误差理论论文范例6篇

误差理论论文

误差理论论文范文1

关键词:误差理论;传感器;测控技术

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)30-0154-02

一、引言

工程测量中必然存在误差,误差的处理会影响测量数据的可靠性。误差理论与数据处理课程是测控技术与仪器专业的核心课程,学生对该课程知识的掌握好坏,直接影响其后续专业课程的学习,并将对其今后从事的精密检测、测试系统设计、质量控制、仪器设计及制造等工作产生持续深远的影响。测控技术与仪器专业由仪器仪表及精密测量等多个专业综合而成,在全国有两百多所高校具有此专业,也大多开设了误差理论的相关课程。其实,自高等学校首次设立误差理论与数据处理课程以来,它便得到了许多大学的高度重视。目前,除仪器仪表类专业外,很多学校在机电类专业及测绘类专业也开设了该课程。为了提供误差理论课程教学质量,已经提出了较多的教学方法改革方案[1-3],或者实践体系的改革[4]。这些教学改革大多针对误差理论和数据处理课程理论性较强的特征,通过增强实践教学环节,利用多种数据处理软件或者综合平台对学生进行实践训练[5]。这些教学方法的改革可以有效提高学生对误差理论和数据处理方法的认识,改善教学效果。

在全国高校的测控技术与仪器专业中,专业培养大多具有自己的特色和侧重。对误差理论课程的教学应该与专业特色相关联,为后续的专业课程奠定基础。本文针对传感器应用和动态测试技术为特色的专业培养体系,进行围绕传感器应用的误差理论课程教学改革。

二、误差理论在专业课程体系中的作用

误差理论课程在测控技术与仪器专业中大多属于专业基础课程,其前修课程包括高等数学、概率与数理统计和线性代数,它也是工程测试及系统设计、仪器设计、仪器应用类课程的重要基础和支撑课程。误差理论课程内容涵盖误差性质与分析、误差的发现、误差的处理以及基于误差的回归分析等,并使学生建立测量精度和不确定度等概念,这些知识会在自动控制、仪器设计等课程中得到应用。但是学生在学习误差理论的过程中,由于没有专业课和工程实践的学习锻炼,很难建立实际的应用概念,对误差的理解难以深入。

如果能从一类具体的应用出发,讲解误差的分析、发现和处理,这有利于学生对概念的理解。也为学生的学习找到一个方向,找到一个思路。在以传感器应用和动态测试技术为特色的培养课程体系中,传感器始终扮演着重要的角色。从非电量信号的获取、测量电路的设计和测试系统特性分析到数据的采集和处理,都围绕着传感器进行。误差理论在传感器的标定和传感器误差分析等方面都扮演着重要的角色,通过在误差理论教学中贯穿传感器应用的概念,有利于学生对误差概念的理解,更有利于特色专业课程体系的建立。

三、围绕传感器应用的教学方法

围绕传感器应用的误差理论教学方法,并不是只对传感器相关误差知识进行教学。而是将误差的理论和方法在传感器这个平台上进行应用,巩固知识加深理解。主要从课堂教学和实验实践环节进行教学方法的探索。

1.课堂教学。围绕传感器应用的误差理论课堂教学改革主要是改变以前的知识讲解思路。误差理论课程的知识结构主要分为误差的基本性质与处理、误差的合成与分配、不确定度及回归分析等几个部分,常见的课堂教学主要以理论讲解为主,在每个知识点后面会有相应的例题。误差理论课程含有很多抽象概念、公式,内容相对来说比较单调、枯燥,对于没有测量经验的学生,往往按照高等数学的学习习惯来学习误差,重计算,轻概念。学生往往记公式,难以灵活应用,由此影响了学习兴趣和教学质量。

对于以传感器应用和动态测试为特色的专业,学生从大三开始已经初步接触传感器的概念,同时在学校的学生实践实验室和各种电子类竞赛实验室都有许多传感器的应用实例,学生们对传感器应用有了基本的认识。所以,可以通过传感器的应用来进行误差理论的学习,如图1所示。针对误差理论课程中的四个主要知识模块,以压力传感器为例可以有相应的应用案例。在压力传感器的静态测量中,可能产生系统误差、随机误差和粗大误差。通过分析传感器和测量系统的误差来源认识系统误差,通过测量数据分析随机误差和粗大误差;对于压力传感器加信号调理电路的测量情况,通过传感器的误差和调理放大电路的误差可以学习认识误差的合成与分配;通过对一种确定的压力源进行测量,计算测量的不确定度;通过对压力传感器的标定学习基于误差理论的最小二乘法处理及回归分析等知识点。

2.实验教学。目前的误差理论实验教学往往借助计算机开设一些数据处理的实验,缺乏对测量误差及其来源的根本性认识。导致学生在学完该课程后,仍不能运用所学知识指导测试实践,解决实际问题。通过实际的传感器采集测量数据,可以生动直观地让学生进行误差的分析。我校的测控技术与仪器专业具有专门的传感器原理及应用实验室,不用重复建设,学生就可以完成多种传感器的实际信号采集。通过应用软件与采集系统对接就可以建立围绕传感器应用的误差分析实验教学。

以压力传感器标定进行误差理论课程中的回归分析实验教学,如图2所示。利用传感器实验室的油压标定机、电压放大滤波器、数据采集卡和数据处理软件,通过软件中误差分析功能对接,可以进行误差理论的实验教学。学生通过更换油压标定机的砝码改变输入压力值,获得多组测量数据。学生利用最小二乘法和回归分析的知识对这些数据处理以得到传感器的灵敏度。

四、结论

通过围绕传感器应用的误差理论教学,有助于学生对误差概念的理解,帮助学生找到一个从理论到实践的通道。利用现有的传感器应用实验室,通过误差处理软件的对接,直接完成了误差理论实验教学的改革。通过近年的误差理论课程教学,学生对误差理论课程的认知程度得到了提高。

参考文献:

[1]徐志玲,赵玉晓,金骥,等.“误差理论与数据处理”立体化课程设计与实践[J].实验室研究与探索,2014,33(11):191.

[2]宋爱国,崔建伟,符金波.“误差理论与数据处理”课程的教学改革[J].电气电子教学学报,2012,34(1):12.

[3]吴石林,张},刘国福,等.《误差理论与数据处理》课程教学改革初探[J].高等教育研究学报,2011,34(4):80.

误差理论论文范文2

关键词:支导线,位置误差,控制变量法,公式推导

 

0.引言

由于测角和量边误差的积累,必然会使导线点的位置产生误差。毕业论文,公式推导。。测角和量边误差是使导线点产生误差的根本因素。本文引用科学实验法中的“控制变量法”来推导支导线终点位置误差。“控制变量法”是指在分析每一个影响因素对结果产生的影响的时候,假设其它的影响因素对结果是没有影响或暂且不考虑其影响,这样得出的结果即为某一影响因素对结果产生影响的大小。

1.经典的理论方法推导支导线终点误差

《矿山测量》教科书用了大量的篇幅,依据误差传播的基本规律对支导线点位误差公式进行了推导,其思路清晰、理论易懂,推导测角误差所引起的终点点位误差。

图1-1支导线终点误差示意图

导线终点k的坐标是所有角度及边长的函数。根据偶然误差传播律,可得利用钢尺量距时终点k的坐标误差公式:

(1-1)

式中为导线各到导线终点K的连线长度

a为偶然误差系数,b为系统误差系数

为导线各边长

L为导线始点与终点的连线的长度。

2.相邻点法推导支导线终点误差

科教书中的推导方法经典,但是推导过程复杂繁琐,不易记忆。所以有学者提出了自己的推导方法来简化该推导过程,这样跟容易理解。以下为该方法的主要介绍。

2.1 经纬仪支导线任意相邻两点间误差传递公式

由经纬仪支导线测量知,导线点的位置误差主要是由于测角误差和量边误差的积累而产生的,而支导线测量的特点是依此传递的,每测站的测角和量边都是独立完成,对于任意相邻两导线点,假定其中一点为起算点,则另一点的坐标可表示为:

(2-2)

其中: 为相邻两导线点间的水平距离;n为两导线点之间的方位角。由误差传播规律知,任意相邻两导线点之间测角误差和量边误差对纵坐标的点位误差的影响为:

(2-3)

同理可求出对横坐标的点位误差

2.2 方位角传递误差引起的相邻导线点点位误差

导线任意边的方位角是测角的函数,其公式可表示为:

(2-4)

式中 —— 起算导线边的方位角;

­——所测导线各左角。毕业论文,公式推导。。

由式(2-1)式不难看出 ,式中的第二项是方位角传递误差引起的相邻导线点点位误差

假定起算方位角无误差,当测角精度相同,,根据误差传播规律有:

将上式代入方位角传递误差的公式推得:

(2-5)

2.3 终点点位误差的公式推导

将(2-4)式代入到(2-5)式得

同理

以上各式相加从而推出横坐标的点位误差

(2-6)

上式中第一项为起算点中误差,第二项为量边中误差。假定起算点无误差,量边误差采用教科书中推导值,则推出公式如公式(1-1)所示。

3.直接分析图形的方法,推导出公式

以上方法虽然比经典的方法简单一些,但仍少不了复杂的公式推导。我们在学习过程中,认真分析,从图形着手总结出新的方法,更加直观简便,以供大家参考研究。

3.1测角误差引起的支导线终点的位置误差

假设所测量的所有转角中,只有第一个转角有误差,其他的转角是完全正确的。那么在图形上表现为,所测量的导线绕着已知点1,以为半径整体发生了旋转,如图3-1所示。

图3-1

由图1可知,支导线终点K偏离真实位置的线量大小为=。其中为导线各到导线终点K的连线长度。

假设所测量的所有转角中,只有第二个转角有误差,其他的转角是完全正确的。那么在图形上表现为,所测量的导线绕着导线点2,以为半径整体发生了旋转.,如图3-2所示。

图3-2

由图2可知,支导线终点K偏离真实位置的线量大小为 =。

同理,我们可以求出第i个转角的误差使导线终点偏离真实位置的线量大小为

在实际的测量过程中,在没有明显错误的情况下,我们认为每个转角的测量都有误差,且测量中误差大小相等,都会对导线的终点产生,使其偏离真实的位置。所以综合考虑测角误差使终点偏离真实位置的大小为。

3.2量边误差引起的支导线终点的位置误差

对于光电测距导线来说,测距误差为式中A为固定误差,B为比例误差,为个导线边长。对于钢尺量距而言,测距误差为式中a为偶然误差系数,b为系统误差系数。由于钢尺量边常有系统误差存在,因此需要进一步分析量边偶然误差与系统误差对于终点K的坐标影响。这里我们只讨论钢尺量距

(1)量边偶然误差的影响

当无明显的系统误差时,即b=0,则。这是第i条边的误差对最终点位置的影响大小。综合考虑,当b=0时,量边对最终点的影响大小为

(2)量边系统误差的影响

当量边存在明显的系统误差时,由于它对边长的影响是单方面的,其大小与边长成正比。如图3-3所示,ABCDE为正确导线,假设在这条导线中没有其他误差的影响,只考虑量边系统误差的影响,而且假设所有边长均按相同比例伸,从而使导线变成A′B′C′D′E′,不难看出,它与正确导线的形状相似,因而导线各点的位置都从原来的正确位置,沿着该点与起始点A的连线方向移动了一段距离,其大小为相应连线的长度乘以系统误差影响系数b。

BB′=b×ABCC′=b×AC

DD′=b×ADEE′=b×AE

由此可见,由量边系统误差所引起的支导线终点的位置误差为

EE′=b×AE=bL

式中L为导线始点与终点的连线(叫做闭合线)的长度。

所以量边误差所引起的导线终点误差为

图3-3量边系统误差的影响

由以上分析可知,测角量边误差对导线终点的影响大小与公式(1-1)一样。无论用那种方法进行研究,得出的结果肯定是统一的。

4 总结

在井下测量作业过程中,无论是井下基本控制导线最弱点的误差精度估计还是贯通测量误差预计,经纬仪支导线都应用相当广泛。工作人员和学者对其特点进行了大量的研究,得出许多宝贵的理论和经验。这些经验给我们以后的实践带来了诸多的方便,我们可以直接应用于工作和研究中,这也有利用我们以后学习和工作。

由以上的分析可以得出以下结论:

(1)导线的精度与测角量边的精度、测站数目和导线的形状有关,而测角误差的影响对导线的精度起决定性作用。毕业论文,公式推导。。

(2)为了提高导线精度,减小导线点点位误差,首先应注意提高测角精度,同时应适当增大边长,已减小测站个数。

(3)有条件时,要尽量将导线布设成闭合图形,闭合导线可以消除系统误差的影响。

(4) R越大,误差越大,故有直伸型导线误差最大,曲折型导线较小。

参考文献:

[1]张国良,朱家钰,顾和和.矿山测量学[M].徐州:中国矿业大学出版社,2008:215-219

[2]周立吴,张国良,林家聪编.生产矿井测量[M]//矿山测量学(第一分册).北京:中国矿业学院出版社,1987.

[3]付金峰,高洁等.相邻点法推导支导线终点误差[J].矿山测量.2004,1:49-50

[4]李洪涛,王磊,法惟刚.解析法分析支导线终点误差[J].有色金属(矿山部分).2009,61(2):19-21

误差理论论文范文3

关键词: 经典测量平差;现代测量平差;高斯- 马尔柯夫误差模型;误差模型扩展Abstract: This paper combine with the specific examples, carried out a detailed introduction to the Shenyang Metro Line adjustment by the use of new technology, and then introduced the theory of gross error in the measurement data processing, error handling treatment, ill-posed problems treatment, the treatment of inequality nonlinear problems and the development of constraints adjustment, and finally sum up the development of other data processing theory.Key words: classical surveying adjustment; modern surveying adjustment; Gauss - Markov error model; error model expansion中图分类号:P207+.2 文献标识码:A文章编号:

1现代测量平差与数据处理理论发展概述

现代我们依然是以高斯- 马尔柯夫模型为核心的现代测量平差与数据处理理论,通过这个模型在不同层面上的扩充、发展,目前已经形成了很多的新方法。比如, 误差从偶然误差扩展到系统误差引出了系统误差处理的有关理论和方法,误差从独立扩展到相关导出了相关平差的理论;参数从无先验信息扩展到有信息先验则引出了滤波、配置和推估方法等;误差从偶然误差扩展到粗差导出了粗差探测理论、稳健估计理论等,从满秩扩展到秩亏则引出了秩亏网平差理论;参数从与时间无关扩展到与时间相关引出动态测量数据处理理论;模型从线性扩展到非线性引出了非线性平差理论;观测从单一种类观测扩展到多类观测引出方差估计理论、信息融合等理论;待估参数扩展到函数导出非参数统计、小波分解、半参数回归;模型从无约束扩展到有等式约束、到不等式约束导出了附不等式约束平差理论等。

2 粗差处理理论与技术的发展

经典的测量平差与数据处理理论是建立在观测误差为偶然误差的假设上的,计算的最优性也只是在观测误差为偶然误差的假设基础上成立。但观测难免会出现粗差, 尤其在现代测量中,观测数据量大、自动化程度高, 影响观测的各种环境因素难以控制的情形。也有统计学家曾经根据大量数据分析指出生产实际和科学实验中, 粗差的出现大约占观测总数的1 %~10 % 。在观测出现粗差的时候, 传统的最小二乘方法则难以取到最优结果。

经过实践证明,在观测受到很小的污染时, 估计就会优于最小二乘估计, 这是统计研究的结果。实际上, 在有大粗差出现的时候,就可能会给经典平差的结果带来严重的影响, 所以, 在现代测量数据处理中把如何消除粗差的影响放在了越来越重要的位置。在我们现代测量与数据处理理论中,主要是从两个方面来对粗差影响来消除的, 一是把粗差看作一种随机的大误差, 从粗差主要影响来观测方差的角度进行研究, 即使用污染误差模型中的方差扩大模型作为误差模型, 使用抗差估计(稳健估计) 等方法来消除粗差的影响;二是把粗差看作非随机, 从粗差主要影响观测值的均值的角度来开展研究, 即使用污染误差模型中的均值移动模型作为误差模型, 使用粗差探测的有关方法来发现和剔除粗差。该方法在原则上有一定的约束性,一般是只适用于一维粗差探测,但是对于多维粗差探测, 国际国内的许多专家都在使用不同的数学和统计方法来进行过尝试。

近年来, 欧吉坤教授又提出了一个拟准平差的方法, 目前仍然有很多学者从事这方面的研究。根据粗差探测的能力, 又可以判断观测和估计结果的可靠性, 从而建立测量方案设计的可靠性理论。对于变量多、数据量大的情形, 实际上, 仍然是一维的方法代替多维方法进行探测。

3 系统误差处理理论与技术的发展

关于系统误差的处理目前国际国内通用的主要方法是采用附加系统参数的平差方法,即根据观测对象、观测过程、及外界条件的物理特性等先验信息, 建立系统误差与某些因素的函数关系, 通过附加参数实现消除系统误差影响的目的。但当系统误差的性态比较简单, 函数关系比较准确时, 这种方法能很好地消除系统误差的影响,如果系统误差关系比较复杂难以用简单的函数描述时, 这种方法则难以取得很好的效果。第二种方法是半参数回归的方法, 半参数方法的优点是不需要对模型误差或系统误差的规律有明确的了解, 因而这种方法在近年得到了测绘工作者的广泛重视。它的缺点就是只利用了数值计算中函数的光滑性去逼近非参数部分, 目前并没有成熟的方法利用关于系统误差的先验知识。另外,有一个传统的方法是通过精化客观的物理模型来削弱系统误差的影响(精化模型法) ,比如, 通过精化大气模型等来改正和减少大气的系统性误差影响, 通过精密星历来减少轨道误差的影响等, 但数学模型与客观实际总会有差别,尤其是当客观实际变化较大,难以用数学模型描述时, 这些方法的应用就会受到限制。例如, 对于GPS 定位测量, 即使使用精化模型后,残余的误差仍将会以系统误差为主。系统误差处理还有一些其它的方法, 例如观测值的线性组合方法、差分方法等, 这些方法主要是针对一些特殊的测量手段(如GPS) ,并且只在一定范围内有效(如短基线) 。

4 平差新技术的具体应用

沈阳地铁二号线北延长线作为东北总部基地项目配套的交通设施,将沈(阳)铁(岭)城际铁路‘连为一体’意义十分重大。为满足工程建设需要,需布设首级GPS平面控制网,精度等级为国家D级。本次工程由我院生产管理科下达任务,工程测量室控制二组承担任务,于2010年3月25日至3月30日完成全部工作。

1)三维无约束平差及精度评定

三维无约束平差的目的主要有以下三个方面: 粗差分析,以发现观测量中的粗差并消除其影响;调整观测量的协方差分量因子,使其与实际精度相匹配;对整网的内部精度进行检验和评估。

本次三维无约束平差在WGS-84系统下进行,选择位于测区中心的 0224 作为起算约束点。三维无约束平差的精度统计如下:

三维约束平差的目的是将全网重新作整体平差, 将全所有独立基线向量及其经调整后的协方差阵作为观测量。平差时为消除星历和网的传递误差引起的整网在尺度和方向上的系统性偏差,应对全面网加入一个尺度和三个转换参数。

根据已知点间内符合精度比对选取满足要求的起算点。根据地铁二号线北延长线走向和比对结果,采用A0001,A0002,A0003三点为起算点,A0004作为检查点。三维约束平差在WGS-84系统下进行,精度统计如下:

改正数较差绝对值统计

2)二维约束平差

二维约束平差的目的是将GPS基线向量观测值及其方差阵转换到国家或地方坐标系的二维平面(或球面)上,然后在国家或地方坐标系中进行二维约束平差。转换后的GPS基线向量网与地面网在一个起算点上位置重合,在一条空间基线方向上重合,保证二维基线向量网与地面网之间只存在尺度差和残余的定向差。

根据已知点间内符合精度比对选取满足要求的起算点。根据地铁二号线北延长线走向和比对结果,采用A0001,A0002,A0003三点为起算点,A0004作为检查点。

平差精度统计如下:

5 非线性模型处理理论与方法

非线性平差目前的主要算法有遗传算法、直接解法、迭代法 (高斯- 牛顿法、牛顿迭代法、及相应的修正方法等) 、模拟退火算法等。对于非线性平差的方差估计出现问题, 王志忠采用差分代替微分的方法, 提出了非线性模型中严格的和简化的方差和协方差分量估计的迭代公式, 这些公式适用于所有随机模型和函数模型。

6 不等式约束平差模型新算法

在大地测量数据处理中, 许多情况都是根据先验知识建立对参数的某种约束, 假如所建立的约束是不等式形式, 则形成了具有不等式约束的平差模型,不等式约束平差问题的主要有两种算法。一种是将约束平差问题转化,简化为一个最小距离问题 , 然后用非线性规划的方法来求解。这种该方法也有一定的弊端,由于解通过迭代获得, 不能够表达成观测的显式形式, 难以进行精度评定;另一种是将不等式约束转换成对参数的一种先验知识, 假设未知参数在不等式规定的区间内服从均匀分布, 然后以贝叶斯统计推断理论为基础获得参数的验后分布, 相应的贝叶斯解与单纯形解完全一致, 能够计算贝叶斯解的均方误差矩阵, 验后均值及其均方误差矩阵, 从而解决解的精度评定问题。但是不能够得到解向量与观测向量之间的显式表达式, 因而不容易得到参数估计值的统计特性。参数维数较高时, 积分计算十分复杂。

7 其他数据处理方法综述随着技术的发展, 数据处理的方式出现多样化、复杂化, 多种数据处理的理论和方法也得到了相应的发展, 多种数学理论在测量平差中得到广泛应用。当平差问题涉及不同类观测时, 就提出了不同类观测权的确定问题, 由此导出了方差分量估计理论,方差分量估计的理论目前已经比较成熟。就目前测绘中许多情况下, 系统参数是随时间发生变化而变化的, 因此卡尔曼滤波理论在测量数据处理中得到了广泛的应用和发展。与经典的平差模型相比, 由于系统参数随时间发生变化, 因此平差模型中增加了描述系统变化规律的系统方程。经典模型中的观测也是与时间无关的, 观测主要是针对静态的观测对象进行的。但现代测绘中, 许多观测本身是针对一个动态过程的, 因而观测是与时间相关的, 由此时间序列的理论、小波方法、经验模式分解等理论在测量数据处理中得到了应用和发展。当涉及到先验信息和其他非观测信息时, Bayes理论、模糊数学等得到了应用和发展。当然涉及到地学空间信息处理时, 地学空间统计学得到了发展。除此以外, 神经网络、模式识别等在测绘领域中都得到了广泛的应用。由于技术的发展, 观测种类越来越多, 观测模型越来越复杂, 测量平差与数据处理的理论和方法必将得到进一步的发展, 在各种新技术中的应用将越来越重要。

8结束语

误差理论论文范文4

(河北民族师范学院,河北 承德 067000)

【摘 要】针对求解分数阶微分方程数值解和所得结果误差大小问题.采用Haar小波分数阶积分算子矩阵方法,得到一类变系数分数阶微分方程数值解.利用所得算子矩阵将原分数阶微分方程转化为代数方程组,进而便于编程求解.讨论算法的误差分析,给出相应的误差估计式,并证明该算法是收敛的.结果表明:随着点数的增多,所得数值解与精确解的误差也越来越小.最后,数值算例验证了方法的有效性以及理论分析的正确性.

关键词 Haar小波;变系数;分数阶微分方程;算子矩阵;误差分析;误差估计式;精确解;数值解

分数阶微积分计算是一个久远的话题,它最早起源于Leibniz和Newton建立的整数阶微积分理论初期.从17世纪末至今,分数阶微积分理论已经发展了几百年.在世界各国科研人员的研究和推动下,分数阶微积分理论取得了巨大进展,实际中的应用发展快速.复物理、力学、生物和工程的建模问题是推动分数阶微积分理论和应用研究的力量,这些模型中的分数阶微积分的阶数具有一定的物理意义和几何意义.

近年来随着分数阶导数成为描述各类复杂力学与物理行为的重要工具,分数阶微分方程的数值算法研究也备受关注.针对不同类型的分数阶微分方程已经提出不同的数值算法,这些算法主要有,有限差分法、Adomian分解法,广义微分变换法等.小波法求分数阶微分方程数值解是最近新型的数值方法.根据小波基函数的不,相应的提出了许多小波方法求解分数阶微分方程,Rehma和Khan利用Legendre 小波求解线性和非线性分数阶微分方程.Saeedi等采用CAS小波求解一类非线性Fredholm积分微分方程.但就该方法误差分析的研究还相对较少.本文基于Haar小波分数阶积分算子矩阵研究一类分数阶微分方程,重点讨论该算法的误差分析.

1 分数阶微积分的定义

分数阶微积分理论在发展过程中,出现了多种分数阶微分定义,本文讨论Capotu分数阶微分定义及Riemann-Liouville分数阶积分定义.

6 结论

利用Haar小波分数阶积分算子矩阵求解了一类分数阶微分方程,将原问题转换为求解线性代数方程组问题.误差分析证明了该算法是收敛的,同时给出了误差估计式,得到了相应的误差上界.文中所提出的方法计算量小,是一种有效的算法.

参考文献

[1]任建娅,尹建华.小波方法求一类变系数分数阶微分方程数值解[J].辽宁工程技术大学学报:自然科学版,2012,31(6):925-928.

误差理论论文范文5

关键词:控制测量、精密单点定位、中误差、界址点

中图分类号:G812.42文献标识码:A

引言

CORS系统作为GPS技术发展新的技术层面,是多学科综合成果的结晶。在诸多测量应用领域GPS技术都可以取代常规的控制测量方法而被广泛认可和应用,同时它具有不同于常规测量手段的诸多特点,在不同测区也会各不相同,因此对用户,尤其是数据处理人员提出了较高的要求:数据处理人员必须具备熟练运用计算机的能力,熟悉GPS的定位原理和误差理论;掌握近代测量平差和大地测量知识,特别是GPS测量的误差来源和数据处理的质量控制等关键的问题。本文结合国土部关于全国农村宅基地调查项目就一些常见的误差来源和数据处理中的某些问题进行分析,阐述CORS系统的精度指标,以及在市农村宅基地测量中的实际精度,为将来CORS系统发展奠定广阔的空间作为参考依据。

CORS系统误差

GPS测量是通过地面仪器设备接收卫星传送的数据信息来确定地面坐标点位的三维坐标,测量结果的误差主要来源于GPS卫星、卫星信号的传播过程、GPS接收机等地面接收设备和其他因素等。CORS系统作为GPS测量的一种方式,也存在着测量误差的因素。CORS系统按误差性质可分为偶然误差与系统误差两类。偶然误差主要包括多路径效应;系统误差主要包括卫星的星历误差、卫星钟差、接收机钟差以及大气折射的误差等。其中系统误差无论从大小还是对定位结果的危害性讲都比偶然误差大的多,它是GPS测量的主要误差来源。但系统误差有一定的规律可循, 可采取措施加以消除和减少。减小对控制测量和界址点位测量精度的影响。

CORS系统的精度

根据城市需要建立的D级GPS控制网。该控制网利用国家、地方各等级点位标志,选择已有高等级点位,构成市国土测绘院D级GPS控制网。

(1)数据处理软件:采用南方测绘仪器公司开发的GPS数据处理软件;

(2)WGS84坐标系下经典自由网平差并求取平差后WGS84坐标及点位精度;点位中误差:±5.063mm;

(3)二维网约束平差:点位中误差:±9.417mm;边长中误差:±28.889mm;最弱边相对中误差1:98767;

(4)高程拟和平差:高程中误差:±1.204mm。

因此,从CORS系统理论精度完全能满足农村宅基地测量的要求。

CORS系统实验方法

1、CORS采集地点

在野外测量时,劲量选择开阔地带,选择高度截止角10°范围以内,这样使得接收的卫星数范围大,接受的卫星数多,参与结算的数据增加,减小误差,使得结算的数据精度更高。

2、CORS采集时间

在测区内选取了一个测试点,从上午9时左右至次日上午9时左右,连续观测站12个小时,采样间隔为5秒,平面残差大于5cm的5个。因此,总超限数为14个,系统的可用率为99.89%。另外,在数据采集过程中,通过采集成果显示在每天中午11时至13时,数据采集效果不是很好,作业时为避免超限,在此时间段进行休息。

3、CORS采集方法

系统CORS测试的外延较好,网外30km流动站设备仍能完成初始化,且内外符合精度满足设计要求。作为图根基础的控制点,通过仪器进行控制测量采集,数据基本上在2分钟至3分钟内完成数据的采集,采集的中误差都在8mm之内,全部采集的数据合格率为100%。

完全能够满足作为地籍测量的控制成果。

CORS系统测试结论

(1)CORS网络在整个覆盖区域内精度稳定,误差能够达到作业要求。

(2)CORS系统运行稳定,内外符合精度达到设计要求,网内精度分布均匀,初始化时间普遍小于20秒。

(3)各种通讯方式(GPRS、CDMA)都满足用户终端对通讯能力的要求。

结论:

经上述对连续运行卫星定位参考站系统(CORS)的精度和误差指标的分析,本CORS系统运行稳定、精度指标完全能够满足农村宅基地的测量要求,并且可以替代常规的导线作业方式,适合在更广泛的领域惊醒应用。

结束语

随着我国经济的快速发展,土地资源的合理利用与开发,农村宅基地作为土地资源的基础数据事关我国的经济发展重要因素。本文在探讨分析农村宅基地测量基础--控制测量和界址点位测量误差及精度指标,作为农村宅基地面积核算解析基础,控制测量和界址点位测量的应用技术GPS,CORS作为GPS的一个新的发展层面,无论从理论还是从实际作业精度指标,CORS系统完全能满足《地籍测量规范》的技术要求,CORS系统的便捷性、灵活性和高精度性在以后的地籍测量、工程测量中提供广阔的应用前景。

参考文献:

[1]《全球定位系统(GPS)测量规范》(GB/T 18314-2009)

[2]《全球定位系统实时动态测量(RTK)技术规范》CH/T 2009-2010

[3]《卫星定位城市测量技术规范》CJJ/T 73-2010

[4]《第二次全国土地调查技术规程》(TD/T1014—2007)

[5]《工程测量规范》( GB50026-93)

误差理论论文范文6

中图分类号:P228.1文献标识码: A 文章编号:

地理信息系统(GIS)是以采集、存贮、管理、处理、更新、分析、描述和应用地理空间数据的计算机系统,它是一门集计算机科学、地理学、测绘遥感学、环境科学、城市科学、空间科学、信息科学、管理科学为一体的新兴边缘学科。但是,作为GIS中不确定性研究尚属开始,须进一步加强研究工作。

GIS中所表示的每个物体都具有定位和属性两方面的内容,它们均含有误差,因此GIS中的不确定性可分为定位不确定性和属性不确定性两大类型。本文仅讨论有关于定位不确定性的问题。

点、线、面是矢量GIS的3个基本要素。而点的定位不确定性问题在测绘界已有很长的研究历史,而且取得了比较满意的结果。当不考虑属性误差时,面内部的点不受边界线要素定位误差的影响,完全确定。因此面要素的定位不确定性又由边界线要素的定位不确定性唯一决定。因此,矢量GIS的定位不确定性问题最终集中到了线要素的定位不确定性上来。

关于线要素的定位不确定性,国外学者已作了不少的研究。例如,早在1982年Chrisman提出利用ε误差带来表示线要素的定位不确定性问题,紧接着1986年Honeycuft 讨论了点在ε误差带内或附近的概率,Dutton在1992年模拟了线段定位误差的分布,Caspary等于1992年提出用误差带来表示线段上点的误差分布。尽管在这一方面作了不少研究,但是纵观起来,还缺少一种能够定量反映误差大小的综合模型和能够衡量其质量的精度指标。本文旨在根据点的误差特性,从概率论的角度,建立线段的定位不确定性模型,在此基础上,再定义一套精度指标,为GIS的质量评定提供理论依据。

1线要素的定位不确定性模型

在矢量GIS中,线是由若干条线段构成的。因此要想构造线要素的定位不确定性模型,必须从线段入手。

线段的概率分布

线段是指两端点的边线,因此线段上任意点的坐标为(图1)

其中 。在仅考虑随机误差的情形下,进一步假定各结点坐标服从二维正态分布,且结点之间独立等精度,则:

根据误差传播律,线段上的任意点坐标也服从二维正态分布:

由(4)式提供的二维正态分布函数,可以获取线段上任意点在任意方向上的边缘分布函数。在众多的分布函数中,我们真正感兴趣的是垂直于线段方向上的误差分布情况。因此有必要推求一下,线段上任意点在垂直于线段方向上的概率密度函数。

为便于推导,先作坐标系旋转,使y′轴与线段方向一致,则有:

式中:

θ是坐标系的旋转角,

线段端点,除了考虑垂直于线段方向上的概率分布外,还需顾及线段方向上的概率分布,因此仍需采用二维正态分布的概率密度函数来表示。在新坐标系中,6Zt(t=1,2)的概率密度函数为(图2):

其中:

显然,旋转后Z1、Z2点的坐标协方差阵是相等的,即。

综合前面所述,整条线段的概率密度函数为:

图3给出了相应的图形。

1.2 置信区域

前面讨论了线段的概率密度函数,它描述的是线段量测位置在真值位置附近的分布状况。然而实际上真值位置不可知,因此在使用上受到了限制。不过,我们可以以量测线段为中心,构造一个置信区域,使真值以大于给定的概率落在该区域内。

在前面的假设前提下,线段两端点Z1、Z2均服从正态分布。若已知线段上任意点Zr的方差阵,则可以证明Xr和yr均服从自由度为2的X2分布, 由此分布即可构造出ξr的置信区间Jr。为保证整条线段以大于相应的概率落在各自的区间内,即:

式中的Jr为满足下式(x,y)r的点集

式中:

(2),可查自由度2,置信水平为1-(1+α)/2的X2分布表。显然线段的置信区域就是由所有的Jr(0≤r≤1)集合而构成的一个区域(图4)。

由式(9)很容易得出,当r=0或1时,(1-r)2+r2取最大值,当r=1/2时,取最小值,这意味着线段两端点的置信区域最宽,中间点最窄,也就是说两端点误差最大,精度最差,中间点误差最小,精度最高。从线段上任意点的方差公式(4)也可得出相似的结论。因此不确定性带是两头宽,中间窄的“哑铃”形区域,当然这是在假定线段上任意点坐标仅依赖于两面端点的前提条件下的。

线要素的定位精度指标

2.1 段、线均方差σs、σL

基于线段的概率分布,可取线段上任意点在垂直于线段方向上的方差的平均值作为线段的精度指标。即:

式中:

由上式可以看出,在假定各点坐标独立且等精度的前提条件下,线段的段均方差σs与坐标旋转角θ有关。

考虑到线要素是由若干条线段构成的,因此进一步定义线要素的精度指标为构成线要素的所有线段均方差σs的平均值:

式中n为线段的总条线。

2.2 p维超空间误差椭球

由于线段由两端点坐标唯一决定,因此可把它看作一四维随机向量(x1,x2, x3, x4),相应的线要素可用p维随机向量(x1,x2,……,Xp)来表示。

由Hotelling的T2分布、F分布定义式及统计的一些性质知,[(n-1+1-P)]T2/(n-1) p服从自由度为[p,(n-1)+1-P]的F分布。其中:

因此有:

化简后得:

式中:

当n趋于无穷时,是μ的无偏估计,s是的无偏估计,因此式(14)左边即为p维多变量正态分布密度函数的指数部分。而p维超空间误差椭球定义为:

上式等价于:

显然,当a,p, n确定后,k(n,p) F(p, n-p,a)是一个常数,因此式(14)表示的是一p维超空间误差椭球。可以证明 即是p维超空间误差椭球的长轴半径,其中λmax是s阵的最大特征值。

3小结

线要素是矢量GIS的一个基本要素,而线又是若干条线段构成的。本篇论文在假设条件成立的前提下,以线段为基本单元,构造了包括概率分布和置信区域两方面内容的定位不确定性模型。在此基础上,定义了衡量线要素质量的精度指标,为GIS产品质量估计提供理论依据。

显然,本篇论文的研究具有很大的局限性,有众多方面值得进一步拓宽。例如,如何把模型进一步扩展到各结点之间相关、不等精度的情形。本文考虑的仅是结点误差引起的不确定性,而事实上,在数字化时,内插误差有时可能会大于结点的定位误差,因此如何把它综合到一起也是值得进一步探讨的问题。

参考文献

Chrisman N R. A theory of Cartographic error and its measurement in digital data base. Proceedings of Auto-Carto 5,1982

Honeycutt D M. Epsilon, generalization and probability in spatial data base. 1986