变频器论文范例6篇

变频器论文

变频器论文范文1

Abstract:Thecharacteristicoftheenergybrakeandfeedbackbrakeisbrieflyintroduced,and

detailedintroductionontheoperationprinciple,characteristicandapplicationofthe

electrolytecapacitancebrakeisgiven.

关键词:变频器能量回馈电容反馈制动

Keywords:InverterEnergyfeedbackEectro-capacitancefeedbackbrake

[中图分类号]TP273[文献标识码]B文章编号1561-0330(2003)06-00

1引言

在通用变频器、异步电动机和机械负载所组成的变频调速传统系统中,当电动机所传动的位能负载下放时,电动机将可能处于再生发电制动状态;或当电动机从高速到低速(含停车)减速时,频率可以突减,但因电机的机械惯性,电机可能处于再生发电状态,传动系统中所储存的机械能经电动机转换成电能,通过逆变器的六个续流二极管回送到变频器的直流回路中。此时的逆变器处于整流状态。这时,如果变频器中没采取消耗能量的措施,这部分能量将导致中间回路的储能电容器的电压上升。如果当制动过快或机械负载为提升机类时,这部分能量就可能对变频器带来损坏,所以这部分能量我们就应该考虑考虑了。

在通用变频器中,对再生能量最常用的处理方式有两种:(1)、耗散到直流回路中人为设置的与电容器并联的“制动电阻”中,称之为动力制动状态;(2)、使之回馈到电网,则称之为回馈制动状态(又称再生制动状态)。还有一种制动方式,即直流制动,可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。

在书籍、刊物上有许多专家谈论过有关变频器制动方面的设计与应用,尤其是近些时间有过许多关于“能量回馈制动”方面的文章。今天,笔者提供一种新型的制动方法,它具有“回馈制动”的四象限运转、运行效率高等优点,也具有“能耗制动”对电网无污染、可靠性高等好处。

2能耗制动

利用设置在直流回路中的制动电阻吸收电机的再生电能的方式称为能耗制动,如图1所示。

其优点是构造简单;对电网无污染(与回馈制动作比较),成本低廉;缺点是运行效率低,特别是在频繁制动时将要消耗大量的能量且制动电阻的容量将增大。

一般在通用变频器中,小功率变频器(22kW以下)内置有了刹车单元,只需外加刹车电阻。大功率变频器(22kW以上)就需外置刹车单元、刹车电阻了。

3回馈制动

实现能量回馈制动就要求电压同频同相控制、回馈电流控制等条件。它是采用有源逆变技术,将再生电能逆变为与电网同频率同相位的交流电回送电网,从而实现制动如图2所示。

回馈制动的优点是能四象限运行,如图3所示,电能回馈提高了系统的效率。其缺点是:(1)、只有在不易发生故障的稳定电网电压下(电网电压波动不大于10%),才可以采用这种回馈制动方式。因为在发电制动运行时,电网电压故障时间大于2ms,则可能发生换相失败,损坏器件。(2)、在回馈时,对电网有谐波污染。(3)、控制复杂,成本较高。

4新型制动方式(电容反馈制动)

4.1主回路原理

主回路原理图如图4所示。

整流部分采用普通的不可控整流桥进行整流(如图中的VD1——VD6组成),滤波回路采用通用的电解电容(图中C1、C2),延时回路采用接触器或可控硅都行(图中T1)。充电、反馈回路由功率模块IGBT(图中VT1、VT2)、充电、反馈电抗器L及大电解电容C(容量约零点几法,可根据变频器所在的工况系统决定)组成。逆变部分由功率模块IGBT组成(如图VT5—VT10)。保护回路,由IGBT、功率电阻组成。

(1)电动机发电运行状态

CPU对输入的交流电压和直流回路电压νd的实时监控,决定向VT1是否发出充电信号,一旦νd比输入交流电压所对应的直流电压值(如380VAC—530VDC)高到一定值时,CPU关断VT3,通过对VT1的脉冲导通实现对电解电容C的充电过程。此时的电抗器L与电解电容C分压,从而确保电解电容C工作在安全范围内。当电解电容C上的电压快到危险值(比如说370V),而系统仍处于发电状态,电能不断通过逆变部分回送到直流回路中时,安全回路发挥作用,实现能耗制动(电阻制动),控制VT3的关断与开通,从而实现电阻R消耗多余的能量,一般这种情况是不会出现的。

(2)电动机电动运行状态

当CPU发现系统不再充电时,则对VT3进行脉冲导通,使得在电抗器L上行成了一个瞬时左正右负的电压(如图标识),再加上电解电容C上的电压就能实现从电容到直流回路的能量反馈过程。CPU通过对电解电容C上的电压和直流回路的电压的检测,控制VT3的开关频率以及占空比,从而控制反馈电流,确保直流回路电压νd不出现过高。

4.4系统难点

(1)电抗器的选取

(a)、我们考虑到工况的特殊性,假设系统出现某种故障,导致电机所载的位能负载自由加速下落,这时电机处于一种发电运行状态,

再生能量通过六个续流二极管回送至直流回路,致使νd升高,很快使变频器处于充电状态,这时的电流会很大。所以所选取电抗器线径要大到能通过此时的电流。

(b)、在反馈回路中,为了使电解电容在下次充电前把尽可能多的电能释放出来,选取普通的铁芯(硅钢片)是不能达到目的的,最好选用铁氧体材料制成的铁芯,再看看上述考虑的电流值如此大,可见这个铁芯有多大,素不知市面上有无这么大的铁氧体铁芯,即使有,其价格也肯定不会很低。

所以笔者建议充电、反馈回路各采用一个电抗器。

(2)控制上的难点

(a)、变频器的直流回路中,电压νd一般都高于500VDC,而电解电容C的耐压才400VDC,可见这种充电过程的控制就不像能量制动(电阻制动)的控制方式了。其在电抗器上所产生的瞬时电压降为,电解电容C的瞬时充电电压为νc=νd-νL,为了确保电解电容工作在安全范围内(≤400V),就得有效的控制电抗器上的电压降νL,而电压降νL又取决于电感量和电流的瞬时变化率。

(b)、在反馈过程中,还得防止电解电容C所放的电能通过电抗器造成直流回路电压过高,以致系统出现过压保护。

4.5主要应用场合及应用实例

正是由于变频器的这种新型制动方式(电容反馈制动)所具有的优越性,近些来,不少用户结合其设备的特点,纷纷提出了要配备这种系统。由于技术上有一定的难度,国外还不知有无此制动方式?国内目前只有山东风光电子公司由以前采用回馈制动方式的变频器(仍有2台在正常运行中)改用了这种电容反馈制动方式的新型矿用提升机系列,到目前为止,这种电容反馈制动的变频器正长期正常运行在山东宁阳保安煤矿及山西太原等地,填补了国内这一空白。

随着变频器应用领域的拓宽,这个应用技术将大有发展前途,具体来讲,主要用在矿井中的吊笼(载人或装料)、斜井矿车(单筒或双筒)、起重机械等行业。总之需要能量回馈装置的场合都可选用。

变频器论文范文2

关键词:变频器谐波负载发热

Abstract:Thispaperanalyzedtheproblemofharmonicwave,matchingofloadand

calorificationforinvertersinrunning,andmadetherelativelythemeasure.

Keywords:inverterharmonicwaveloadingcalorification

1前言

自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面:

①谐波问题

②变频器负载匹配问题

③发热问题

以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。

2谐波问题及其对策

通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:

(1)

式中:n—谐波的次数n=1,3,5……;

a1—开关角,i=1,2,3……N/2;

Ed—变频器直流侧电压;

N—载波比。

由(1)式可见,各项谐波的幅值为

(2)

令n=1,则得出变频器输出电压的基波幅值为:

(3)

从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。

如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策:

①增加变频器供电电源内阻抗

通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。

②安装电抗器

安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。

③变压器多相运行

通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-、-组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。

④调节变频器的载波比

从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。

⑤专用滤波器

该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。

3负载匹配问题及其对策

生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。

①恒转矩负载

恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。

摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。

位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。

②风机泵类负载

风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:

(4)

这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:

(5)

(6)

式中:tACC—加速时间(s);

tDEC—减速时间(s);

GD2—折算到电机轴上的转动惯量(N·m2);

g—重力加速度,g=9.81(m/s2);

TM—电动机的电磁转矩(N.m);

TL—负载转矩(N.m);

nAS—系统加速时的初始速度(r/min);

nAE—系统加速时的终止速度(r/min);

nDS—系统减速时的初始速度(r/min);

nDE—系统减速时的终止速度(r/min)。

从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。

泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定:

喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。

憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。

水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。

③恒功率负载

恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。

4发热问题及其对策

变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法:

①采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。

②降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。

我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。

以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。

对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示:

对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。

5结论

本文通过对通用变频器运行过程中存在问题的分析,提出了解决这些问题的实际对策,随着新技术和新理论不断在变频器上的应用,变频器存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。

6参考文献

(1)韩安荣.通用变频器及其应用.北京:机械工业出版社,2000

变频器论文范文3

[关键词]PLC变频调速器多电机控制网络通讯协议

一、引言

以变频调速器为调速控制器的同步控制系统、比例控制系统和同速系统等已广泛应用于冶金、机械、纺织、化工等行业。以比例控制系统为例,一般的系统构成如图1所示。

工作时操作人员通过控制机(可为PLC或工业PC)设定比例运行参数,然后控制机通过D/A转换模件发出控制变频调速器的速度指令使各个变频调速器带动电机按一定的速度比例运转。此方案对电机数目不多,电机分布比较集中的应用系统较合适。但对于大规模生产自动线,一方面电机数目较多,另一方面电机分布距离较远。采用此控制方案时由于速度指令信号在长距离传输中的衰减和外界的干扰,使整个系统的工作稳定性和可靠性降低;同时大量D/A转换模件使系统成本增加。为此我们提出了PLC与变频调速器构成多分支通讯控制网络。该系统成本较低、信号传输距离远、抗干扰能力强,尤其适合远距离,多电机控制。

二、系统硬件构成

系统硬件结构如图2所示,主要由下列组件构成;

1、FX0N—24MR为PLC基本单元,执行系统及用户软件,是系统的核心。

2、FX0N—485ADP为FX0N系统PLC的通讯适配器,该模块的主要作用是在计算机—PLC通讯系统中作为子站接受计算机发给PLC的信息或在多PLC构成n:n网络时作为网络适配器,一般只作为规定协议的收信单元使用。本文作者在分析其结构的基础上,将其作为通讯主站使用,完成变频调速器控制信号的发送。

3、FR—CU03为FR—A044系列比例调速器的计算机连接单元,符合RS—422/RS—485通讯规范,用于实现计算机与多台变频调速器的连网。通过该单元能够在网络上实现变频调速器的运行控制(如启动、停止、运行频率设定)、参数设定和状态监控等功能,是变频器的网络接口。

4、FR—A044变频调查器,实现电机调速。

在1:n(本文中为1:3)多分支通讯网络中,每个变频器为一个子站,每个子站均有一个站号,事先由参数设定单元设定。工作过程中,PLC通过FX0N—485ADP发有关命令信息后,各个子站均收到该信息,然后每个子站判断该信息的站号地址是否与本站站号一致。若一致则处理该信息并返回应答信息;若不一致则放弃该信息的处理,这样就保证了在网络上同时只有一个子站与主站交换信息。

三、软件设计

1、通讯协议

FR—CU03规定计算机与变频器的通讯过程如图3所示,

该过程最多分5个阶段。?、计算机发出通讯请求;?、变频器处理等待;?、变频器作出应答;?、计算机处理等待;?、计算机作出应答。根据不同的通讯要求完成相应的过程,如写变频器启停控制命令时完成?~?三个过程;监视变频器运行频率时完成?~?五个过程。不论是写数据还是读数据,均有计算机发出请求,变频器只是被动接受请求并作出应答。每个阶段的数据格式均有差别。图4分别为写变频器控制命令和变频器运行频率的数据格式。

2、PLC编程

要实现对变频器的控制,必须对PLC进行编程,通过程序实现PLC与变频器信息交换的控制。PLC程序应完成FX0N—485ADP通讯适配器的初始化、控制命令字的组合、代码转换及变频器应答信息的处理等工作。PLC梯形图程序(部分程序)如图5所示。

程序中通讯发送缓冲区为D127~D149;接受缓冲区为D150~D160。电机1启动、停止分别由X0的上升、下降沿控制;电机2启动、停止分别由X1的上升、下降沿控制;电机3启动、停止分别由X2的上升、下降沿控制。程序由系统起始脉冲M8002初始化FX0N—485ADP的通讯协议;然后进行启动、停止信号的处理。以电机1启动为例,X0的上升沿M50吸合,变频器1的站号送入D130,运行命令字送入D135,ENQ、写运行命令的控制字和等待时间等由编程器事先写入D131、D132、D133;接着求校验和并送入D136、D137;最后置M8122允许RS指令发送控制信息到。变频器受到信号后立刻返回应答信息,此信息FX0N—485ADP收到后置M8132,PLC根据情况作出相应处理后结束程序。

四、结语

1、实际使用表明,该方案能够实现PLC通过网络对变频调速器的运行控制、参数设定和运行状态监控。

2、该系统最多可控制变频调速器32台,最大距离500m。

变频器论文范文4

集.1主要电磁干扰源

电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。

1.2电磁干扰的途径

变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。

(1)电磁辐射

变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。

当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

(2)传导

上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。

(3)感应耦合

感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。

2抗电磁干扰的措施

据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

(1)隔离

所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

(2)滤波

设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。

(3)屏蔽

屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

(4)接地

实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。

单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。

以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。

(5)正确安装

由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下:

①确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。

②安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。

③使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。

④确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。

⑤用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。

⑥如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。

3变频控制系统设计中应注意的其他问题

除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。

(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。

(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。

(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。

(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。

(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。

(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。

(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。

(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

4结束语

以上通过对变频器运行过程中存在的干扰问题的分析,提出了解决这些问题的实际方法。随着新技术和新理论不断在变频器上的应用,变频器应用存在的这些问题有望通过变频器本身的功能和补偿来解决。随着工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器不久也会面世。

参考文献

[1]韩安荣.通用变频器及其应用(第2版)[M].北京:机械工业出版社,2000

[2]吴忠智,吴加林,变频器应用手册[Z].北京:机械工业出版社,1995

[3]王定华等.电磁兼容性原理与设计[M].四川:电子科技大学出版社,1995

[4]电磁兼容性术语(GB/T43651995)[S].北京:中国标准出版社,1996

[5]张宗桐.变频器及其装置的EMC要求[J.,变频器世界,2000,(9)

[6]郑旭东,关鸿权,吴赤兵.通用变频器运行过程中存在的问题及对策[J].石化技术,2001,8(4)

变频器论文范文5

目录

一.摘要

二.关键词

2.1冷却风扇

2.2平波电容

2.3继电器

三设计思想和流程图

四.什么是可编程控制器及可编程控制器的等效电路图

4.1 概述

4.2可编程控制器简介

4.3 PLC的扫描工作过程和计时器

4.4可编程控制器的等效电路图

五.可编程控制器梯形图编程规则

六. 基本指令简介

七.变频器的基本构成

7.1参数表

7.2变频器如何与PLC进行连接及变频器参数的设置

7.3电动机与变频器连接

7.4变频器与主板的连接

7.5接线和端子的规格及端子接线图

7.6计算机和变频器的连接

7.7主回路端子的说明及控制回路端子的说明

八.运行控制(操作面板)

九.电源和电机的连接

十.变频器运行程序

十一.梯形图

十二.程序的分析过程

十三.结束语

一.摘要

计算机通过适配器(SC-09电缆线),采用RS-232通讯协议,与PLC相连接,利用普通网线将PLC与变频器连接,通过 PLC的程序控制,来改变频器的频率,从而实现可编程控制器对电机频率改变的控制,已实现可编程控制器对可操作器件的远程控制。在程序的运行过程中,采用改变中间继电器M70的通断(即M70为ON或者为OFF)强制电机的转动和停止,利用数据寄存器D80来设置被控制对象--电机的转动频率,(如D80=8000的时候,运行时,电机可达到的最高频率是80Hz),通过Pr.4、Pr.5、Pr.6来设置“3速设定来控制电机的高速、中速、低速”,变频器的输出频率工作过程如图所示:

控制原理图

加速时间是指从OHz开始加速到基准频率Pr.20(出厂时为50Hz,也可以自己设定,但是不要超过50Hz)时所需的时间,减速时间时是指从Pr.20(出厂时为50Hz)到0Hz所需的时间。在电机的运作过程中,电机的频率改变是依靠可编程控制器的高速脉冲的周期来加以改变。无论是在加速还是在减速的过程中,电机的转动都是稳定的,不会出现骤然的加速或者减速,使整个运作控制过程不会产生震动。

二.关键词

(1)冷却风扇 (2)平波电容

在主回路直流部分作为来滑用使用在容量的铝电解电容,在控制回路使用了稳定电源的铝电解电容,由于脉动电流等等的影响其特性会变差。这受周围环境和使用条件的影响很大,在通常的空调环境下使用时,10年更换一次。

(3)继电器

因为会发生接触不良,所以达到一定累积开关次数(开关寿命)时就需要更换。

其次指示灯等的寿命短的零件,需要定期检查和更换.

三.设计思想和流程图:

利用变频器连接PLC和控制对象,利用软件操作来控制电机的转速,达到远程自动控制的目的。

四.什么是可编程控制器以及可编程控制器的等效电路图

4.1概 述

可编程控制器是采用微机技术的通用工业自动化装置,近几年来,在国内已得到迅速推广普及。正改变着工厂自动控制的面貌,对传统的技术改造、发展新型工业具有重大的实际意义。

可编程控制器是60年代末在美国首先出现的,当时叫可编程逻辑控制器,目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。其基本设计思想是把计算机功能完善、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,控制器的硬件是标准的、通用的。根据实际应用对象,将控制内容写入控制器的用户程序内,控制器和被控对象连接也很方便。

随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,已广泛地使用微处理器作为中央处理器,输入输出块和电路都采用了中、大规模甚至超大规模的集成电路,这时的已不再是仅有逻辑判断功能,还同时具有数据处理、调节和数据通信功能。

可编程控制器对用户来说,是一种无触点备,改变程序即可改变生产工艺,因此可在初步设计阶段选用可编程控制器,在实施阶段再确定工艺过程。另一方面,从制造生产可编程控制器,适合批量生产。它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。用户在购到所需的PLC后,只需按说明书的提示,做少量的接线和简易的用户程序的编制工作,就可灵活方便地将PLC应用于生产实践。

由于这些特点,可编程控制器问世以后很快受到工业控制界的欢迎,并得到迅速的发展。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的普及推广应用。

4.2可编程控制器简介

4.2.1可编程控制器的特点

1.可靠性高,抗干扰能力强

现代PLC采用了集成度很高的微电子器件,大量的开关动作由无触点的半导体电路来完成,其可靠程度是使用机械触点的继电器所无法比较的。为了保证PLC能在恶劣的工业环璄下可靠工作,在其设计和制造过程中采取了一系列硬件和软件主面的抗干扰措施。

硬件主面采取的主要措施有:

1、隔离----PLC的输入、输出接口电路一般都采用光电耦合器来传递信号,这种光电隔措施使外部电路与PLC内部之间完全避免了电的联系,有效的抑制了外部的干扰源对PLC的影响,还可防止外部强电窜入内部CPU。

2、滤波----在PLC电路电源和输入、输出(I/O)电路中设置多种滤波电路,可有效抑制高频干扰信号。

3、在PLC内部对CPU供电电源采取屏蔽、稳压、保护等措施,防止干扰信号通过供电电源进入PLC内部,另外各个输入、输出(I/O)接口电路的电源彼此独立,以避免电源之间的互相干扰。

4、内部设置连锁、环璄检测与诊断等电路,一旦发生故障,立即报警。

5、外部采用密封、防尘、抗振的外壳封装结构,以适应恶劣的工作环璄。

在软件方面采取的主要措施有:

1、设置故障检测与诊断程序,每次扫描都对系统状态、用户程序、工作环璄和故障进行检测与诊断,发现出错后,立即自动做出相应的处理,以适应恶劣的工作环璄。

2、对用户程序及动态数据进行电池后备,以保障停电后有相关状态及信息人不会因此而丢失。

采用以上抗干扰措施后,一般PLC的抗电平干扰强度可达峰值1000V,脉宽10US,其平均无故障时间可高达30-50万小时以上。

2、编程简单易学

PLC采用与继电器控制线路图非常接近的梯形图作为编程语言,它既有继电器电路清淅直观的特点,又充分考虑到电气工人和技术人员的读图习惯,对于使用者来说,几乎不需要专门的计算机知识,因此,易学易懂,程序改变也容易修改。

3、功能完善,适应性强

目前PLC产品已经标准化、系列化和模块化,不仅具有逻辑运算、计时、计数、顺序控制等功能,还具有A/D、D/A转换、算术运算及数据处理、通信联网和生产过程监控等功能。它能根椐实际需要,方便灵活地组装成大小各异、功能不一的控制系统:既可控制一台单机、一条生产线、以可以控制一个机群、多条生产线;既可以现场控制,以可以远程控制。

针对不同的工业现场信号,如交流或直流、开关量或模拟量、电流或电压、脉冲或电位、强电或弱电等,PLC都有相应的I/O接口模块与工业现场控制器件和设备直接连接,用户可以根据需要方便地进行配置,组成实用、紧凑的控制系统。

4、使用简单,调试维修方便

PLC的接线极其方便,只需将产生输入信号的设备(按钮、开关等)与PLC的输入端子连接,将接收输出信号的被控设备(如接触器、电磁阀等)与的输出端子连接,仅用螺丝刀即可完成全部接线工作。

PLC的用户程序可在实验室摸拟调试,输入信号用开关来摸拟,输出信号可以观察PLC的发光二极管。调试后再将PLC在现场安装通调。调试工作量要比继电器控制系统少得多。

PLC的故障率很低,并且有完善的自诊断功能和运行故障指示装置。一旦发生故障,可以通过PLC机上各种发光二极管的亮灭状态迅速查明原因,排除故障。

5、体积小、重量轻、功耗低

由于PLC的采用半导体大规模集成电路,因此整个产品结构紧凑,体积小、重量轻、功耗低,以三菱FXON—24M型PLC为例,其外形尺寸仅为130MM*90MM*87MM,重量只有600G,功耗小于50W所以,PLC很容易装入机械设备内部,是实现电一体化的理想的控制设备。

4.2.2 PLC的控制功能

PLC的应用范围极其广阔,经过30多年的发展,目前PLC已经广泛应用于冶金、石油、化工、建材、电力、矿山、机械制造、汽车、交通、环保等各行各业。几乎可以说,凡是有控制系统存在的地主就有PLC。概括起来,PLC的应用主要有以下5个方面。

1、开关量控制

这是PLC最基本原应用领域,可用PLC取代传统的继电器控制系统,实现逻辑控制。在单机控制、多机群控和自动生产线控制方面都有很多成功的应用实例,如机床电气控制、起重机、皮带运输机和包装机械的控制、注塑机的控制、电梯的控制、饮料灌装生产线、家用电器(电视机、冰箱、洗衣机等)自动装配线的控制、汽车、化工、造纸、轧钢自动生产线的控制等。

2、模拟量控制

目前,很多PLC都具有模拟量处理功能在,通过模拟量I/O模块可对温度、压力、速度、流量等连续变化的模拟量进行控制,而且编程和使用都很方便。大、中型的PLC还具有PID闭环控制功能。运用PID子程序或使用专用的智能PID模块,在以实现对模拟量的闭环过程控制。随着PLC规模的扩大,控制的回路已广泛应用于工业生产各个行业,例如自动焊机控制、锅炉运行控制、连轧机的速度和位置等都是典型的闭环过程控制的应用场合。

3、运动控制

运动控制是指PLC对直线运动或圆周运动的控制,也称为位置控制,早期PLC通过开关量I/O模块与位置传感器和执行机构的连接来实现这一功能,现在一般都使用专用的运动控制模块来完成。目前,PLC的运动控制功能广泛应用在金属切削机床、电梯、机器人等各种机械设备上,典型的如PLC和计算机数控装置(CNC)组合成一体,构成先进的数控机床。

4、数据处理

现代PLC都具有不同程度的数据处理功能,能够完成数学运算(函数运算、矩阵运算、逻辑运算)、数据的移位、比较、传递、数值的转换和查表等操作,对数据进行采集、分析和处理。数据处理通常用在大、中型控制系统中,如柔性制造系统、机器人的控制系统等。

5、通信联网

通信联网是指PLC 与PLC 之间PLC 与上位计算机或其他智能设备间的通信,利用PLC和计算机的RS—232或RS—422接口、PLC的专用通信模块,用双绞线和同轴电缆或光缆将它们联成网络,可实现相互间的信息交换,构成“集中管理,分散控制”的多级分布式控制系统,建立工厂的自动化网络。

4.2.3 PLC 系统的组成及功能

PLC 是一种以微处理器为核心的工业通用自动控制装置,其实质是一种工业控制用的专用计算机。因此,它的组成与一般的微机计算机基本相同,也是由硬

件系统和软件系统两大部分组成的。

4.2.3.1 PLC的硬件系统

PLC 的硬件系统由基本单元、I/O扩展单元及外部设备组成。图1—1所示为PLC的硬件系统结构框图。

1、微处理器(CPU)

与通用计算机一样,CPU是PLC的核心部件,在PLC 控制系统中的作用类似于人体的神经中枢,整个PLC 工作过程都是在CPU的统一指挥和协调下进行的。它的主要功能有以下几点:

1、接收从编程器输入的用户程序和数据,送入存储器存储,

2、用扫描方式接收输入设备的状态信号,并存入相应的数据区(输入映像寄存器);

3、监测和诊断电源、PLC 内部电路工作状态和用户程序编程过程中的语法错误;

4、执行用户程序,完成各种数据的运算、传递和存储等功能;

5、根据数据处理的结果,刷新有关标志们的状态和输出状态寄存器表的内容,以实现输出控制、制表打印或数据通信等功能。

2、存储器

PLC 配有两种存储器:系统存储器和用户存储器。系统存储器存放在程序,用户存储器用来存放用户编制的控制程序。常用的存储器类型有CMOS RAM、EPROM和EEPROM。

因为系统程序用来管理PLC系统,不能由用户直接存取,所以,PLC 产品样本或说明书中所列的存储器类型及其容量,系指用户程序存储器而言。如FX2—24M的存储器容量在4K步,即是指用户程序存储器的容量。

PLC 所配的用户存储器的容量大小差别很大,通常中小型PLC 的用户存储器存 储器容量在8K步以下,大型PLC 的存储容量可达到或超过256K步。

3、输入输出(I/O)部件 I/O接口是PLC与输入/输出设备连接的部件。输入接口接受输入设备(如按钮、传感器、触点、行程开关等)的控制信号。输出接口是将主机经处理后的结果通过功放电路去驱动输出设备(如接触器、电磁阀、指示灯等)。I/O接口一般采用光电耦合电路,以减少电磁干扰,从而提高了可靠性。I/O点数即输入/输出端子数是PLC的一项主要技术指标,通常小型机有几十个点,中型机有几百个点,大型机将超过千点。

为了提高抗干扰能力,一般的输入/输出模块都有光电隔离装置。在数字量I/O模块中广泛采用发光二极管和光电三极管组成的光电耦合器,在模拟量I/O模块中通常采用隔离放大器。

来自工业生产现场的输入信号经输入模块进入PLC。这些信号有的是数字量,有的是模拟量,有的是直流信号,有的是交流信号。使用时要根据输入信号的类型选择合适的输入模块。

PLC具有多种I/O模块,常见的有数字量I/O模块和模拟量I/O模块,以及快速响应模块、高速计数模块、通信接口模块、温度控制模块、中断控制模块、PID控制模块和位置控制模块等种类繁多、功能各异的专用I/O模块和智能I/O模块。I/O模块的类型、品种与规格越多,PLC系统的灵活性越好,I/O模块的I/O容量越大,PLC系统的适应性越强。

I/O接口电路结构框图

A ) 输入接口 B ) 输出接口

4、电源部件

PLC配有开关式稳压电源的电源模块,用来将外部供电电源转换成供PLC内部的CPU、存储器和I/O接口等电路工作所需的直流电源。PLC的电源部件有很好的稳压措施,因此对外部电源的稳定性要求不是很高,一般允许外部电源电压的额定值在+10%-15%的范围内波动。小型PLC的电源往往和CPU单元合为一体,大中型PLC都有专用电源部件。

5、编程器

编程器是PLC的最重要的,也是PLC不可缺少的一部分。它不仅可以写入用户程序,还可以对用户程序进行检查、修改和调试,以及在以线监视PLC的工作状态。它通过接口与CPU联系完成人机对话。编程器是PLC的一种主要的外部设备,用于手持编程,用户可用以输入、检查、修改、调试程序或监示PLC的工作情况。除手持编程器外,还可通过适配器和专用电缆线将PLC与电脑联接,并利用专用的工具软件进行电脑编程和监控。

编程器一般分为简易编程器和图形编程器两类。简易编程器功能较少,一般只能用语名表形式进行编程,通常需要连机工作。简明编程器使用时直接与PLC的专用插座相连接,由PLC提供电源。它体积小,重量轻,便于携带,适合小型PLC使用。图形编程器既可以用指令语句进行编程,又可以用梯形图编程,既可以连机编程又可以脱机编程,操作方便,功能强,有液晶显示的便携式和阴极射线式丙种。图形编程器还可以与打印机、绘图仪等设备连接,但价格相对较高。通常大中型PLC多采用图形编程器。

6其他外部设备

PLC还配有生产厂家提供的其他一些设备,如外部存储器、打印机、EPROM等。

7、I/O扩展单元

I/O扩展单元用来扩展输入、输出点数。当用户所需的输入、输出点数超过PLC基本单元的输入、输出点数时,就需要加上I/O扩展单元来扩展,以适应控制系统的要求。

4.2.3.2 PLC的软件系统

硬件系统和软件系统组成了一个完整的PLC系统,它们相辅相成,缺一不可。没有软件的PLC系统称为裸机系统,不起任何作用,犹如无米之锅。反之没有硬件系统,软件系统也失去了基本的外部条件,程序根本无法运行。

4.2.4 PLC的性能指标

PLC的主要性能,一般可用以下几种指标表述。

1、 用户程序存储容量 2、 I/O 总点数

I/O总点数是PLC可接收输入信号和输出信号的数量。PLC的输入和输出量有开关量和模拟量两种。对于开关量,其I/O总点数用最大I/O点数表示,对于模拟量,I/O总点数用最大I/O通道表示。

FX系列基本单元和扩展单元

单 元 I/O 点 数 型 号

元 8/8 FX2--16M 16/16 FX2--32M

24/24 FX2—48M

32/32 FX2—64M

40/40 FX2--80M 24/24 FX2--48M

4.3 PLC的工作原理

PLC是采用“顺序扫描,不断循环”的方式进行工作的。即在PLC运行时,CPU根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期 性循环扫描,如无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直至程序结束。然后重新返回第一条指令,开始下一轮新的扫描。在每次扫描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。

PLC的扫描一个周期必经输入采样、程序执行和输出刷新三个阶段。

PLC在输入采样阶段:首先以扫描方式按顺序将所有暂存在输入锁存器中的输入端子的通断状态或输入数据读入,并将其写入各对应的输入状态寄存器中,即刷新输入。随即关闭输入端口,进入程序执行阶段。

PLC在程序执行阶段:按用户程序指令存放的先后顺序扫描执行每条指令,经相应的运算和处理后,其结果再写入输出状态寄存器中,输出状态寄存器中所有的内容随着程序的执行而改变。

输出刷新阶段:当所有指令执行完毕,输出状态寄存器的通断状态在输出刷新阶段送至输出锁存器中,并通过一定的方式(继电器、晶体管或晶闸管)输出,驱动相应输出设备工作。

4.3.1PLC扫描工作过程

PLC开始运行时,首先清除I/O映像区的内容,然后进行自诊断,自检CPU及I/O组件,确认正常后并开始循环扫描。每个扫描过程分为三个阶段进行,即输入采样,程序执行,输出刷新。PLC重复执行上述三个阶段,每重复一次的时间就是一个工作周期(或扫描周期),工作原理如下图所示:

4.3.2 PLC计时器

4.4控制原理的等效图:

第五章 可编程控制器梯形图编程规则

编程元件

PLC是采用软件编制程序来实现控制要求的。编程时要使用到各种编程元件,它们可提供无数个动合和动断触点。编程元件是指输入继电器、输出继电器、辅助继电器、定时器、计数器、通用寄存器、数据寄存器及特殊功能继电器等。

PLC内部这些继电器的作用和继电接触控制系统中使用的继电器十分相似,也有“线圈”与“触点”,但它们不是“硬”继电器,而是PLC存储器的存储单元。当写入该单元的逻辑状态为“1”时,则表示相应继电器线圈得电,其动合触点闭合,动断触点断开。所以,内部的这些继电器称之为“软”继电器。

FX2N-48MR编程元件的编号范围与功能说明如下表所示

元件名称 代表字母 编号范围 功能说明

输入继电器 X X0~X27共24点 接受外部输入设备的信号

输出继电器 Y Y0~Y27共24点 输出程序执行结果并驱动外部设备

辅助继电器 M M0~M499共500点 在程序内部使用,不能提供外部输出

继电器 T T0~T199 100ms延时定时继电器, 触点在程序内部使用

T200~T245 10ms 延时定时继电器, 触点在程序内部使用

计数继电器 C C0~C99 加法计数继电器,触点在程序内部使用

数据寄存器 D D0~D199 数据处理用的数值存储元件

嵌套指针 N、P N0~N7 P0~P127 N主控用,P跳跃、子程序用

2、编程语言

所谓程序编制,就是用户根据控制对象的要求,利用PLC厂家提供的程序编制语言,将一个控制要求描述出来的过程。PLC最常用的编程语言是梯形图语言和指令语句表语言,且两者常常联合使用。

梯形图(语言)

梯形图是一种从继电接触控制电路图演变而来的图形语言。它是借助类似于继电器的动合、动断触点、线圈以及串、并联等术语和符号,根据控制要求联接而成的表示PLC输入和输出之间逻辑关系的图形,直观易懂。

梯形图中常 图形符号分别表示PLC编程元件的动断和动合接点;

用 表示它们的线圈。梯形图中编程元件的种类用图形符号及标注的字母或数加以区别。

梯形图的设计应注意到以下三点:

①梯形图按从左到右、自上而下的顺序排列。每一逻辑行(或称梯级)起始于左母线,然后是触点的串、并联接,最后是线圈与右母线相联。

②梯形图中每个梯级流过的不是物理电流,而是“概念电流”,从左流向右,其两端没有电源。这个“概念电流”只是用来形象地描述用户程序执行中应满足线圈接通的条件。

③输入继电器用于接收外部输入信号,而不能由PLC内部其它继电器的触点来驱动。因此,梯形图中只出现输入继电器的触点,而不出现其线圈。输出继电器则输出程序执行结果给外部输出设备,当梯形图中的输出继电器线圈得电时,就有信号输出,但不是直接驱动输出设备,而要通过输出接口的继电器、晶体管或晶闸管才能实现。输出继电器的触点也可供内部编程使用。

2)指令语句表

指令语句表是一种用指令助记符来编制PLC程序的语言,它类似于计算机的汇编语言,但比汇编语言易懂易学,若干条指令组成的程序就是指令语句表。一条指令语句是由步序、指令语和作用器件编号三部分组成。

下例为PLC实现三相鼠笼电动机起/停控制的两种编程语言的表示方法:

KM Y000 步序 指令语 器件号

SS ST X000 X001   ; 0 LD X000

1 OR Y000

KM Y000 2 ANI X001 4 END

第六章 基本指令简介

基本指令如表所示:

名 称 助记符 目 标 元 件 说 明

取指令 LD X、Y、M、S、T、C 常开接点逻辑运算起始

取反指令 LDI X、Y、M、S、T、C 常闭接点逻辑运算起始

线圈驱动指令 OUT Y、M、S、T、C 驱动线圈的输出

与指令 AND X、Y、M、S、T、C 单个常开接点的串联

与非指令 ANI X、Y、M、S、T、C

单个常闭接点的串联

或指令 OR X、Y、M、S、T、C 单个常开接点的并联

或非指令 ORI X、Y、M、S、T、C 单个常闭接点的并联

或块指令 ORB 无 串联电路块的并联连接

与块指令 ANB 无 并联电路块的串联连接

主控指令 MC Y、M 公共串联接点的连接

主控复位指令 MCR Y、M MC的复位

置位指令 SET Y、M、S 使动作保持

复位指令 RST Y、M、S、D、V、Z、T、C 使操作保持复位

上升沿产生脉冲指令 PLS Y、M 输入信号上升沿产生脉冲输出

名 称 助记符 目 标 元 件 说 明

下降沿产生脉冲指令 PLF Y、M 输入信号下降沿产生脉冲输出

空操作指令 NOP 无 使步序作空操作

程序结束指令 END 无 程序结束

逻辑取及线圈驱动指令LD、LDI、OUT

LD,取指令。表示一个与输入母线相连的动合接点指令,即动合接点逻辑运算起始。

LDI,取反指令。表示一个与输入母线相连的动断接点指令,即动断接点逻辑运算起始。

OUT,线圈驱动指令,也叫输出指令。

LD、LDI两条指令的目标元件是X、Y、M、S、T、C,用于将接点接到母线上。也可以与后述的ANB指令、ORB指令配合使用,在分支起点也可使用。

OUT是驱动线圈的输出指令,它的目标元件是Y、M、S、T、C。对输入继电器不能使用。OUT指令可以连续使用多次。

LD、LDI是一个程序步指令,这里的一个程序步即是一个字。OUT是多程序步指令,要视目标元件而定。

OUT指令的目标元件是定时器和计数器时,必须设置常数K。

二、接点串联指令AND、ANI

AND,与指令。用于单个动合接点的串联。

ANI,与非指令,用于单个动断接点的串联。

AND与ANI都是一个程序步指令,它们串联接点的个数没有限制,也就是说这两条指令可以多次重复使用。这两条指令的目标元件为X、Y、M、S、T、C。

OUT指令后,通过接点对其它线图使用OUT指令称为纵输出或连续输出。这种连续输出如果顺序没错,可以多次重复。

三、接点并联指令OR、ORI

& nbsp;OR,或指令,用于单个动合接点的并联。

ORI,或非指令,用于单个动断接点的并联。

OR与ORI指令都是一个程序步指令,它们的目标元件是X、Y、M、S、T、C。这两条指令都是一个接点。需要两个以上接点串联连接电路块的并联连接时,要用后述的ORB指令。

OR、ORI是从该指令的当前步开始,对前面的LD、LDI指令并联连接。并联的次数无限制。

四、串联电路块的并联连接指令ORB

两个或两个以上的接点串联连接的电路叫串联电路块。串联电路块并联连接时,分支开始用LD、LDI指令,分支结束用ORB指令。ORB指令与后述的ANB指令均为无目标元件指令,而两条无目标元件指令的步长都为一个程序步。ORB有时也简称或块指令。

ORB指令的使用方法有两种:一种是在要并联的每个串联电路后加ORB指令;另一种是集中使用ORB指令。对于前者分散使用ORB指令时,并联电路块的个数没有限制,但对于后者集中使用ORB指令时,这种电路块并联的个数不能超过8个(即重复使用LD、LDI指令的次数限制在8次以下),所以不推荐用后者编程。

五、并联电路的串联连接指令ANB

两个或两个以上接点并联电路称为并联电路块,分支电路并联电路块与前面电路串联连接时,使用ANB指令。分支的起点用LD、LDI指令,并联电路结束后,使用ANB指令与前面电路串联。ANB指令也简称与块指令,ANB也是无操作目标元件,是一个程序步指令。

六、主控及主控复位指令MC、MCR

MC为主控指令,用于公共串联接点的连接,MCR叫主控复位指令,即MC的复位指令。在编程时,经常遇到多个线圈同时受到一个或一组接点控制。如果在每个线圈的控制电路中都串入同样的接点,将多占用存储单元,应用主控指令可以解决这一问题。使用主控指令的接点称为主控接点,它在梯形图中与一般的接点垂直。它们是与母线相连的常开接点,是控制一组电路的总开关。

MC指令是3程序步,MCR指令是2程序步,两条指令的操作目标元件是Y、M,但不允许使用特殊辅助继电器M。

七、置位与复位指令SET、RST

SET为置位指令,使动作保持;RST为复位指令,使操作保持复位。SET指令的操作目标元件为Y、M、S。而RST指令的操作元件为Y、M、S、D、V、Z、T、C。这两条指令是1~3个程序步。用RST指令可以对定时器、计数器、数据寄存、变址寄存器的内容清零。

八、脉冲输出指令PLS、PLF

PLS指令在输入信号上升沿产生脉冲输出,而PLF在输入信号下降沿产生脉冲输出,这两条指令都是2程序步,它们的目标元件是Y和M,但特殊辅助继电器不能作目标元件。使用PLS指令,元件Y、M仅在驱动输入接通后的一个扫描周期内动作(置1)。而使用PLF指令,元件Y、M仅在驱动输入断开后的一个扫描周期内动作。

使用这两条指令时,要特别注意目标元件。例如,在驱动输入接通时,PLC由运行到停机到运行,此时PLS M0动作,但PLS M600(断电时,电池后备的辅助继电器)不动作。这是因为M600是特殊保持继电器,即使在断电停机时其动作也能保持。

九、空操作指令NOP

NOP指令是一条无动作、无目标元件的1程序步指令。空操作指令使该步序作空操作。用NOP指令替代已写入指令,可以改变电路。在程序中加入NOP指令,在改动或追加程序时可以减少步序号的改变。

十、程序结束指令END

END是一条无目标元件的1程序步指令。PLC反复进行输入处理、程序运算、输出处理,若在程序最后写入END指令,则END以后的程序就不再执行,直接进行输出处理。在程序调试过程中,按段插入END指令,可以按顺序扩大对各程序段动作的检查。采用END指令将程序划分为若干段,在确认处于前面电路块的动作正确无误之后,依次删去END指令。要注意的是在执行END指令时,也刷新监视时钟。

七:变频器的基本构成

电源

请使用变频器的容许电源规格内的电源.

无熔丝断路器或漏电断路器

变频器接通电源时,因突然流过电流,要注意选择断路器。

电磁接触器

请不要使用此电磁接触器启动/停止变频器。否则会降低变频器寿命。

电抗器的设置

改善功率因数及大容量电源下(500KVA以上接线距离10m以内)时,有必要进行设置。请注意选择。

输出侧的连接机器

不要在输出侧连接电力电容器,浪涌抑制器,无线电噪音滤波器。

接地

为了防止触电,电机和变频器必须接地。

作为防止变频器动力线来的诱导噪音的接地连线,建议回到变频器接地端子再连线。

7.1 参数表

功能 参数号 名称 设定范围 最小设定

单位 出厂设定

1 上限频率 0-120HZ 0.01HZ 120HZ

2 下限频率 0-120HZ 0.01HZ 0 HZ

3 基底频率 0-400HZ 0.01HZ 50 HZ

4 高速 0-400HZ 0.01HZ 60 HZ

5 中速 0-400HZ 0.01HZ 30 HZ

6 低速 0-400HZ 0.01HZ 10 HZ

7 加速时间 0-3600s/0-360S 0.1s/0.01s 5s/15s

8 减速时间 0-3600s/0-360S 0.1s/0.01s 5s/15s

9 电子过电流保护 0-500A 0.01A 额定输出电流

功 11 直流制动动作时间 0-10s,8888&n bsp;0.1s 0.5s 13 启动频率 0-60HZ 0.01HZ 0.5HZ

14 适用负荷选择 0-5 1 0

15 点动频率 0-400HZ 0.01HZ 5HZ

16 点动加/减速时间 0-3600s/0-360S 0.1s/0.01s 0.5s 18 高速上限频率 120-400HZ 0.01HZ 120

通 讯 功 能 52 DU/PU主显示数据选择 0-20,22,23,24,25,100 1 0

53 PU水平显示数据选择 0-3,5-14,17,18 1 1 55 频率监示基准 0-400HZ 0.01HZ 50HZ

56 电流监示基准 0-500A 0.01A 额定输出电流

通 讯 功 能 117 站号 0-30 1 0 107 119 停止位长/字长 0,1(数据长8

10,11数据长7 1 1 107 121 通讯再试次数 0-10,9999 1 1 107 123 等待时间设定 0-150MS.9999 1MS 9999 107 端

能 180 RL端子功能选择 0-99.9999 1 0 134

181 RM端子功能选择 0-99.9999 1 1 134 183 RT端子功能选择 0-99.9999 1 3 134

184 AU端子功能选择 0-99.9999 1 4 134

185 JOG端子功能选择 0-99.9999 1 5 134

186 CS端子功能选择 0-99.9999 1 6 134

190 RUN端子功能选择 0-199,9999 1 0 136

191 SU端子功能选择 0-199,9999 1 1 136 193 OL端子功能选择 0-199,9999 1 3 136

194 FU端子功能选择 0-199,9999 1 4 136

195 A,B,C端子功能选择 0-199,9999 1 99 136

行 200 程序运行分/秒选择 0,2 分钟秒

1,3小时,分钟 1 0 138 1到10 0-2:旋转方向

0-400, 9999频率

0-99 .59时间 1,0.1HZ 0

9999

0 138 11到20 0-2:旋转方向

0-400, 9999频率

0-99 .59时间 1,

0.1HZ 0

9999

0 138 21到30 0-2:旋转方向

0-400, 9999频率

0-99 .59时间 1

,0.1HZ 0

9999

0 138

231 时间设定 0-99.59 — 0 138

目前所有的PLC都具有通信联网功能,PLC的通信联网功能可使PLC与 PLC之间,PLC与计算机之间相互交换信息实现近距离或远距离通信,形成一个统一的分散集中控制体系。

计算机通过232适配器与PLC通信板相接,PLC通过网线与变频器相接,通过改变频率对电机进行控制,用通信电缆把PU接口计算机FA等连接起来,用用户程序可以对变频器的运行、监视以及参数的读写进行操作(电缆必须是具有75℃铜线),变频器的操作面板可以设定运行频率、监视操作命令,设定参数是显示错误和参数拷贝。

通过写此次论文,对PLC有了更深一步的了解,对变频器的使用有所了解,注意在使用变频器之前,应认真阅读说明书,对变频器注意事项加以重视,如变频器请安装在不可燃的物体上,直接安装在易燃物品会导致火灾,变频器在通电或正在运行的时候,请不要打开前盖板,否则会发生触电,在前盖板拆下时,请不要运行变频器,否则会接触到高电压端子和充电部分而造成触电事故,变频器请进行接地工事,取下前盖板时请不要触摸表示三位LED数码管显示的上部接口,以防止触电,当变频器发生故障时,请在变频器的电源侧断开电源,如果持续的流过大电流会导致火灾,另外,在变频器的防止、损伤、搬运和安装布线等问题应加以重视。

* 1)三菱微型可编程控制器----------------FX1S,FX1N系列可编程控制器规格的补版

2)变频器使用手册

3)可编程控制器应用技术--------------------机械工业出版社出版(王也仿 主编 2003年1月第3次印刷)

4)《可编程控制器(PC)应用技术与实例》 华南理工大学出版社 袁任光 2003年3月第1版

变频器论文范文6

(1)一般的恒转矩负载要求

变频器必须具备以下几个条件:过载能力较大;过载时间足够;具备较大的启动及转动转矩;具备恒定转矩特性。

(2)对于风机、泵类的负载

选择变频调速系统时需符合以下两个条件:设备经济性、可靠性较高,能够提供稳定的转速;可以针对机电设备的情况选择变频控制模式。

(3)对于恒功率负载

选择变频器时需符合以下两个条件:输出为定值控制;该变频器能够满足对其进行针对性设计的需求。因此,为了确保电机处于经济运行状态,必须根据负载的机械特性,选择合适的变频调速电机。而使用中的变频调速电机,要尽量避免长时间空载、轻载,同时要加强设备维护检修,使其保持在最佳工作状态,

二改进四象限变频器,提高煤矿机电设备的灵活性

采煤作业环境复杂多变,大量机电设备处于负荷频繁波动状态,这些因素给煤矿安全生产带来了很大困扰。当前煤矿机电设备采用四象变频器技术大大缓解了这个现象。四象限变频器将整流电路由原来的全波整流桥调整为由智能功率模块构成的可控整流桥,以便更好地完成采掘工作。四象限变频器与普通变频器的区别在于电机处于发电状态时,其逆变电路和整流电路将会发生互换,从而实现将电机所产生的电量输送至其他设备的目的。

1在采煤机中的应用

我国采煤机变频调速系统已由之前的“一拖二”改进为现在的“一拖一”。我国自主研发的采煤机已处于世界领先水平,例如采煤机ACS-800变频器,可以确保加速时不过流、减速时不过压。整个过程可根据电机功率进行计算,还能根据现场情况做适当调整,从而实现降低能耗、提升工作效率的目的。

2在提升机中的应用

在煤矿提升装置中应用时,普通变频器存在较大的弊端,问题主要在于电机制动产生的能量会过多消耗在电阻上。变频技术的创新,可以将电机处于二、四象限运行过程中发电产生的电能回馈给电网侧使用,从而让提升机实现匀速、加速工作与平稳启动、关闭,并借助数字控制系统有效提升工作效率,这对保障工作人员的人身安全起着重要作用。

3在胶带输送机中的应用

胶带输送机具有大功率、高电压等特点,主要通过胶带与轮毂之间的摩擦作用实现煤炭传送。可以采用变频节能技术对上山胶带输送机进行改造,原理和提升机相似,改造可以改变胶带输送机的启动模式,彻底实现软启动,让机电设备实现平稳运行。变频节能技术还能降低机电设备的发热量,在降低能耗的基础上延长胶带的使用寿命,最终提高胶带输送机的工作效率。

三使用变频技术改善

各电路元件间的逻辑关系,优化电路变频器由键盘、电机、电源板、控制主板等构成,结构相对复杂。采用变频节能技术改善电路元件之间的逻辑关系,不仅可以优化电路,为煤矿机电设备提供适宜的运行环境,而且能够在一定程度上延长煤矿机电设备的使用寿命。变频节能技术实现这一功能的关键在于通过IGBT等功率开关器件以及PWM控制技术,实现从交流到直流再到交流的转换。变频器电路一般包括主电路和控制电路两个部分,主电路的正常运行需要控制信号配合。通常电压检测电路会设置一个电压上限值,如果检测到的直流母线电压超过该上限值,电压检测电路便向变频器发出控制信号,使变频器的过压保护启动。

四结语

上一篇幼儿园论文

下一篇民商法论文