高密度电法勘探在矿区隧道工程的应用

高密度电法勘探在矿区隧道工程的应用

摘要:受甲方的委托,项目进行地质工程勘察。查明拟建隧道轴线范围内及其附近的地质构造或破碎构造带等不良地质体的分布状况,并对其进行评价,为其隧道的设计和施工、保证施工安全和工程质量提供地球物理信息。

关键词:高密度电法勘探;矿区隧道工程;勘查应用

本区域地处热带,为热带季风气候,夏秋炎热多雨,冬春温暖干旱偶有阵寒。本次物探工作共完成高密度电法测量剖面8条,共完成452个测点;通过数据处理及反演,绘制了8条物探推断解译及地质综合剖面图,根据物探资料和综合地质资料,综合推断构造破碎带1条及岩石破碎1处。测区覆盖层主要岩性为:花岗岩风化土(砂土、砂砾等),其电阻率一般在10Ω·m至100Ω·m之间,覆盖层下面花岗岩、局部为花岗斑岩等,其视电阻率大于400Ω·m,构造带或破碎带的电阻率在20Ω·m~100Ω·m之间。与围岩相比构造带或破碎带具有低阻之特征,为该区开展高密度电法提供地球物理特征的前提。

1高密度电法

1.1仪器设备

本次使用的高密度电法仪器为吉林大学研制的E60M型电法工作站,该电法工作站是一种新型的电法仪,仪器采用程控方式进行数据的采集和电极控制,采集的数据以图像的形式实时显示在屏幕上,以便您随时可以监控资料的质量[1]。该型仪器可以进行各种装置的高密度电阻率测试。同时,具有双频高密度激发激化法、自然电位法、充电法及瞬变电磁法等勘探方法可扩展,由于仪器本身配置有高性能的计算机,配合相应的处理软件系统,可对上述所采集的资料进行现场处理[2]。

1.2野外工作方法

1.2.1工作装置

E60M型仪器的主要功能,能够完成二极装置、单边三极装置、温纳装置、偶极装置和施伦贝尔,以及自定义数据采集模式等装置形式的高密度电阻率数据采集、图形显示工作。其对应的采集软件为EMS2008.EXE,该软件具有数据采集、数据文件存盘、数据文件的回放调用等功能。

1.2.2工作参数

通过多次现场试验,确定了野外工作参数如下:电极间距10m;每串电极数8根;供电时间1秒;自电补偿选择关闭;低通滤波器选择大于150kHz;进行50Hz工频干扰抑制;走极方式选择自动;选择剖面模式。

1.3高密度电法数据采集

设置工作参数后,检查线路及接地电阻使其达到工作要求。通过多次现场试验,在供电条件满足要求情况下,采集了温纳a、温纳beta、施伦贝尔装置。

1.4室内资料处理

E60M型仪器配有相关的数据采集软件,E60MEDIT观测系统编辑软件进行采集参数设置,将观测系统文件存为“.dat”文件,运行EMS2008高密度数据采集软件,在仪器菜单中调用观测系统文件,进行数据采集,数据采集完毕后,自动生成“.dat”和“.txt”文件进行数据存盘。根据现场干扰情况,在采集软件显示的原始剖面上进行畸变点删除。室内可利用RES2DINV软件对采集数据进行反演,绘制等电阻率剖面反演图。

2推断解释

2.11号测线剖面成果分析

综合工区地质资料及邻区的钻孔资料,依据反演模型电阻率带地形断面图中的等值线形态和梯度变化特征,厘定了视电阻率400Ω·m作为覆盖层与花岗岩基岩面之间临界电阻率,以此推测出整个剖面的地质体分界线。在剖面上260m和400m的位置分别是右隧道入出口的位置。从横向上看,浅地表有一些低阻的覆盖层,埋深约2m~10m,其中有部分高阻,推断为基岩出露或碎石土所致;其中在剖面240m~290m、标高+5m~+30m分布一中低阻区D1,其电阻率位于100Ω·m~300Ω·m之间,综合地质资料,推断为岩石破碎体所引起的低阻区域。在剖面360m下方,有一向小号点下方倾向延伸的低阻异常带,异常值小于150Ω·m,倾向小号点方向,该异常从标高+50m处向下延伸至标高-70m处。综合地质资料,推断该低阻异常由一构造破碎带引起,编号Fw1。

2.22号测线剖面成果分析

综合工区地质资料及邻区的钻孔资料,依据反演模型电阻率带地形断面图中的等值线形态和梯度变化特征,厘定了视电阻率400Ω·m作为覆盖层与花岗岩基岩面之间临界电阻率,以此推测出整个剖面的地质体分界线。在剖面上250m和400m的位置分别是左隧道入出口的位置。从横向上看,浅地表有一些低阻的覆盖层,埋深约1m~8m,其中有部分高阻,推断为基岩出露或碎石土所致;其中在剖面250m~300m、标高+5m~+38m分布一处中低阻区D1,其电阻率位于100Ω·m~200Ω·m之间,综合地质资料,推断为岩石破碎体所引起的低阻区域。在剖面355m下方,有一向小号点下方倾向延伸的低阻异常带,异常值小于150Ω·m,倾向小号点方向,该异常从标高+50m处向下延伸至标高-70m处。综合地质资料,推断该低阻异常由一构造破碎带引起,编号Fw1。

2.37号测线剖面成果分析

综合工区地质资料及邻区的钻孔资料,依据反演模型电阻率带地形断面图中的等值线形态和梯度变化特征,厘定了视电阻率400Ω·m作为覆盖层与花岗岩基岩面之间临界电阻率,以此推测出整个剖面的地质体分界线。从横向上看,浅地表有一些低阻的覆盖层,埋深约2m~10m,其中有部分高阻,推断为基岩出露或碎石土所致;其中在剖面270m~330m、标高+20m~+38m分布一处中低阻区D1,其电阻率位于100Ω·m~200Ω·m之间,综合地质资料,推断为岩石破碎体所引起的低阻区域。在剖面400m下方,有一向小号点下方倾向延伸的低阻异常带,异常值小于100Ω·m,倾向小号点方向,该异常从标高+50m处向下延伸至标高-50m处。综合地质资料,推断该低阻异常由一构造破碎带引起,编号Fw1。

2.48号测线剖面成果分析

综合工区地质资料及邻区的钻孔资料,依据反演模型电阻率带地形断面图中的等值线形态和梯度变化特征,厘定了视电阻率400Ω·m作为覆盖层与花岗岩基岩面之间临界电阻率,以此推测出整个剖面的地质体分界线。从横向上看,浅地表有一些低阻的覆盖层,埋深约1m~12m,其中有部分高阻,推断为基岩出露或碎石土所致;其中在剖面250m~300m、标高+23m~+40m分布一处中低阻区D1,其电阻率位于100Ω·m~200Ω·m之间,综合地质资料,推断为岩石破碎体所引起的低阻区域。在剖面360m下方,有一向小号点下方倾向延伸的低阻异常带,异常值小于100Ω·m,倾向小号点方向,该异常从标高+50m处向下延伸至标高-55m处。综合地质资料,推断该低阻异常由一构造破碎带引起,编号Fw1。

3结论

根据该项目的工作要求,在其拟建隧道轴线的勘探线上设计了两条物探剖面(剖面1和剖面2);隧道出口两端各布置3条交叉线(剖面3、4、5、6、7,8)。共完成8条高密度电法测量剖面,完成452个测点。现场数据采集均按照设计及有关规范要求完成,且野外数据采集真实可靠。同时,通过数据处理及反演,绘制了8条物探推测及地质综合剖面图。根据物探资料和综合地质资料,综合推断构造破碎带1条(Fw1)及岩石破碎1处(D1),这一推断成果对拟建隧道的设计和施工提供科学依据,具有一定意义。综上所述,现场数据采集均按照设计及有关规范要求完成,且野外数据采集真实可靠。同时,通过数据处理及反演,绘制了8条物探推测及地质综合剖面图。工区内交叉隧道轴向的几条剖面,由于周边水库影响了测线的长度,从而限制了高密度电法的勘探深度,建议在条件允许的情况下,开展对上述推断的构造破碎带采用超前钻进行验证,结合地质资料及钻探资料更准确的指导下一步的施工措施。

参考文献

[1]向江,张成良.高密度电法在隧道勘探中的应用[J].公路与汽运,2017(04):189-192+208.

[2]余灿鑫.高密度电法在隧道勘探中的应用[J].国防交通工程与技术,2016,14(05):74-77+29.

作者:张展 王富 孙发魁 单位:海南省地质综合勘察院