洞口墙更为不利,设计时应尽量避免。当无法避免叠合错洞布置时,应按有限元方法仔细计算分析并在洞口周边采取加强措施或采用其他轻质材料填充将叠合洞口转化为规则洞口的剪力墙或框架结构;

(3)具有不规则洞口剪力墙的内力和位移计算应符合规程的有关规定。目前除了平面有限元方法外,尚没有更好的简化方法计算。对结构整体计算中采用了杆系、薄壁杆系模型或对洞口作了简化处理的其他有限元模型时,应对不规则开洞墙的计算结果进行分析、判断,必要时应进行补充计算和校核。

5、剪力墙和加强部位

(1)抗震结构中出现塑性铰的部位应作为加强部位。而剪力墙顶层、楼电梯间墙等不宜作为加强部位,这样作的目的是对塑性铰部位可以有更明确的措施,与由于温度、收缩等需要的加强措施区别;

(2)剪力墙塑性铰出现后,剪力墙应具有足够的延性,剪力墙底部塑性铰出现都有一定范围,该范围内应当加强构造措施,提高其抗剪切破坏的能力;

(3)为安全起见,设计剪力墙时将加强部位范围适当扩大,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/8和底部两层二者的较大值,当剪力墙高度超过150m时,为避免加强区太高,其底部加强部位的高度可取墙肢总高度的1/10。

二、短肢剪力墙设计要求

短肢剪力墙是指墙肢截面高度与厚度之比为5~8的剪力墙,一般剪力墙是指墙肢截面高度与厚度之比大于8的剪力墙。当截面高度与厚度之比小于3时,应按柱计算(当形成异型柱时,则应按异型柱的要求设计,但高层建筑中不允许采用异型柱框架结构),至于剪力墙高度与厚度之比大于3、又小于5的剪力墙,实际上也是短肢剪力墙,由于它们更弱,可以提出不宜采用小于5的墙肢,对这种小墙肢的轴压比应修予更严格的限制,因此即使采用短肢剪力墙,也要尽可能使墙肢截面高度与厚度之比大于5。

近年兴起的短肢剪力墙结构,有利于住宅建筑布置,又可进一步减轻结构自重,应用逐渐广泛。但是由于短肢剪力墙抗震性能较差,地震区应用经验不多,考虑高层住宅建筑的安全,其剪力墙不宜过少、墙肢不宜过短,可以对短肢剪力墙的应用范围应在设计中加以限制,并采取一些加强措施。

1、应用范围

高层建筑结构不应采用全部为短肢剪力墙的剪力墙结构。设计时应注意:短肢剪力墙较多时,应布置筒体(或一般剪力墙),形成短肢剪力墙与筒体(或一般剪力墙)共同抵抗水平力的剪力墙结构;其次,具有较短肢剪力墙的墙的剪力墙结构最大适用高度应比规范中剪力墙结构的规定值适当降低,7度和8度抗震设计时分别不应大于100m和60m;第三,对于B级高度高层建筑和9度抗震设计的A级高度高层建筑,即使设置筒体,也不应采用具有较多短肢剪力墙的剪力墙结构;第四,如果在剪力墙结构中,只有个别小墙肢,不属于这种短肢剪力墙与筒体共同工作的剪力墙结构。

2、加强措施

对于短肢剪力墙设计中应着重以下加强措施。

(1)为限制过多的剪力墙的数量,在抗震设计时,筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩50%;

(2)抗震设计时,短肢剪力墙的抗震等级应比规范中规定的剪力墙的抗震等级提高一级采用;目的是从构造上改善短肢剪力墙的延性;

(3)出于改善延性的考虑,抗震设计时,各层短肢剪力墙在重力荷载代表值作用下产生的轴力设计值的轴压比,抗震等级为一、二、三时分别不宜大于0.5、0.6和0.7(对一般剪力墙,三级抗震等级时轴压比未限制);对于无翼缘或端柱的一字形短肢剪力墙,其延性更为不利,因此轴压比限值要相应降低0.1;

(4) 对于短肢剪力墙的剪力设计值,不仅底部加强部位应调整,其他各层也要调整,一、二、级抗震等级应分别乘以增大系数1.4和1.2,目的是避免短肢剪力墙过早剪坏;

(5)短肢剪力墙截面的纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其它部位不宜小于1.0%;

(6)对于短肢剪力墙截面最小厚度,无论抗震还是非抗震设计,其厚度都不应小于200㎜;对于非抗震设计,除要求建筑最大适用高度适当降低外,对墙肢厚度限制的目的是使墙肢不致过小。

总之,在剪力墙布置中洞口宜上下对齐使之受力明确,尽量避免出现错洞与叠合错洞的出现。在短肢剪力墙设计中应注意其肢长、加强部位、构造要求等要求。

参考资料:

[1]吕文、钱稼茹,基于位移延性剪力墙抗震设计《建筑结构学报》1999.3 。

[2]《高层建筑混凝土结构技术规程》中国建筑工业出版社。

剪力墙结构范文2

关键字:短肢剪力墙结构设计

中图分类号:S611 文献标识码:A 文章编号:

一、引言

近年来,随着人们对住宅,特别是小高层及多层住宅平面与空间的要求越来越高,原来普通框架结构的露柱露梁、普通剪力墙结构对建筑空间的严格限定与分隔已不能满足人们对住宅空间的要求,如建筑平面布置的功能要求限制了普通剪力墙的截面高度要求。“短肢剪力墙结构”这种在高层住宅结构体系由于克服了普通框架与普通剪力墙结构的缺点,有利于住宅建筑布置,结合住宅建筑平面开问小、进深小及层高低的特点,又可进一步减轻结构自重,逐渐得到了推广应用,并广泛受到建筑师和业主的欢迎。

二、短肢剪力墙的定义 短肢剪力墙是指墙肢截面高度与厚度之比为4~8的钢筋混凝土墙体;一般剪力墙是指墙肢截面高度与厚度之比大于8的钢筋混凝土墙体;当截面高度与厚度之比小于4时,应按柱计算(当形成异型柱时,则应按异型柱的要求设计,但高层建筑中采用异型柱框架-剪力墙结构的建筑高度有较多限制)。

三、短肢剪力墙结构布置 1、短肢剪力墙的数量应当适中,避免结构太刚或太柔,满足竖向荷载和抗侧力需要即可。 2、短肢剪力墙的纵横应尽量均匀对称分布,使结构抵抗力中心与荷载中心重合。 3、短肢剪力墙肢以承受垂直荷载为主,在平面外边缘及角点处,特别是外凸部分,布置必要的短肢剪力墙,既有利于梁的支撑,又可以分散荷载,以加强其整体性和满足平面刚性的要求。 4、各短肢剪力墙应尽量拉直,与连梁(跨高比小于5的梁)一起构成成片的联肢墙抗侧力结构。 5、每道短肢墙宜与两个方向的梁连结,梁尽可能布置在墙肢的竖平面内;梁宽度一般宜与墙肢厚度相等。

6、短肢剪力墙肢不宜过厚,一般与建筑填充墙厚度一致,通常采用200 mm、250 mm、300mm。

7、抗震设计时必须与普通剪力墙共同设置。 8、小高层建筑部分的竖向构件根据受力的需要和建筑平面布置,设置适量的短肢剪力墙,在各短肢剪力墙的墙肢间布置连系梁,把这些短肢墙以及核心筒连成一个整体,构成整幢建筑的结构体系。

四、结构设计中需注意的问题 要注意的是短肢剪力墙不是普通的剪力墙,短肢剪力墙结构抗震性能较差,故应加强抗震薄弱环节,尤其是在高层建筑中,应注重概念设计,满足高规要求。 1、尽量避免一字形短肢剪力墙,因为一字形短肢剪力墙延性及平面外稳定较差,可以通过设置设置翼缘或端柱来解决;不宜在一字形短肢剪力墙上布置平面外与之相交的单侧楼面梁 ,

2、短肢剪力墙截面厚度与建筑墙体一致,尽可能取小值,以避免各肢截面高度过大,(截面高度与厚度之比的控制在大于4但不大于8),在设计时以控制轴压比(一、二、三级短肢剪力墙的轴压比,分别不宜大于0.45、0.50、0.55)的要求来设计截面高度。

3、短肢剪力墙应设计成强墙柱弱连梁的体系。

4、短肢剪力墙竖向布置尽量做到上下对齐、连续,避免开洞。

5、抗震设计时,高层建筑结构不应全部采用短肢剪力墙;B级高度高层建筑及9度抗震设计的A级高度高层建筑,不宜布置短肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有校多短肢剪力墙的剪力墙结构时,应符合下列规定:1)在规定的水平地震作用下,短肢墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%。2)房屋适用高度应比高规表中剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m、80m和60m。

6、短肢剪力墙是介于柱与剪力墙之间的受力构件,其全部竖向钢筋的配筋率控制较大,底部加强部位一、二级不宜小于1.2%,三、四级不宜小于1.0%;其他部位一、二级不宜小于1.0%,三、四级不宜小于0.8%。所以在高层建筑中除非无法满足普通剪力墙的要求,尽量不设置短肢剪力墙,避免增加工程造价。

五、短肢剪力墙结构的计算分析 对短肢剪力墙结构的设计计算,因其是剪力墙大开口而成,所以基本上与普通剪力墙结构分析相同,可采用三维杆——系簿壁柱空间分析方法(TBSA、TAT)或空间杆——墙组元分析方法(TBSSAP、SATWE)。其中空间杆墙组元分析方法计算模型更符合实际情况,精度较高。目前国内大多采用中国建研院系列软件中的TAT和SATWE来计算。

1、TAT TAT软件采用的是三维空间模型,对剪力墙采用薄壁柱单元计算原理,对梁柱采用空间杆系计算原理。在TAT计算中,为了使结构受力更合理,应对结构进行计算简化;对多肢剪力墙计算最常用的手段是按剪力墙开洞的办法进行,开洞应上下对齐,减少上下偏心。剪力墙开洞后,洞口上下剩余部分TAT用梁单元来模拟。开洞主要是为了把剪力墙简化为符合薄壁柱的计算模型,同时使简化后的剪力墙的受力更为明确。TAT中楼板采用刚性楼板假定,即平面内刚度无限大,平面外刚度为零。此假定对规则结构即楼板无大开洞且板厚不大的常规结构计算误差很小。

2、SATWE SATWE是专门为多高层建筑结构分析而研发的空间组合结构有限元分析软件,适用于各种复杂体型的高层钢筋混凝土结构体系计算。SATWE是以壳元理论为基础构造一通用的超单元墙元为模拟剪力墙,它不仅具有平面内刚度,也具有平面外刚度,可以较好地模拟剪力墙的受力状态。而且墙元的每个节点都具有空间6个自由度,可方便地与任意空间梁柱单元连接,无需任何附加约束。SATWE给楼板4种简化假定,即假定楼板整体平面内无限刚、分块无限刚、分块无限刚带弹性连接板带和弹性楼板。

六、短肢剪力墙结构的质量控制 墙身超厚主要是因为模板就位调整不认真,穿墙螺杆没有全部穿齐、拧紧,模板斜撑加固不到位等造成的;混凝土墙体表面粘结是因模板清理不好,模板剂涂刷不匀、漏刷,以及拆模过早等造成的;漏浆的产生主要是因为模板拼装时缝隙过大,固定措施不牢固,有时也与混凝土坍落度有关;墙体烂根现象近年来有所减少,可能与重视程度有关,原因主要还是模板下口缝堵不严、固定不牢,施工缝处理不好、夹有杂物,浇筑混凝土时未按要求先浇一层10-100mm厚与墙体混凝土同等级的减石砂浆等;门窗洞口混凝土变形的主要原因是侧模板的组装与大模板的固定不牢固,混凝土浇捣时洞口两侧混凝土未做到对称、均匀浇筑、振捣,造成混凝土冲击洞口模板。

剪力墙结构范文3

关键词 剪力墙;剪力墙结构;短肢剪力墙;短肢剪力墙结构

1,引言

随着我国经济社会的快速发展,城市土地越来越紧张,住宅类建筑向高层及超高层发展已成为趋势。一般的高层住宅多选用剪力墙结构体系,本人在工作实践中发现,同一建筑平面方案,不同的结构墙体布置其经济指标差异很大,主要是混凝土用量及含钢量差距很大。由于高层住宅建设的量大面广,若不注意提高设计水平则会造成很大的浪费,在地震区也未必对结构有利。本人曾参加过某住宅小区的设计投标,建设单位要求设计院进行初步计算并报出每平方米的用钢量及混凝土量。该小区有16层及12层高层住宅,抗震设防烈度为7度,场地类别为II类。我院报出的含钢量为45kg/m2,而参加投标的另两家设计院给出的含钢量为65kg/m2及60kg/m2,相差过于悬殊。经查看另两家设计院的图纸,剪力墙布置过多是造成结果相差悬殊的主要原因。

目前我国房地产业得到了迅猛的发展,不少房地产开发商要求设计单位为其节省工程投资,有些甚至要求限额设计,要求钢筋用量不得超过多少等等。作为一名猪构设计工作者,如何在激烈的市场竞争中立足,如何执行好国家各项设计规范,如何在保证结构安全的前提下使得结构设计经济合理,是值得我们思考的。俗话说“艺高人胆大”,这就要求我们对规范的条文有清楚的认识,理解规范的精髓,灵活运用。

2,高层建筑剪力墙结构的概念设计

《高层建筑混凝土结构技术规程》(以下简称《高规》)规定:高层建筑结构不应全部采用为短肢剪力墙结构。短肢剪力墙较多时,应布置简体(或一般剪力墙),形成短肢剪力墙与简体(或一般剪力墙)共同抵抗水平力的剪力墙结构。抗震设计时,简体和一般墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%。一般认为短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩的40%~50%时属于短肢剪力墙结构。

短肢剪力墙结构抗震性能较差,经济指标不好。如《高规》规定:抗震设计时其抗震等级比一般剪力墙提高一级,对于无翼缘或端柱的一字形短肢剪力墙,其轴压比限值相应降低0.1;除底部加强部位外,其他各层短肢剪力墙的剪力设计值,一、二级抗震等级应分别乘以增大系数1.4和1.2;短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强区部位不宜小于1.2%,其他部位不宜小于1.0%,以上要求加大了剪力墙的截面厚度及配筋率,所以在实际工程中尤其是地震区尽可能避免采用。

设计中应体现使其结构竖向和水平向具有合理的刚度及承载力的分布,尽可能将剪力墙的墙肢截面高度(至少保证一肢)做的比8倍墙厚稍大,符合一般剪力墙,剪力墙也不必按开间布置,两间合并布置为大开间剪力墙,同时满足竖向荷载传递的要求。剪力墙尽可能设计成“L”形、“T”形有利于剪力墙结构的稳定性,同时能够形成较好的侧向刚度。在同样满足规范的各项指标的情况下,更能减轻结构自重,减小结构构件,有利于降低工程投资。根据工程经验,对于“L”形、“T”形剪力墙,当一个方向的墙符合一般墙要求时,另一个方向的墙肢不宜过短,较小的墙肢常常会出现较大的配筋,一般宜控制在1m左右,使墙端暗柱配筋接近构造配筋为宜。参见图1。

3,剪力墙结构设计计算原则

剪力墙结构设计时,应根据规范要求综合考察结构是否合理,比如说剪力墙结构刚度不宜过大,应以规范规定的楼层最小剪力系数为目标,使计算结果接近规范限值(不小于限值),同时要使楼层层间最大位移与层高之比满足规范限值。其次,考察剪力墙底部加强区的轴压比是否满足(对抗震等级为一、二级的剪力墙),剪力墙连梁是否超限等。要控制好结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度的剪力墙结构不应大于0.9;在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍(一般情况情况宜控制在1.2左右,特别不规则平面也宜控制在1.4以内)。

以下再较细致的分析剪力墙结构设计中需重点关注的各种技术指标的调整方法。

3,1楼层最小剪力系数(剪重比)的调整原则:在满足短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩的不超过40%的前提下尽可能少布置剪力墙,以大开间剪力墙布置方案为目标,使结构具有适宜的侧向刚度,使楼层最小剪力系数接近规范限值(不小于限值)。这样能够减轻结构自重,有效减小地震作用的输入,同时降低工程造价。

3,2楼层层间最大位移与层高之比(位移)的调整原则:规范规定多遇地震作用标准值产生的楼层最大的弹性层间位移在计算时,除以弯曲变形为主的高层建筑外,可不扣除结构整体弯曲变形;应计入扭转变形。由此可见,对于一般的高层建筑,重点是楼间的剪切变形及扭转变形。剪切变形的控制是以竖向构件的多少来决定的,但竖向构件足够多(剪重比偏大)而布置不合理,则会造成扭转变形过大,同样不能满足层间位移的要求。因此,对于高层建筑应尽可能使扭转变形最小,而不能仅根据层间位移不够不加分析地增加竖向构件的刚度。

在实际工程设计中常常遇到如下情况:一些设计人员看到某一方向(X向或Y向)层间位移不满足规范要求,于是不断增加该向的侧向刚度;这样做是可以解决问题的,但应注意此时结构的剪重比是否较大,若与规范限值接近则可行,若剪重比已经较大,则不应当一味的增加,要学会用加法的同时也要学会用减法,即减小对应一侧的结构刚度,使其剪重比减小,地震作用减小,同样可以达到较好的结果。

3,3结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(周期比)的调整原则:

震害表明,平面不规则、质量与刚度偏心、抗扭刚度太弱的结构,在地震中破坏严重,因此应保证结构的抗扭刚度不能太弱。结构的扭转效应应从以下两方面加以限制:首先,限制结构平面的不规则性,避免产生过大的偏心而导致结构产生较大的扭转效应,扭转变形的计算应考虑偶然偏心的影响;其次,限制结构的抗扭刚度不能太弱,关键是限制结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比。

在实际工程设计中,应将结构竖向构件尽可能沿建筑周边布置,这样即可以提高结构的侧向刚度,同时又能够较大幅度的提高结构的抗扭刚度;若在结构的形心附近加大竖向构件刚度,则对侧向刚度的贡献大而对结构整体的抗扭刚度贡献甚微。

3,4在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移比(位移比)的调整原则:该指标的调整应结合位移及扭转比的调整同时进

行,也可在位移及扭转比满足的情况下做微调。当计算结果一向(X向或Y向)位移比需调整时,可以加大该侧的抗侧力构件刚度(增加剪力墙或加大连梁高度),也可减小对应一侧的抗侧力构件刚度(减少剪力墙或减小连梁高度),这两种方法都可以达到调整的目的。但当具体工程层间位移已接近规范限值,而又在扭转比较大一侧无法增加抗侧力构件刚度(增加剪力墙或加大连梁高度)时,该如何解决呢?

谈交叉斜撑构件在高层建筑剪力墙体系中的应用。

实际工程概况:

某工程位于抗震设防烈度8度区,地震基本加速度值为0.20g,场地类别为II类,地下一层,地上二十八层,层高2.9m,标准层平面见图2。

从该平面中可以看出,A轴上剪力墙过少,而对称一侧M轴上剪力墙较多,从而造成位移及扭转比不能满足规范要求。通过尝试加厚A轴剪力墙厚度、增加洞口上连梁高度、在⑧-⑩轴间层层设置拉梁三种措施,均不能得到合理的计算结果;说明A轴结构抗侧力刚度过小,如何提高该侧的抗侧力刚度成了问题的关键。笔者将高层钢结构设计中钢框架一支撑体系的概念借鉴到该工程的剪力墙结构设计当中,即在⑧-⑩轴间每隔两层设置一道两层通高的“X”撑,“X”撑上下端同时设置水平拉梁(见图3)。计算表明,“X”撑设置后结构层间位移明显改善,结构的扭转比得到非常明显的变化;说明设置“X”撑后对A轴一侧的抗侧力刚度有很大的贡献,同时不影响建筑功能,且丰富了建筑立面,将结构受力构件与建筑美学很好的结合在了一起,使得建筑与力学得到了完美的统一。按设置“x”撑后修改的建筑彩色效果图得到了建设单位及当地规划主管部分的认可,目前该工程已经主体封顶,得到了使用单位的好评。

3,5

剪力墙连梁超限的调整原则:剪力墙连梁的跨高比不宜小于2.5,跨高比小于2.5的连梁很容易出现剪力和弯矩超过规范限值。

《高规》规定剪力墙长度不宜大于8m,当大于8m时宜采用弱连梁将其分开。该条文中所说的剪力墙长度应当不只是单片实体剪力墙,而应包括含跨高比不大于5的连梁在内的联肢墙。

《高规》规定跨高比不小于5的连梁宜按框架梁进行设计。即跨高比不小于5的连梁刚度不应折减。而跨高比在5-6之间时,若连梁刚度不折减则也容易出现剪力或弯矩超限。本人认为该条文在实际工程设计中若能充分利用,则对节省工程造价也有非常明显的影响,即将跨高比不大于5的连梁(刚度需折减)和减小剪力墙墙肢长度使连梁跨高比变为大于6的框架梁(刚度不折减),而后者的钢筋及混凝土用量均小于前者,这对于节省工程投资具有很重要的意义。

4,剪力墙结构的地基基础设计

高层建筑往往带有地下室,对于地基条件较好,可以采用天然地基或复合地基的建筑,当建筑层数为十多层时,一般采用梁板式筏形基础较为经济(因为平板式筏基会因为剪力墙间距较大而造成筏板受力不均匀而增加板厚);当建筑层数为二十多层时,一般采用平板式筏形基础较为合理。以上基础形式的确定主要是和剪力墙的间距有关,并根据结构的抗震设防烈度、层数、是否为人防地下室综合确定。

若地基条件不好需采用桩基础,可根据单桩承载力特征值大小,对于小高层采用独立桩基承台加构造梁板;对于高层采用沿墙下承台梁布桩加构造底板,不宜采用满堂布桩方案(承台筏板较费)。

5,结语

剪力墙结构范文4

关键词:错层结构;剪力墙结构;抗震措施;结构设计

中图分类号:TU398 文献标识码:A 文章编号:1009-2374(2009)15-0186-02

一、工程概况

南京某高层住宅小区位于鼓楼区,其中4号楼为错层剪力墙结构。该工程建筑平面布置为一字型,建筑物长度约为69m,宽度约为12.6m,建筑主体高度52.1m,共18层,加上屋顶以上塔楼的高度后,建筑的总高度为55.8m,高宽比为4.43。规范要求,钢筋混凝土剪力墙结构伸缩缝最大间距为45m,综合考虑变形缝设置要求,该建筑变形缝宽度取200mm,将建筑物分成A、B、C三个单元,住宅层高为2.9m,上部结构各标高之间相差1.45m。该工程为丙类建筑,建筑场地类别为Ⅱ类,抗震设防烈度为7度,设计基本地震加速度为0.15g,设计地震分组为第一组,场地特征周期为Tg=0.35s,罕遇地震作用的水平地震影响系数最大值为0.72。计算时基本风压按50年重现期取0.40KN/m2。

二、一种剪力墙结构的分析

随着人们生活水平不断提高,对居住环境的要求越来越高,错层式住宅以其空间高低错落有致、使用合理、居住舒适等优点,越来越受到人们的青睐,这种错层式住宅多采用剪力墙结构。但是错层结构是一种对抗震不利的结构形式,错层剪力墙结构使剪力墙形成错洞墙,导致结构刚度不规则,对结构抗震有不利影响,尤其对平面不规则和扭转效应显著的错层结构破坏特别严重。JGJ3-2002《高层建筑混凝土结构技术规程》(以下简称《高规》)建议在抗震设计时高层建筑宜避免错层,同时也对错层结构的设计提出了一些规定。对于错层结构,一般认为其不利的因素主要源于两个方面:一是由于楼板被分成数块,且相互错置,在错层构件中产生很大的变形和内力,削弱了楼板协调结构整体受力的能力;二是由于楼板错层,使得错层交接部位形成竖向短构件,可能在同向受力中因错层构件刚度大而产生内力集中,不利于抗震。短构件问题主要是针对多层框架结构,其不利于抗震的震害表现也多出现在多层框架中。对于以剪力墙为主要受力构件的高层住宅,规则的错层对结构受力的影响有限,影响主要在于两侧有错层连梁相连的墙体。结构的错层会增大结构的抗侧刚度,错层构件在结构整体中所占的比例越大,则整体侧向刚度增加幅度越大,但剪力墙结构抗侧刚度增加的幅度相比于框架结构要小。相互错层的相邻楼板A和B仅由中间的错层柱或墙相联系,相比较平面刚度极大的楼板,错层柱或墙的弯剪刚度是个极小值,当结构受力时,结构两部分将产生不协调变形,可能会在错层柱或墙中形成较大的内力,错层柱或墙的受力与两部分的均匀性有关。错层剪力墙结构的试验研究表明,由于错层剪力墙结构整体成弯曲破坏,根据振动台试验和静力试验破坏结果,错层剪力墙结构与一般剪力墙结构无大的区别。由此可知,错层对剪力结构体系的影响有限,错层剪力结构通过结构的合理布置和结构措施的加强,可以满足抗震设计的要求。

三、剪力计算模型与抗震构造措施

该工程中被变形缝分成A、B、C三个单元,其中A和C单元对称,因此我们只需建立A和B两个计算模型进行计算。《高规》指出,错层两侧宜采用结构布置和侧向刚度相近的结构体系。错层结构中,错开的楼层应各自参加结构整体计算,不应该并为一层计算。本工程采用全浇剪力结构体系,计算软件以STAWE为主进行结构计算,以PMSAP进行校对。建模时图3所示各标高处均按独立的计算标准层输入,错层处剪力墙厚度取250mm,与之相连的墙体厚度也取250mm。一般错层剪力墙结构设计时墙体应尽量带有较大的翼缘,一是可以增加墙体的稳定性,二是增加了墙体的抗震承载力和延性,对抗震有利。所建模型中几乎所有墙体都带有较大的翼缘,以增强墙体的稳定性和抗震能力。一般在进行结构的动力特性分析时,分别采用弹性楼板和刚性楼板模拟结构的错层楼板,发现两种计算方法的结果差异不大。振型分解反应谱分析结果表明,结构在常遇地震作用下错层位置楼板会产生局部应力集中现象,而位移、基底剪力等指标满足规范抗震要求。设计中用SATWE和PMSAP计算时,分别考虑错层楼板为刚性楼板和弹性楼板,发现计算结果确实差异不大。计算结果具体可见表1和表2。两种程序的计算结果相差不大,为结构设计提供了保障。

对于错层剪力墙结构,《高规》中指出,错层处平面外受力的剪力墙截面厚度抗震设计时不应小于250mm,并应设置与之垂直的墙肢或扶壁柱;抗震等级应提高一级采用。错层处剪力墙的混凝土强度等级不应低于C30,水平和竖向分布钢筋的配筋率抗震设计时不应小于0.5%。本例参考了大量的相关文献及其规范的要求,在建筑专业允许的前提下,设置变形缝,将建筑分为三个部分进行设计,减小结构的扭转效应。在错层处的剪力墙加厚,厚度取250mm,并让墙体带有较大的翼缘,增强墙体的延性和稳定性。错层处剪力墙抗震等级提高一级,按二级考虑。混凝土强度等级在底部加强区为C35,上部为C30。

综上所述,还要注意到:(1)错层结构造成平面楼板不连续,竖向构件应力集中,是一种对抗震不利的结构形式,但错层对剪力墙结构体系的影响有限,错层剪力墙结构通过结构的合理布置和构造措施的加强,可以满足抗震设计的要求;(2)错层剪力墙结构的设计中,考虑结构概念设计,合理的布置结构平面,采用相应的抗震构造措施,可以很好的保证结构的安全性,确保收到良好的经济效果。

参考文献

[1]国家标准.建筑结构抗震设计规范(C.RS0011-2001)[S].

[2]行业标准.高层建筑混凝土结构技术规程(JGJ3-2002)[S].

[3]尹保江,等.高层建筑中错层剪力墙结构的试验研究[J].建筑科学,1999,(6).

[4]吴景松.错层结构的抗震分析[J].住宅科技,2002,(10).

剪力墙结构范文5

[关键词]框架-剪力墙;结构;抗震设计;实例分析

中图分类号:TU973+.31 文献标识码:A 文章编号:1009-914X(2014)36-0194-01

1.框架-剪力墙结构剪力墙的布置和数量

1.1 剪力墙的布置

(1)框架-剪力墙结构中剪力墙的布置一般按照“均匀、对称、分散、周边”的原则布置。

(2)框架-剪力墙结构中的剪力墙,宜设计成周边有梁柱(或暗梁柱)的带边框剪力墙。纵横向相邻剪力墙宜连接在一起形成L形、T形及口形等,这样的剪力墙会增大建筑整体的刚度和抗扭能力。

(3)在长矩形平面或平面有一项较长的建筑中,其剪力墙的布置为:横向剪力墙沿长方向的间距宜满足规范要求,当这些剪力墙之间的楼盖有较大开洞时,剪力墙的间距应予减小;纵向剪力墙不宜集中布置在两尽端。

(4)剪力墙宜贯通建筑物全高,沿高度墙的厚度宜逐渐减薄,避免刚度突变对抗震造成不利。当剪力墙不能全部贯通时,其上下层刚度的减弱不宜大于30%,在刚度突变的楼层板应按转换层楼板的要求加强构造措施。

1.2 剪力墙合理数量的确定

剪力墙的合理数量按许可位移决定,按高层建筑规范中一般装修材料,框架-剪力墙结构顶点位移与高之比u/H不宜大于1/700装修要求较高时u/H不宜超过1/850,在满足这个要求的前提下增减剪力墙的数量。

用结构自振周期也可校核剪力墙布置数量,结构自振周期的合理范围大致为

但此种方法在一定范围内不适用,因为从地震作用本身来分析剪力墙结构刚度小,地震作用小,位移限制较易满足,但这种结构在工程上有可能不很合理,结构的自振周期有可能不在合理范围内。可依据实际工程中的剪力墙数量作为剪力墙布置的参考,用底层结构截面积(包括剪力墙Aw和框架柱截面积Ac)与楼面面积Af之比(Aw+Ac)/Af来估算剪力墙数量或用剪力墙面积Aw与楼面面积Af之比来估算框架柱Ac(见表1)。

一般,多设剪力墙对抗震是有利的。但是,剪力墙超过了必要的限度,是不经济的。剪力墙太多,虽然有较强的抗震能力,但由于刚度太大,周期太短,地震作用要加大,不仅使上部结构材料增加,而且带来基础设计的困难。目前我国尚无这方面的成熟经验,设计中可根据工程具体情况、建筑物高度、地区设防烈度及参考上面方法取值。

2.工程实例

本工程主楼地下一层,地上十层,局部七层,总建筑面积为40671.77m2。在剪力墙布置方面,纵向5-6,9-10轴线间,横向C-D,和K-L轴线间设置了剪力墙,并且剪力墙在布置时横向以G轴为中心线基本保持对称。本工程主体建筑为筒体结构,在进行剪力墙的布置时充分考虑了筒体结构的周边抗侧力处于薄弱环节,故特意在结构周边设置了剪力墙,有效的提高了结构整体的抗侧刚度。剪力墙布置,如图1所示。

(1)从框架柱地震剪力百分比可以看出,在结构底部和中上部,水平地震作用主要靠剪力墙承担,结构上部的水平地震作用主要由框架承担,.根据结构的底部剪力我们将各层位移连成了侧移曲线,该曲线呈反S形,且接近直线,各层刚度均匀,位移曲线连续光滑,无突然凹凸变化和折点。说明剪力墙的数量和设置位置是合理的,同时体现了剪力墙在整个结构的抗震中起着非常重要的作用。

(2)结构在地震作用下的变形。结构在地震作用下的变形曲线呈弯剪型,但上部略微呈剪弯型,说明在上部是由框架抵消了很大一部分剪力墙的变形;而结构其余部分水平力主要由剪力墙承担。充分体现了框剪结构中剪力墙抗震的优势。

通过地震作用下层间位移计算结果以及地震作用下X、Y方向最大层间位移角曲线分析:结构Y向在水平地震作用下的最大层间位移角在1/885・P・[θ]・P・1/800,符合规范要求,说明本工程剪力墙的布置是合理的。

3.几点改善结构抗震性能的建议

(1)设计中高层结构通常在楼梯、电梯及竖向管道等竖向交通区设置较多的剪力墙片,组成一个或数个较完整或基本完整的筒体,变平面剪力墙构件为空间剪力墙筒体,从而提高整个结构性能。

(2)对于框架分隔的结构,由于分隔的不整齐性,难以形成规则柱网,其柱截面往往大于隔墙厚度而造成柱子外凸的不良建筑效果,而且其抗侧能力较差,为满足抗侧力的需要又不加重剪力墙筒体的负担;剪力墙分隔可以通过一些与填充墙基本同宽、肢长-肢宽比接近5的短肢剪力墙片,实现灵活多变的分割形式,但它们又难于满足建筑功能对底部开敞大空间的要求,结构上通常处理成底部大空间框支,即在结构底部剪力墙筒体落地,由转换大梁完成底层框支柱到上层剪力墙分隔之间的结构转换。这样,既扩大了使用面积,又保证了建筑的布局灵活。本工程在进行设计施工时,充分考虑了此种结构的优点,并和剪力墙巧妙结合起来,有效的提高了结构整体刚度,增强了结构的抗震能力。为了更好的达到抗震效果剪力墙应设置在:

①在竖向荷载较大处。②平面形状变化处或楼盖水平刚度剧变处。③楼梯间、电梯间以及楼板较大洞口的两侧。④为了用较少的墙体获取较大的纵、横向抗推刚度和受弯承载力,纵、横向抗震墙最好能连接成T形、L形和口字形;同一横向轴线上的两片抗震墙可利用各层的框架梁来组成双肢墙。⑤纵向抗震墙不宜设置在独立结构单元的两端,以免纵向框架梁和楼板因受到变形约束的区段过长而产生较大的收缩和温度应力。如果同一横面轴线上两片纵向抗震墙之间的距离过大,各层楼盖均应在间距中点附近的某开间内,设置横贯房屋全宽的施工“后浇带”,以消除混凝土的收缩影响。总之,剪力墙的设置要均匀分散,尽量对称最好,形成蜂窝状是最理想的。

4.结论

(1)框架-剪力墙结构中,框架与剪力墙起到了很好的互补的作用,对于抗震要求较高的地区是一种非常合适的结构形式。在框架-剪力墙结构中,适当的剪力墙能使结构具有相当大的刚度和较高的承载力,并且有很强的抵抗地震作用的能力。

(2)合理的搞好框架-剪力墙结构的设计,将直接影响到建筑物的安全使用与技术经济指标的高低。在结构设计初步阶段,剪力墙数目的合理确定,不但可以减少大量重复工作的问题,还可以达到经济的目标。从结构的底部剪力和自振周期可以得出剪力墙的合理布置对结构抗震能力的提高起着非常大的作用。

参考文献

[1] GB50011-2001,建筑抗震设计规范[S].

剪力墙结构范文6

【关键词】剪力墙;转角窗;连梁

近几年来,很多剪力墙结构为满足建筑功能和通风采光的要求,在其拐角处做一凸出的阳台或凸窗,我们称之为转角窗。虽然转角窗取代了抗震性能较好的转角墙使高层住宅结构的扭转刚度大为削弱,但是开设转角窗的高层住宅,可使用户充分享受室外绿化景观和满足室内采光要求,得到了越来越多开发商的青睐。

一、角窗在计算模型里的建立

高层剪力墙结构最需要计算和分析的就是剪力墙的剪力,所以重点研究开洞与否对结构角部墙体剪力的影响情况。模型基于已建立的18层剪力墙塔楼结构和板楼结构,四个转角部位均开洞,转角连梁按按普通框架梁输入,梁截面尺寸为:梁宽同墙厚,梁高同窗间墙高。本文应用PMSAP软件进行内力计算,提取受力最大的角部墙体的剪力数据,绘制开洞大小不同时,墙体在地震方向与X轴夹角不同时的剪力变化图。其中底层、中间层、顶层剪力分别指模型中的首层,十层,十八层的转角墙体剪力值;还有转角连梁跨度为0mm时是指不开设角窗的剪力墙结构,跨度不同时,转角连梁高度均为900mm;转角连梁高度为0mm时也是指不开设角窗的剪力墙结构,高度不同时,转角连梁跨度均为1500mm。底层为首层,中间层为10层,顶层为18层。

二、PMSAP计算结果分析

1.塔楼剪力变化结果。(1)塔楼不开设转角窗时,地震方向与X轴夹角越大,结构底层剪力墙剪力越大;开设转角窗后,随着转角连梁跨度的增大,底层不同地震角所对应的剪力墙剪力总体趋势是先增大然后再减小,并且开始时增大的幅度很大,其中在转角连梁跨度为1200mm时,各片剪力墙剪力达到最大,接着随着转角连梁跨度的增大剪力墙剪力下降的趋势逐渐增大。还有地震方向与X轴夹角小于30°时,开洞后的塔楼剪力大于不开洞的塔楼,大于30°时开洞后的塔楼剪力小于不开洞的塔楼。(2)塔楼不开设转角窗时,地震方向与X轴夹角越大,结构中间层剪力墙剪力越大。随着跨度的增大,转角连梁跨度在0mm~600mm范围内时,以15°时的剪力为中心,不同地震角所对应的剪力由放射状逐渐向中间靠拢,转角连梁跨度在600mm~1500mm范围内时,剪力墙剪力随着转角连梁跨度的增大而减小,但在跨度为1500mm~1800mm间剪力重新形成放射状,此时地震方向与X轴夹角越大,剪力墙剪力越大,但是在转角连梁跨度为2400mm时,剪力墙剪力有靠拢趋势,但是这时地震方向与X轴夹角越大所对应剪力越小。(3)塔楼不开设转角窗时,地震方向与X轴夹角越大,结构顶层剪力墙剪力越小。顶层剪力墙剪力变化最有规则,转角连梁跨度为0mm~600mm时,不同地震角所对应的剪力随着转角连梁跨度的增大而减小,并且这时地震角越大剪力越大。当转角连梁跨度为600mm~1500mm时,不同地震角所对应的剪力随着转角连梁跨度的增大而增大,当转角连梁跨度为1500mm~1800mm时,不同地震角所对应的剪力随着跨度的增大而减小,跨度为1800mm~2400mm时,剪力随着跨度的增大而增大,还必须注意不开洞时,地震方向与X轴夹角越小剪力越大。但是开洞后都是地震方向与X轴夹角越大剪力越大,开洞后各片剪力墙剪力都比不开洞的小,开洞后转角连梁跨度在1800mm时剪力最小。(4)塔楼不开设转角窗时,底层不同地震角所对应的剪力分布较分散,并且相差也较大。当转角连梁高度为400mm时,不同地震角所对应的剪力分布最集中,相差最小,转角连梁高度在400mm~600mm范围内时,剪力逐渐增大并在高度为600mm时达到最大,接着不同地震角所对应的剪力随着转角连梁高度的增大,有向一起靠拢的趋势。还有塔楼开洞后,地震方向与X轴夹角越大,所对应的剪力越小,在夹角为30°时剪力达到最大。通过图还可以看出:地震方向与X轴夹角为60°、75°和90°时,开洞后的剪力比不开洞的小,但其他角度开洞后剪力增大。(5)塔楼中间层开设转角窗后,不同地震力夹角所对应的剪力小于不开洞的塔楼。当转角连梁高度为400mm时,地震方向与X轴夹角越大,剪力越小,随着高度的增大,剪力变化幅度却越来越小,当转角连梁高度超过1000mm时,不同地震角对应的剪力相差已经很小。(6)顶层不同地震角所对应的剪力都是随着转角连梁高度的增大而减小。不开洞时地震方向与X轴夹角越大剪力越小,但是开洞后都是地震方向与X轴夹角越大剪力越大。在同一跨度,不同地震角所对应的剪力相差不大。

2.板楼剪力变化结果。(1)板楼不开设转角窗时,地震方向与X轴夹角越大,结构底层剪力墙剪力越大,并且不同地震角所对应的剪力相差不太大,明显比塔楼要小。随着转角连梁跨度的增大,不同地震角所对应的剪力总体趋势是先降低再增高再降低,其中转角连梁跨度在0mm~600mm时剪力降低,接着跨度在600mm~1200mm时剪力都随着跨度的增大而增大,但是跨度为1500mm时,剪力变化波动很大,有提高的有降低的没有什么规律,当转角连梁跨度达到1800mm时,各片剪力墙剪力趋于稳定,当跨度在1800mm~400mm范围内时,剪力随着跨度的增大而减小。其中开洞后的板楼在地震角为30°时所对应的剪力最大,为90°时所对应的剪力最小。(2)板楼中间层的剪力变化很有规律,不同地震角所对应的剪力都是随着跨度的增大而减小,在跨度为1500mm时剪力波动较大。不开洞时地震方向与X轴夹角为45°时所对应的剪力最大,开洞后地震方向与X轴夹角为30°所对应的剪力最大,90°时剪力最小。开洞后的所有剪力墙剪力均小于不开洞的。(3)板楼不开设转角窗时,顶层地震方向与X轴夹角越大则剪力越小,不开洞时不同地震角所对应的剪力相差较大分布较分散,但是随着跨度的增大,当转角连梁跨为600mm时,不同地震角所对应的剪力几乎集中到一点,剪力达到最小值,然后随着跨度的增大剪力值慢慢分散,剪力变化幅度也越来越大。其中在跨度为1500mm时剪力变化波动较大,板楼开洞后还是在地震角为30°时所对应的剪力最大,为90°时所对应的剪力最小。(4)板楼底层转角连梁高度在0mm~400mm时,地震方向与X轴夹角为60°及其以上时剪力都是随着高度的增大而减小,60°以下则是剪力随着高度的增大而增大。当转角连梁高度大于400mm之后,不同地震角所对应的剪力都是随着高度的增大而增大,但是过了600mm之后,增大的幅度就不是太明显,在同一高度不同地震角时,各片剪力墙剪力相差较大,其中地震方向与X轴夹角为30°时剪力最大,为90°时剪力最小。(5)板楼中间层不开设角窗时,不同地震角所对应的剪力明显大于开设角窗的板楼。板楼开洞后,不同地震角所对应的剪力随着转角连梁高度的增大而增大,但是变化幅度不是太大,其中地震方向与X轴夹角为30°时剪力最大,夹角为90°时剪力最小。(6)板楼顶层:不同地震角所对应的剪力随着转角连梁高度的增大而减小,但是减小的幅度越来越小。当转角连梁高度为1200mm时剪力相差已经非常小。其中地震方向与X轴夹角为30°时剪力最大,为90°时剪力最小。

参 考 文 献

[1]章天恩.钢筋混凝土高层住宅转角窗处结构设计[J].2004,3(3):40~43

[2]周雪峰.高层住宅楼转角窗设计的技术探讨[J].青海大学学报.2005,12(6):16~18

[3]喻步实.高层剪力墙住宅转角窗设计[J].广东土木与建筑.2007,2(2):33~34