碳纳米管范例6篇

碳纳米管范文1

关键词:单壁碳纳米管;多壁碳纳米管;差异

中图分类号:TQ342.7 文献标识码:A 文章编号:1000-8136(2012)09-0014-02

碳纳米管是一维纳米材料,可称为纳米材料之王,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域,是国际上研究的热点及难点。

碳纳米管按照石墨烯片的层数简单分类为:单壁碳纳米管和多壁碳纳米管。此外二者还有其他差异,现综述如下:

1发现时间

单壁碳纳米管:1993年S.Iijima[1]等和DS.Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

多壁碳纳米管:1991年日本NEC公司基础研究实验室的电子显微镜专家Iijima[2]在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,现在被称做的“Carbon nanotube”,即碳纳米管,又名巴基管。Iijima发现的碳纳米管最小层数为2,含有一层以上石墨片层的则称为多壁碳纳米管。

2结构

单壁碳纳米管:由单层圆柱型石墨层构成,其直径大小的分布范围小、缺陷少,具有较高的均匀一致性。SWCNTs的直径一般在1~6 nm,目前观察到的SWCNT的最小直径约为0.33 nm,并已能合成直径0.4 nm的SWCNTs阵列,直径达6 nm的SWCNTs也已有报道。一般认为,SWCNT的直径大于6 nm以后特别不稳定,容易发生SWCNT管的塌陷。而单壁碳纳米管的长度则可达几百纳米到几十微米。单壁碳纳米管的单层结构显示出螺旋特征,根据构成碳纳米管的石墨层片的螺旋性,可以将单壁碳纳米管分为非手性(对称)和手性(不对称)。

多壁碳纳米管:多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。多壁碳纳米管的层间距约为0.34 nm,外径在几个纳米到几百纳米,而已发现的最小内径为0.4 nm。其长度一般在微米量级,最长者可达数毫米。

3工艺制备

单壁碳纳米管:激光蒸发法是制备单壁碳纳米管的一种有效方法。用高能CO2激光或Nd/YAG激光蒸发掺有Fe、Co、Ni或其合金的碳靶制备单壁碳纳米管和单壁碳纳米管束,管径可由激光脉冲来控制。Iijima等发现激光脉冲间隔时间越短,得到的单壁碳纳米管产率越高,而单壁碳纳米管的结构并不受脉冲间隔时间的影响。用CO2激光蒸发法,在室温下可获得单壁碳纳米管,若采用快速成像技术和发射光谱可观察到氩气中蒸发烟流和含碳碎片的形貌,这一技术使得跟踪研究单壁碳纳米管的生长过程成为可能。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低,易缠结。

多壁碳纳米管:化学气相沉积法主要用于多壁碳纳米管的合成。其基本原理为含有碳源的气体(或蒸气)流经催化剂表面时分解,生成碳纳米管。常用的碳源气体有C6H6、C2H2、C2H4等。Yacaman等最早采用25%铁/石墨颗粒作为催化剂,常压下700 ℃时分解9%乙炔/氮气制得碳纳米管。Amelincks等采用Co为催化剂,乙烯为碳源得到螺旋状的碳纳米管,中国科学院物理所用化学气相沉积法大批量合成了排列整齐的碳纳米管,而且端口是打开的。

4应用及性能(电容)

单壁碳纳米管:能够严重破坏大肠杆菌等细菌的细胞壁,从而将它杀灭,将有助于解决细菌抗药性这一日益突显的问题。单壁碳纳米管其电容量一般为180 F/g,比多壁碳纳米管更高。其电容器功率密度可达20 kW/kg,能量密度可达7 W・h/kg。

多壁碳纳米管:没有相关的报道指明可以杀灭细菌。多壁碳纳米管其电容量一般为102 F/g。

以上是关于单壁碳纳米管和多壁碳纳米管一些差异性的概括,然而二者均具有优异的力学性能、导电性能、热学性能、储氢性能等。

碳纳米管作为最重要的纳米材料之一,其研究越来越得到人们的高度重视,人们相信,碳纳米管在工业领域里大规模应用将在未来几年中出现,碳纳米管的研究也将对纳米技术的未来产生重大影响。

参考文献:

[1]Single-shell carbon nanotubes of 1-nm diameter. Iijima S, Nature, 1992, 363: 603~605.

[2]Helical microtubules of graphite carbon. Iijima S, Nature, 1991, 354: 56~58.

碳纳米管范文2

2、碳纳米管可以应用于碳纳米管触摸屏。碳纳米管触摸屏首次于2008年间成功被开发出,至今已有多款智慧型手机上使用碳纳米管材料制成的触摸屏。

3、碳纳米管可以作为模具。在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,就可以制备出最细的纳米尺度的导线。

4、碳纳米管可用作电双层电容器电极材料。电双层电容器既可用作电容器也可以作为一种能量存储装置。超级电容器可大电流充放电,几乎没有充放电过电压,循环寿命可达上万次,工作温度范围很宽。

碳纳米管范文3

[关键词]碳纳米管;复合材料;结构;性能

自从 1991 年日本筑波 NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以 分 为单壁碳 纳 米管(SWNTs) 和多壁碳 纳 米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为 1~2 TPa 和 200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达 2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的 1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。

根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。

1 聚合物/碳纳米管复合材料的制备

聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

1.1 溶液共混复合法

溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xu et al[8]和Lau et al.[9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。

1.2 熔融共混复合法

熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jin et al.[10]采用这种方法制备了 PMMA/ MWNT 复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。

1.3 原位复合法

将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jia et al.[11]采用原位聚合法制备了PMMA/SWNT 复合材料。结果表明碳纳米管与聚合物基体间存在强烈的黏结作用。这主要是因为 AIBN 在引发过程中打开碳纳米管的 π 键使之参与到 PMMA 的聚合反应中。采用经表面修饰的碳纳米管制备 PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。

2 聚合物/碳纳米管复合材料的研究现状

2.1 聚合物/碳纳米管结构复合材料

碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

提高聚合物机械性能的主要问题是它们在聚合物基体内必须有良好的分散和分布,并增加它们与聚合物链的相互作用。通过优化加工条件和碳纳米管的表面化学性质,少许的添加量已经能够使性能获得显著的提升。预计在定向结构(如薄膜和纤维)中的效率最高,足以让其轴向性能发挥到极致。在连续纤维中的添加量,单壁碳纳米管已经达到 60 %以上,而且测定出的韧度相当突出。另外,只添加了少量多壁或单壁纳米管的工程纤维,其强度呈现出了较大的提升。普通纤维的直径仅有几微米,因此只能用纳米尺度的添加剂来对其进行增强。孙艳妮等[12]将碳纳米管羧化处理后再与高密度聚乙烯(HDPE)复合,采用熔融共混法制备了碳纳米管/高密度聚乙烯复合材料,并对其力学性能进行了研究。结果表明:碳纳米管的加入,提高了复合材料的屈服强度和拉伸模量,但同时却降低了材料的断裂强度和断裂伸长率。Liu 等[13]采用熔融混合法制得了 MWNT/PA6(尼龙 6)复合材料,结果表明,CNTs 在 PA6基体中得到了非常均匀的分散,且 CNTs 和聚合物基体间有非常强的界面粘接作用,加入 2 wt%(质量分数)的 MWNTs 时,PA6 的弹性模量和屈服强度分别提高了 214 %和 162 %。总之,碳纳米管对复合材料的机械性能的影响,在很大程度上取决于其质量分数、分散状况以及碳纳米管与基质之间的相互作用。其他因素,比如碳纳米管在复合材料中的取向,纤维在片层中的取向,以及官能团对碳纳米管表面改性的不均匀性,也可能有助于改善复合材料的最终机械性能。

2.2 聚合物/碳纳米管功能复合材料

2.2.1 导电复合材料

聚合物/碳纳米管导电复合材料是静电喷涂、静电消除、磁盘制造及洁净空间等领域的理想材料。GE 公司[14]用碳纳米管制备导电复合材料,碳纳米管质量分数为 10 %的各种工程塑料如聚碳酸酯、聚酰胺和聚苯醚等的导电率均比用炭黑和金属纤维作填料时高,这种导电复合材料既有抗冲击的韧性,又方便操作,在汽车车体上得到广泛应用。LNP 公司成功制备了静电消散材料,即在 PEEK 和 PEI 中添加碳纳米管,用以生产晶片盒和磁盘驱动元件。它的离子污染比碳纤维材料要低65 %~90 %。日本三菱化学公司也成功地用直接分散法生产出了含少量碳纳米管的 PC 复合材料,其表面极光洁,物理性能优异,是理想的抗静电材料[15]。另外,聚合物/碳纳米管导电复合材料的电阻可以随外力的变化而实现通-断动作,可用于压力传感器以及触摸控制开关[16];利用该材料的电阻对各种化学气体的性质和浓度的敏感性,可制成各种气敏探测器,对各种气体及其混合物进行分类,或定量化检测和监控[17];利用该材料的正温度效应,即当温度升至结晶聚合物熔点附近时,电阻迅速增大几个数量级,而当温度降回室温后,电阻值又回复至初始值,可应用于电路中自动调节输出功率,实现温度自控开关[18]。

2.2.2 导热复合材料

许多研究工作证明,碳纳米管是迄今为止人们所知的最好的导热材料。科学工作者预测,单壁碳纳米管在室温下的导热系数可高达 6600 W/mK[19],而经分离后的多壁碳纳米管在室温下的导热系数是 3000~6600 W/mK。由此可以想象,碳纳米管可显著提高复合材料的导热系数及在高温下的热稳定性[20]。Wu 等[21]制 备 了 多 壁 碳 纳 米 管 / 高 密 度 聚 乙 烯(MWNTs/HDPE)复合材料,并对其热性能进行了深入的研究,实验结果表明:导热系数随着 MWNTs 含量的增加而升高。当MWNTs 的质量分数达到 38 h,混合材料的导热系数比纯HDPE 的高三倍多。徐化明等[22]采用原位聚合法制备的阵列碳纳米管/聚甲基丙烯酸甲酯纳米复合材料,在氮气和空气气氛下,复合材料的热分解温度比基体材料分别提高了约 100 和60 ℃。在导热性能上,阵列碳纳米管的加人使得复合材料的导热系数达到 3.0 W/mK,比纯 PMMA 提高了将近 13 倍。

2.2.3 其它功能复合材料

在碳纳米管/聚合物功能复合材料方面最近有南昌大学纳米技术工程研究中心[23]研制的一种多壁碳纳米管/环氧树脂吸波隐身复合材料。通过对多壁碳纳米管进行高温 NaOH 处理,使碳管在其表面产生较多的孔洞,提高碳纳米管的表面活性;制备的吸波隐身复合材料具有良好的雷达吸波效果和可控吸收频段,这种吸波复合材料的体积电阻率在 106~107 ·cm 数量级,具有优良的抗静电能力,这对于调整雷达吸波材料的吸波频段和拓宽吸波频宽有着重要意义。美国克莱姆森大学Rajoriat[24]用多壁碳纳米管对环氧树脂的阻尼性能进行了研究,发现碳纳米管树脂基复合材料比纯环氧树脂的阻尼比增加了大约 140 %。

3 制备碳纳米管聚合物复合材料中存在的问题

3.1 碳纳米管在基体中的分散问题

碳纳米管的长径比大,表面能高,容易发生团聚,使它在聚合物中难以均匀分散。如何让碳纳米管在聚合物基体中实现均匀分散是当前需要解决的首要难题。经表面改性的碳纳米管可均匀分散在聚合物基体中,可以利用化学试剂或高能量放电、紫外线照射等方法处理碳纳米管,引入某些特定的官能团。Liu J 等[25]首先采用体积比为 3∶1 的浓硫酸和浓硝酸对単壁碳纳米管进行氧化处理,得到了端部含羧基的碳纳米管,提高其在多种溶剂中的分散性。ChenQD[26]将碳纳米管用等离子射线处理后引入了多糖链。还可运用机械应力激活碳纳米管表面进行改性,通过粉碎、摩擦、超声等手段实现。

3.2 碳纳米管的取向问题

碳纳米管在聚合物中的取向应符合材料受力的要求,研究表明,通过一定的加工例如机械共混剪切可以改善碳纳米管在聚合物中的取向,从而进一步改善复合材料的性能。Jin L[27]将多壁碳纳米管溶解于一种热塑性聚合物溶液中,蒸发干燥制备出碳纳米管呈无序分散状态的薄膜,然后在其软化温度之上加热并用恒定负荷进行机械拉伸,使其在负荷下冷却至室温,发现通过机械拉伸复合物可以实现碳纳米管在复合物中的定向排列。

3.3 复合材料成型问题

当前碳纳米管/聚合物复合材料的成型一般采取模压、溶液浇铸等手段,模压操作简单、易于工业化,但在降温过程中,样品由于内外温差较大会发生表面开裂等问题;溶液浇铸形成的样品不受外界应力等因素的影响,但除去溶剂过程较长,碳纳米管易发生团聚。

此外,聚合物进行增强改性所用的填料由原来微米级的玻璃纤维、有机纤维等发展到如今的碳纳米管,填料尺寸上的变化使复合物材料原有的加工技术和表征手段都面临着新的挑战,需要在今后大力发展原子水平的新型加工技术和表征手段,以适应碳纳米管聚合物复合材料发展的需要。

4 结语

碳纳米管以其独特的性能正在越来越多领域得到应用,随着科学技术的进步当前碳纳米管复合材料制备过程中存在的各种问题会逐渐得到解决,总有一天纳米技术会真正走到人们的现实生活当来,给人们的生活带来翻天覆地的改变。

参考文献

[1]Iijima S.Heical microtubules of graphitic carbon[J].Nature,1991,354:56-58.

[2]Wong E W,Sheehan P E,Lieber C M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nanotubes[J].Science,1997,277:1971-1975.

[3]Kim P,Shi L,Majumdar A,et al.Thermal transport measurements ofinpidual multiwalled nanotubes[J].Physical Review Letters,2001,87:215-221.

[4]Cornwell C F,Wille L T.Elastic properties of single-walled carbonnanotubes in compression[J].Solid State Communications,1997,101:555-558.

[5]Robertson D H,Brenner D W,Mintmire J W.Energetics of nanoscalegraphitic tubules[J].Physical Review,1992,B45:12592-12595.

[6]Lu J P.Elastic properties of carbon nanotubes and nanoropes[J].PhysicalReview Letters,1997,79:1297-1300.

[7]Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes:instabilities beyond linear response[J].Physical Review Letters,1996,76:2511-2514.

[8]Xu X J,Thwe M M,Shearwood C,Liao K.Mechanical properties andinterfacial characteristics of carbon-nanotube-reinforced epoxy thinfilms[J].Applied Physics Letters,2002,81:2833-2835.

[9]Lau K T,Shi S Q,Cheng H M.Micro-mechanical properties andmorphological observation on fracture surfaces of carbon nanotube compositespre-treated at different temperatures[J].Composites Science and Technology,2003,63:1161-1164.

碳纳米管范文4

【关键词】碳纳米管 分散 力学性能 参数变化

碳纳米管虽然具有诸多优异性能,并能显著增强材料的各项性能,但本身作为高分子材料,分子量较小,管径很小,比表面积大,表面能大,非常容易团聚在一起,这样则会产生反效果(如D1所示),尤其是对碳纳米管的复合材料而言,这些团聚起来的碳纳米管管径小以难分散开,同时材料中也会出现应力集中点,会削弱材料性能,因此在使用碳纳米管增强材料的性能及应用在其他方面都必须要将碳纳米管完全分散以达到最佳的使用效果。

1 碳纳米管分散

碳纳米管的分散主要使用物理或者化学方法。团聚体的分散方法主要包括机械搅拌、添加表面活性剂、超声波处理等,所以对碳纳米管的分散方法也主要由这些方法发展而来,物理方法主要有碾磨、球磨、超声波等;化学方法主要有添加表面活性剂、强酸强碱洗涤等;还可采用原位合成法制备碳纳米管复合材料。

1.1 强酸洗涤

碳纳米管表面存在一些缺陷,而通过使用强酸强碱的强氧化性可将其溶断,再将它们分散[1]。强酸洗涤可以把团聚体表面的碳纳米管溶断分散,但无法进入团聚体内部,因此溶液中也就会存在微小的碳纳米管团聚,需要额外的工序将其去除。

1.2 聚合物溶剂

于作龙[2]等公开了一种分散碳纳米管的方法,即先把碳纳米管加到具有一定粘度的聚合物溶体中,然后通过研磨装置把碳纳米管均匀分散在聚合物中,同时碳纳米管也会在摩擦力和聚合物内部的剪力等作用下被截断,最后去除聚合物即可。但使用这种方法无法解决团聚问题,所以效果并不是很好。

1.3 超声波分散

超声波处理的作用可分为两方面:一是由于多壁碳纳米管的管壁上存在着小洞样子的缺陷,运用超声波处理可以使得碳纳米管从缺陷处被震断缩短从而进行分散。不过可以预见的是在震断的同时也会将碳纳米管团聚物震的更加紧实,反而更加难以分散。二是在溶液中的产生了大量微小气泡,通过这些气泡“炸开”产生的具有较大能量的冲击波使得周围依靠范德华力结合在一起的碳纳米管被震开,这样也就达到了分散的目的。

1.4 原位生长合成法

原位生长合成法是通过碳纳米管制备工艺,以化学气相沉积法为主,在基体材料表面原位生长出碳纳米管,甚至是定向排列的碳纳米管[3]。使用此方法可以在制备碳纳米管的同时就分散,这样就避免了碳纳米管的团聚。但是该方法工艺繁杂限制条件很多而且不容易控制,并且制备出的复合材料致密度较低,反而无法凸显出碳纳米管的优越性能。

1.5 表面修饰法

目前常用的修饰法分共价修饰法与表面活性剂(SAA)非共价修饰法两种。

共价化学修饰法就是把碳管表面氧化或引进有机官能团从而修饰碳纳米管表面[4],主要分为强氧化剂处理法、酯化修饰法、烷基化修饰法等。这种方法可使碳纳米管表面或被缩短的碳纳米管末端的打开,使其末端含有一定数量的活性基团如羟基等。这样不仅增加了碳纳米管的亲水性使其易溶于水等溶液中,而且为与其它物质或基团反应提供了基础,进而可与亲水基体材料产生较好复合均匀度和黏结界面强度。

而表面活性剂非共价修饰法在有效分散碳纳米管的同时不会对碳纳米管的性能产生负面影响[5]。表面活性剂分为离子型与非离子型两种。不论哪种表面活性剂都会吸附包裹在碳纳米管表面,而不会破坏碳纳米管的结构,离子型表面活性剂吸附在碳纳米管表面,主要依靠亲水基团之间的静电斥力阻止碳纳米管之间的聚集,非离子型表面活性剂|碳纳米管分散体系也是基于吸附机理,而其头基和尾基杂乱、随机地吸附在的管壁上保持体系稳定。

1.6 应用情况

目前,碳纳米管的分散方法包括机械搅拌法、超声处理法、电场诱导法、表面修饰法(共价修饰、非共价修饰)等,但单一方法都存在无法去除团聚的缺陷,所以在实际运用中多注重以上几种方法的综合使用。

2 力学性能

碳纳米管基材料有多种应用方式,主要应用于塑料,电气原件,以及金属基中可以显著提升它们自身的性能,为当下要求越来越高的设备提供优秀的原件以便使用。下面以水泥基为例,研究加入MWCNTs后它各项力学性能的变化。

2.1 抗压强度

韩瑜在他2012-2013年中所做的试验中,在控制水灰比为0.35的情况下,随着碳纳米管用量的增加,比较了水泥抗压强度的不同。

实验测试了六组试件(N0-N5,其中N0为空白对照组),MWCNTs的用量分别为0.00、0.05、0.08、0.10、0.12、0.15(wt%),同时分散剂GA的用量也成比例增加,分别为0.00、0.30、0.48、0.60、0.72、0.90(%),TBP均为0.13%,在这样的情况下,抗压强度分别为77.4、82.9、83.1、84.5、80.8、73.0(MPa),N1-N5对比N0得抗压强度增长分别为7.1、7.4、9.2、4.4、-5.7(%)。

有上述数据可以看出,加入MWCNTs后水净泥浆的抗压强度得到显著增强,在MWCNTs的用量为0.1wt%时,水泥的抗压强度达到最高为84.5MPa,与空白试件相比提升了9.2%,然后随着MWCNTs用量的增加,试件抗压强度反而下降甚至低于空白试件,这种现象应是碳纳米管用量过多导致团聚造成的。

2.2 抗折强度

在测试抗折强度时,仍然控制水灰比为0.35,测试了六组试件(N0-N5),MWCNTs、GA、TBP的用量与测试抗压强度一致。在这情况下,测得其抗折强度分别为11.0、11.7、15.8、15.0、13.1、10.5(MPa),N1-N5与N0对比抗折强度的增幅分别为6.4、43.6、36.4、19.1、-4.5(%)。[6]

抗折强度变化趋势和抗压强度类似,不过提升更为明显,当MWCNTs用量为0.08wt%时,试件N2的抗折强度最高为15.8,与空白试件相比提升了43.6%。

3 参数变化的影响

除基本的力学性能外,掺量及时间等参数对于水泥基碳纳米管的力学性能也有着较大的影响。

3.1 掺量变化

当随着MWCNTs加入后,试件的力学强度提升显著。砂浆的抗压强度随着碳纳米管的掺量增加而增强,当掺量为0.1wt%时,抗压强度达到峰值89.4MPAa,较空白试件提升21.6%,之后随着碳纳米管的掺量增加而降低。抗折强度的变化情况与其类似,当MWCNTs掺量为0.8wt%时,试件的抗折强度达到峰值,较空白试件提升38.5%,但随后降低趋势较抗压强度更平缓。

3.2 时间变化

实验测试碳纳米管掺量不同对于水泥砂浆的力学强度随龄期变化的结果如图2所示。

由实验结果可得抗折强度的大小随龄期增长而增大。当龄期为7天时试件H3强度最大,其他试件且均高于空白试件。在7天到28天之间,试件H2和H3的增幅最快,不过在56天龄期时,抗折强度仅略高于28天时的测量值。其它试件普遍在28天到56天龄期时增长较快。

实验测试碳纳米管掺量不同对于水泥砂浆的抗压强度随龄期变化的结果如图3所示。由实验结果可得,抗压强度的大小也随龄期增长而增大。在龄期为7天时,试件H1、H2与空白试件相差不大。且在龄期到28天之前,除了试件H1、H2,其他均有较明显的增长。在龄期在28天到56天之间,除了H5、H6其他试件均没有明显增长。

由上图可知,随着MWCNTs掺量的增加,水泥基材料的龄期在不断减小,但H3为一个转折点,当用量大于H3的用量时,龄期反而增加。

4 结语

综上所述,尽管碳纳米管有着极其卓越的性能但由于它分子量小,容易在材料中形成团聚导致应力集中反而会降低材料性能,所以应当多种分散方法并用达到最佳的使用效果。同时在水泥基试验中可以看出,碳纳米管的掺量应当适量,过少效果不易体现,过多则会团聚降低材料性能。

参考文献:

[1]武玺旺,肖建中,夏风,胡永刚,彭周. 碳纳米管的分散方法与分散机理[J].材料导报,2011,09:16-19.

[2]于作龙,陈利,张伯兰,等.一种截断碳纳米管的方法:中国,CN1696053[P].2004-05-14.

[3] Li M J, Wang X B, Tian R, et al. Preparation, solubility,and electrorheological properties of carbon nanotubes/poly(methyl methacrylate)nanocomposites by in situ functiona-lization[J].Compos: Part A,2009,40(4):413.

[4]北明,杨德安.聚合物基复合材料制备中碳纳米管的分散方法[J].材料导报,2007,21(VB):99-101.

碳纳米管范文5

8、超级X光

以碳纳米管为基础的新成像系统生成的图像,将比现在使用的X光和CT扫描更加清晰,而且成像更快。X光扫描仪的工作原理是,它内部的金属丝被加热到临界高温时会释放出电子,这些电子穿越人体,撞击到人体另一侧的金属电极,生成图像。CT扫描则通过交替改变电子来源,产生三维图像。美国研究人员通过给碳纳米管施加电压,让它们同时发射出数百个电子。由于没有金属丝需要加热,这种新系统比常规X光仪的速度更快,而且这种多功能纳米管发射器还能在不需移动的情况下,从多角度拍摄图片。

7、开发氢燃料车

制造由氢燃料电池供能的汽车一直是人类的清洁能源之梦,但其价格一直居高不下,这是因为要使用铂催化剂来加速电池反应的速度。美国一个科研组发现,利用上面涂有氮的碳纳米管,可以制成更加有效的催化剂。虽然目前纳米管的造价也非常高,但取自石墨的碳纳米管未来终究会比铂划算。

6、快速的医疗诊断

西班牙研究人员发现,碳纳米管有助于解决非常棘手的医疗问题,比如可以制成用来诊断真菌传染病的生物传感器。传统方法在收集细胞样本后,要在实验室的培养皿里进行培养,查看它里面是不是有白色念珠茵出现。而新的方法则利用碳纳米管和抗体(主要攻击假丝酵母细胞)制成晶体管。把细胞样本放在传感器上,酵母细胞和抗体之间的互动,改变了该装置的电流。传导性极好的纳米管记下这种改变,研究人员根据记录结果,可以测量出样本中出现酵母细胞的数量。

5、世界上最小的芯片

科学家可以利用碳纳米管制成芯片,取代现有硅芯片。几个科研组已经找到把碳纳米管展开,制成厚度仅为一个原子的石墨烯薄片的方法。石墨烯跟硅一样,都是半导体,但是可大大提高电脑芯片的处理能力。展开纳米管要求非常严格,科学家把纳米管粘贴在高分子膜上,然后利用氩气腐蚀掉“管子”之间的“纽带”,从而形成石墨烯薄片。

4、模仿壁虎研制强效黏合剂

壁虎的脚上覆盖着数百万根微小的纤毛,每根纤毛的顶端都堤压板形。由于壁虎脚落在物体表面时,会产生强大的吸引力,即范德华力,因此壁虎可以克服重力,在天花盘上如履平地。研究人员模仿壁虎脚掌的结构,把纳米管垂直排列,然后把更短的纳米管连接在它们顶端,看起来像分叉的树梢一样。这种黏合剂在多种物体表面上都能用,无论是粗糙的砂纸抑或光滑的玻璃。

3、柔软可弯曲的电子设备

无论是折叠起来,还是像揉报纸一样把它揉成一团,它的性能竟一点不受影响,你相信有这样的电脑屏幕吗?日本研究人员用有机发光二极管(用有弹性的成对纳米导管制造的)制成一个显示器。当有电流通过时,有机发光二极管里的有机成分会发光,从而使这种显示器不需要背后照明,因此它们比传统显示器更薄。

2、太空梯

研究人员利用碳纳米管制成气凝胶,结果发现它像钢铁一样结实。给它施加电压后,这种材料的柔软度会比橡胶还好。这种材料的应用途径有哪些呢?其中一种是用纳米管制成绳索,当作太空梯的电缆。太空梯可以把宇航员、货物送入轨道。近10万千米长的太空梯必须非常结实,柔韧性非常好,这样才能抵御大气风暴和太空碎片的侵袭,同时它们还必须非常轻,这样才不会被自身重量坠断。

碳纳米管范文6

本报综合消息 最近,英特尔公司正在考虑在半导体芯片中用碳纳米管取代铜线,实现连接的可能性,如果可行,那么纳米管技术将来可能解决芯片制造商们面临的一些大问题。

英特尔公司已经用碳纳米管开发出了原型互连线,用以取代在芯片中连接晶体管的微细金属线,并测量了原型互连线的连接效果。实际上,这也是在测试有关碳纳米管属性的一些理论是否准确。

英特尔俄勒冈实验室的元器件研究总监Mike Mayberry将在即将举行的“美国真空协会国际会议”上报告这一研究结果。这项研究由英特尔与美国加州理工学院、哥伦比亚大学、伊利诺斯大学和波特兰州立大学合作进行。

芯片互连是芯片制造商面临的一个大问题。根据摩尔定律,每两年芯片元件的尺寸就要缩小一半,然而芯片“内连接”尺寸的缩小,就意味着电阻增大,这也将导致产品的性能下降。

碳纳米管比金属的导电性能好得多,电子不会分散或受到阻碍,而且纳米管也比金属连线细得多,因此纳米管有可能解决芯片互连难题。IBM和其他公司都已经研发出碳纳米管。

新图形处理器集成计算功能

本报综合消息 11月13日,NVIDIA公司宣布了一种新型计算架构,有了这种架构,开发人员就可以用该公司的图形处理器(GPU)、而不必依赖标准处理器进行数值计算。

NVIDIA的新架构名为CUDA(Compute Unified Device Architecture),面向进行大量数学运算的用户,如产品设计、数据分析、技术计算和游戏物理学领域的用户。采用CUDA架构的处理器利用图形卡上的并行高速数据缓存进行数值处理,实施计算操作时参与协作的1.35GHz内核可多达128个。

众所周知,多核芯片可以将任务分成几个线程并同时执行这些线程,这样可以节省时间并降低功耗。CUDA技术的工作原理与多线程模式类似,这种技术用图形处理器解决细粒度的数据处理问题,而用多核处理器完成数据管理等较粗粒度的任务。

就NVIDIA与ATI科技公司的竞争而言,CUDA为NVIDIA开辟了新战线。AMD公司收购ATI后,立即宣布开发混合的图形芯片和CPU。

NVIDIA还宣布,收购为数字音乐播放器开发半导体芯片和软件的PortalPlayer公司。IDC高级分析师IdaRose Sylvester说,NVIDIA最近的一些举措表明,该公司希望尽可能向更多的新应用提供芯片,以作为一家独立的图形芯片公司继续生存下去。

新图形处理器集成计算功能

本报综合消息 11月13日,NVIDIA公司宣布了一种新型计算架构,有了这种架构,开发人员就可以用该公司的图形处理器(GPU)、而不必依赖标准处理器进行数值计算。

NVIDIA的新架构名为CUDA(Compute Unified Device Architecture),面向进行大量数学运算的用户,如产品设计、数据分析、技术计算和游戏物理学领域的用户。采用CUDA架构的处理器利用图形卡上的并行高速数据缓存进行数值处理,实施计算操作时参与协作的1.35GHz内核可多达128个。

众所周知,多核芯片可以将任务分成几个线程并同时执行这些线程,这样可以节省时间并降低功耗。CUDA技术的工作原理与多线程模式类似,这种技术用图形处理器解决细粒度的数据处理问题,而用多核处理器完成数据管理等较粗粒度的任务。

就NVIDIA与ATI科技公司的竞争而言,CUDA为NVIDIA开辟了新战线。AMD公司收购ATI后,立即宣布开发混合的图形芯片和CPU。

NVIDIA还宣布,收购为数字音乐播放器开发半导体芯片和软件的PortalPlayer公司。IDC高级分析师IdaRose Sylvester说,NVIDIA最近的一些举措表明,该公司希望尽可能向更多的新应用提供芯片,以作为一家独立的图形芯片公司继续生存下去。

简讯

盖茨:Zune无线功能将扩展到PC和Xbox

IDG专供本报消息 11月14日,微软董事长盖茨说,计划将其新Zune播放器的无线功能扩展到PC和Xbox 360游戏机,他称微软最终将把Zune连接在其他作为内容与娱乐平台的微软产品上。与iPods不同的是,Zune还具有无线连接功能和FM收音机。另外,Zune与微软即将推出的Vista操作系统并不兼容,微软发言人表示,支持Vista操作系统的全新Zune,将不可能在明年1月底之前上市。

美在线广告收入创季度新高

IDG专供本报消息 由于公司继续增加在线营销投入,三季度美国互联网广告收入同比猛增33%。在线广告市场连续第八个季度增长,创下季度收入新高,公司花在在线广告上的费用估计为42亿美元。在线广告收入增长对于互联网经济的复苏起到了关键作用,例如,Google的大部分收入来自在线广告,Yahoo公司和微软下属的MSN也是。步Google的后尘,很多Web 2.0代新兴公司采用了基于互联网广告的业务模式。

数据安全将成明年焦点

IDG专供本报消息 美国“计算机安全协会(CSI)”日前在奥兰多举办了一次贸易展,参会的IT经理们认为,有关法规要求以及家庭用户对信息安全越来越关注都将促使数据安全问题成为明年的焦点。多年来,人们一直在用防火墙以及入侵检测系统保护网络周边安全,现在必须将类似的控制技术用到数据级上了,而且各类非公共信息都需要保护,不管这些信息是处于静止状态还是传送状态。这样一来,数据分类与加密、用户访问与验证以及监控与审计等方法将越来越受到关注。

RFID新技术可消除隐私担忧

IDG专供本报消息 IBM沃特森研究中心最近开发出了一种称为Clipped Tag的技术,有助于消除用户对RFID暴露隐私的担忧。含有Clipped Tag技术的产品已经开始交付,由IBM合作伙伴Marnlen Management公司生产。用户可以简单地将RFID标签的无线天线折掉一部分以将RFID的工作范围从几英尺缩短到几英寸,这样就可以起到保护用户隐私的作用。零售商和制造商都认为RFID技术有助于降低成本,但是一直担心RFID标签30英尺的工作范围可能会暴露用户隐私。