扩频技术论文范例6篇

前言:中文期刊网精心挑选了扩频技术论文范文供你参考和学习,希望我们的参考范文能激发你的文章创作灵感,欢迎阅读。

扩频技术论文

扩频技术论文范文1

关键词:扩频通信原理特点发展应用

一、扩频通信的工作原理

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用。扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

扩频技术论文范文2

在发端输人的信息先调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱,展宽后的信号再调制到射频发送出去。在接收端收到的宽带射频信号,变频至中频,然后由本地产生的与发端相同的扩频码序列去相关解扩,再经信息解调,恢复成原始信息输出。可见,一般的扩频通信系统都要进行3次调制和相应的解调。一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,以及相应的信息解调、解扩和射频解调。与一般通信系统比较,多了扩频调制和解扩部分。扩频通信应具备如下特征:(1)数字传输方式;(2)传输信号的带宽远大于被传信息带宽;(3)带宽的展宽,是利用与被传信息无关的函数(扩频函数)对被传信息的信元重新进行调制实现的;(4)接收端用相同的扩频函数进行相关解调(解扩),求解出被传信息的数据。用扩频函数(也称伪随机码)调制和对信号相关处理是扩频通信有别于其他通信的两大特点。

二、扩频通信技术的特点

扩频信号是不可预测的、伪随机的宽带信号,其带宽远大于要传输的数据(信息)带宽,同时接收机中必须有与宽带载波同步的副本。扩频系统具有以下特点。

1.抗干扰性强

扩频信号的不可预测性,使扩频系统具有很强的抗干扰能力。干扰者很难通过观察进行干扰,干扰起不了太大作用。扩频通信系统在传输过程中扩展了信号带宽,所以即使信噪比很低,甚至在有用信号功率低于干扰信号功率的情况下,仍能不受干扰、高质量地进行通信,扩展的频谱越宽,其抗干扰性越强。

2.低截获性

扩频信号的功率均匀分布在很宽的频带上,传输信号的功率密度很低,侦察接收机很难监测到,因此扩频通信系统截获概率很低。

3.抗多路径干扰性能好

多路径干扰是电波传播过程中因遇到各种非期望反射体(如电离层、高山、建筑物等)引起的反射或散射,在接收端的这些反射或散射信号与直达路径信号相互干涉而造成的干扰。多路径干扰会严重影响通信。扩频通信系统中增加了扩频调制和解扩过程,利用扩频码序列间的相关特性,在接收端解扩时,从多径信号中分离出最强的有用信号,或将多径信号中的相同码序列信号叠加,这样就可有效消除无线通信中因多径干扰造成的信号衰落现象,使扩频通信系统具有良好的抗多径衰落特性。

4.保密性好

在一定的发射功率下,扩频信号分布在很宽的频带内,无线信道中有用信号功率谱密度极低,这样信号可以在强噪声背景下,甚至在有用信号被噪声淹没的情况下进行可靠通信,使外界很难截获传送的信息,要想进一步检测出信号的特征参数就更难了.所以扩频系统可实现隐蔽通信。同时,对不同用户使用不同码,旁人无法窃听通信,因而扩频系统具有高保密性。

5.易于实现码分多址

在通信系统中,可充分利用在扩频调制中使用的扩频码序列之间良好的自相关特性和互相关特性,接收端利用相关检测技术进行解扩,在分配给不同用户不同码型的情况下,系统可以区分不同用户的信号,这样同一频带上许多用户可以同时通话而互不干扰。

三、扩频技术的发展与应用

在过去由于技术的限制,人们一直在走增加信号功率,减少噪声,提高信噪比的道路。即使到了70年代,伪码技术已经出现,但作为相关器的“码环”的钟频只能做到几千赫兹也无助于事.近几年,由于大规模集成电路的发展,几十兆赫兹,甚至几百兆赫兹的伪码发生器及其相关部件都已成为现实,扩频通信获得极其迅速的发展.通信的发展史又到了一个转折点,由用信噪比换带宽的年代进入了用宽带换信噪比的年代.从最佳通信系统的角度看扩频通信.最佳通信系统一最佳发射机+最佳接收机.几十年来,最佳接收理论已经很成熟,但最佳发射问题一直没有很好解决,伪码扩频是一种最佳的信号形式和调制制度,构成了最佳发射机.因此,有了最佳通信系统一伪码扩频+相关接收这种认识,人们就不难预测扩频通信的未来前景.从9O年代无线通信开始步人扩频通信和自适应通信的年代.扩频通信的热浪已经波及短波、超微波、微波通信和卫星通信,码分多址(CDMA)已开始广泛用于未来的峰窝通信、无绳通信和个人通信以及各种无线本地环路,发挥越来越大的作用.接入网是由传统的用户线、用户环路和用户接入系统,逐步发展、演变和升级而形成的.现代电信网络分为3部分:传输网、交换网和接入网.由于接入网发展较晚,往往成为电信发展的“瓶颈”,各国都很重视接入网的发展,因此各类接人技术和系统应运而生.由于ISM(IndustryScientificMedica1)频段的开放性,经营者和用户不需申请授权就可以自由地使用这些频段,而无线扩频技术所使用的频段(2.400~2.483)正是全世界通用的ISM频段,包括IEEE802.11协议架构的无线局域网也大部分选用此频段.在无线接人系统中,扩频微波与常规微波相比有着3个显著的优点:抗干扰性强、频点问题容易处理、价格比较便宜.而且,扩频微波接入技术相对有线接入技术来说,有成本低、使用灵活、建设快捷的优势,在接入网中起着不可替代的作用.

扩频微波主要应用在以下几个方面.语音接入(点对点);数据接入;视频接入;多媒体接入;因特网(Internet)接入。

四、结语

扩频通信是通信的一个重要分支和发展方向,是扩频技术与通信相结合的产物。本文主要论述了扩频通信的特点、理论可行性及典型的工作方式。扩频通信的强抗干扰性、低截获性、良好的抗多路径干扰性和安全性等特点,使它的应用迅速从军用扩展到民用通信中,它的易于实现码分多址的特点,使它能与第三代移动通信系统完美结合,发展前景极为广阔。

参考文献:

[1]曾兴雯等.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社,2004.

[2]查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社,2004.

[3]吴慎山,万霞,吴东芳.扩频通信的发展与应用研究[J].河南师范大学学报(自然科学版),2008(5).

扩频技术论文范文3

【关键词】混沌加密;光学通信;应用

二十世纪六十年代,人们发现了混沌理论。混沌理论即一个给出混乱、随机的分周期性结果的模型,却是由确定的非线性微分方程构成。混沌是一种形式非常复杂的运动,看似杂乱无章的随机运动轨迹,却是由一个确定方程模型得出。混沌对初始条件的敏感度非常高。密码技术是一种研究使用密码进行加密的技术,而随着信息技术的发展,窃取加密密码的方法越来越多,并且随着传统密码技术的不断使用和技术公开,传统密码技术的保密性已经降低,所以一些新的密码技术开始出现,其中包括混沌加密、量子密码以及零知识证明等。本文首先介绍混沌加密密码技术,然后介绍光学通信,最后重点探讨混沌加密在光学通信中的应用。

1.混沌加密

我们首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。混沌的特征主要有:混沌运动轨迹符合分数维理论,混沌轨迹是有序与无序的结合、并且是有界的伪随机轨迹,混沌运动具有遍历性,所有的混沌系统都具有几个相同的常数、并且符合利亚普诺夫指数特性,混沌运动的功率谱为连续谱线以及混沌系统具有正K熵等。混沌加密是一种新的密码技术,是将混沌技术与加密方法相结合的一种密码加密技术。混沌加密的方法有很多种,根据不同的通信模式,可以选择不同的加密方式与混沌技术结合,以实现信息的加密传输。混沌加密的常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。

2.光学通信

之所以将混沌加密应用在光学通信中,是因为光学中存在混沌现象,这种混沌现象既包括时间混沌现象也包括空间混沌现象。光学通信是一种利用光波载波进行通信的方式,其优点是信息容量大、适应性好、施工方便灵活、、保密性好、中继距离长以及原材料来源广等,光纤通信是光学通信中最重要的一种通信方式,已成为现代通信的重要支柱和发展趋势。光纤通信系统的组成主要包括:数据信号源、光数据传输端、光学通道以及光数据接收端等。数据信号源包括所有的数据信号,具体体现为图像、文字、语音以及其他数据等经过编码后所形成的的信号。光数据传输端主要包括调制解调器以及计算机等数据发送设备。光学通道主要包括光纤和中继放大器等。光数据接收端主要包括计算机等数据接收设备以及信号转换器等。

3.探讨混沌加密在光学通信中的应用

在光学通信中,应用混沌加密技术对明文进行加密处理,以保证明文传递过程中的安全性和保密性。本文重点对混沌加密在光学通信中的应用进行了探讨。其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。

3.1混沌加密常用方法

连续流混沌加密方法:连续流混沌加密利用的加密处理方式是利用混沌信号来掩盖明文,即使用混沌信号对明文进行加密处理。连续流混沌加密方法常应用在混沌掩盖加密方案以及混沌参数加密方案中。其加密后的通信模式是模到模的形式。

数字流混沌加密方法:其加密后的通信模式是模到数再到模的形式。

数字信号混沌加密方法:其加密后的通信方式是数到数的形式。主要包括混沌时间序列调频加密技术以及混沌时间编码加密技术。主要是利用混沌数据信号对明文进行加密。

3.2光学通信中混沌加密通信常用方案

在光学通信中,利用混沌加密技术进行通信方案的步骤主要包括:先利用混沌加密方法对明文进行加密(可以使用加密系统进行这一过程),然后通过光钎进行传输,接收端接收后,按照一定解密步骤进行解密,恢复明文内容。

混沌掩盖加密方案:其掩盖的方式主要有三种:一种是明文乘以密钥,一种是明文加密钥,一种是明文与密钥进行加法与乘法的结合。

混沌键控加密方案:其利用的加密方法主要为FM-DCSK数字信号加密方法。该方案具有良好的抗噪音能力,并且能够不受系统参数不匹配的影响。

混沌参数加密方案:就是将明文与混沌系统参数进行混合传送的一种方案。这种方案增加了通信对参数的敏感程度。

混沌扩频加密方案:该方案中,扩频序列号一般是使用混沌时间序列,其加密方法是利用数字信号,该方案的抗噪音能力特别好。

3.3光学通信中两级加密的混沌加密通信方案

为了进一步保证传输信息的安全保密性,需要对明文进行二次加密。其步骤是:首先先对明文进行第一次加密(主要利用双反馈混沌驱动系统产生密钥1,然后将明文与密钥1组合起来形成密文1),第二步是通过加密超混沌系统产生的密钥2对密文1进行二次加密,形成密文2,第三步将密文2通过光纤进行传递,同时将加密超混沌系统一起传递到接收端。第四步,接收端接收到密文2以及加密超混沌系统后,对密文2进行解密,形成密文1,然后将密文1传送到双反馈混沌驱动系统产生密钥1,然后将密文1进行解密,通过滤波器破译出明文。此外,还可以对二级加密通信进行优化,即使用EDFA(双环掺饵光纤激光器)产生密钥进行加密。

4.结论

本文首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。然后我们简单介绍了一下光学通信以及光纤通信,并且介绍了光纤通信的组成结构。并且由于光学中存在混沌现象,所以我们在光学通信中应用混沌加密技术进行保密工作。最后本文重点探讨了混沌加密在光学通信中的应用,其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。

【参考文献】

[1]马瑞敏,陈继红,朱燕琼.一种基于混沌加密的关系数据库水印算法[J].南通大学学报(自然科学版),2012,11(1):13-27.

[2]徐宁,陈雪莲,杨庚.基于改进后多维数据加密系统的多图像光学加密算法的研究[J].物理学报,2013,62(8):842021-842025.

扩频技术论文范文4

【关键词】扩频通信教学实践实验教学Explore the Teaching Schemes of Direct Spreading Spectrum System Kun Yan

(Guangxi, Guilin, Guilin University of Electronic Technology)

Abstract: As the theoretical foundation of the most popular communication systems, Direct Spreading Spectrum System (DSSS) is one of the most important courses in Telecommunication. In this paper, we explore the novel ideas and the useful strategies for teaching based on the features of the DSSS. The development from traditional education to education through inspiration can be achieved thereupon.

Keywords: DSSS, Teaching Practice, Experiment Teaching

引言

扩频通信在军事和民用通信领域中占有重要地位,相关应用越来越广泛。作为通信原理的后续课程,通信与实际联系紧密,深入认识扩频通信的相关知识能为今后的工作打下坚实的基础,使学生更好的与社会接轨,提供其就业竞争力。作为一门多学科、专业交叉渗透的综合性课程,如何有效开展相关理论与实验教学,让学生更深入、更形象地理解所讲授的内容,提升学生的学习热情,最大化课堂教育效果是探讨的热点与难点。经过多年教学,作者总结了扩频通信的教学难点,提出了相关教学方式方法。

一、主要问题

扩频通信[1]的教学涵盖了通信工程教学中的大部分知识。通过长期的教学,笔者发现这门课的教学难点主要表现在以下方面:

1.1涉及其他课程知识较多

作为当代通信系统设计的重要理论,扩频通信系统的设计涉及了全部通信工程专业的主要课程。其中通信原理被应用于扩频通信的误码率分析中、信号与系统被应用于扩频信号的频谱分析中、编码与信息论被应用于扩频码的设计中。这种现状为教学工作带来了较大难度。

一般而言,扩频通信被安排在通信系统本科专业教学后段,学生已经完成了大多数课程学习。但是由于遗忘和僵化教学等原因,很难要求学生随时灵活运用各种知识。教师在课堂上常常要为学生复习各种课程的相关理论。但由于涉及面广、知识量大,复习的效果并不如人意。甚至会好心办坏事,将学生本就混乱的知识体系搅乱。

1.2实验设计的创新难度大

扩频通信系统实验一般在Matlab仿真平台上完成。由于系统理论已经成熟,现有实例程序较多,很难对其进行创新。曾有人探索用system view或simulink进行扩频通信系统仿真[2,3],但受限于时间与设备等因素,如何跳出现有的框架,从新的角度更有效地教授学生仍没有一个完美的答案。

由于实验设计的老旧,很难调动学生的积极性。即使将程序设计作为考核内容,学生们也常常从网络或其他途径找到相关程序应付了事。这种现状更加大了教学的难度。

1.3扩频码设计教学难度高

扩频编码属于编码理论的一个分支。作为通信理论中的最抽象部分,编码理论的教学是整个通信工程专业教学中的“硬骨头”。虽然有信息理论与编码理论的基础,但由于大多数的学生并不能理解编码设计的原理,扩频编码的设计教学难度仍然很大。大多数的教师只能停留在教授学生几个移位寄存器的设计方法,更深层的编码理论无法引入教学过程中。清华大学的扩频通信教材试图将编码的基础知识(有限域)引入扩频码的教学中,但只是隔靴搔痒,并不能解决根本问题。

二、改进措施

多年来,我们不断探索扩频通信的教学方法,总结出一套行之有效的教学方案。实践证明这些方法能够提高学生的学习兴趣,改善教学效果。

2.1打好基础

针对扩频通信涉及知识面广的学科特点,我们采取先复习,后讲课的方式进行教学。在课程开始的前三次课依次为学生复习通信原理中误码率分析、信号与系统中频率分析、信息论中信息量计算等内容。重点是向学生介绍有限域的基础概念[4],并将现有的编码设计方法向学生进行简单说明。虽然花费了教学时间,但这种教学方法能够在教学初期为学生复习所学知识,为之后的学习打下坚实基础。

由于涉及的相关知识较多,学生之间的基础也存在差异,我们不可能也没有必要在课程上复习所有相关知识。为此,我们总结了扩频通信涉及的知识框架(如图1所示)。借助于该框架,可以让学生清楚的认识到相关知识之间的联系,让学生较容易明白相关知识复习的必要性,认识扩频通信系统设计的重要性。同时,也能帮助学生进行自我对照,找出薄弱环节有针对的学习,以弥补教师在课程复习中的不足。并且能够为学生建立较好的学科体系。经过多年总结,我们总结出以下扩频通信相关的知识结构框图应用于教学中:

2.2实验教学

在扩频通信的授课过程中,完成相关的基础实验内容。这种将实验引入教学的方法已经被广泛应用于工科院校的各种课程中,其效果是显著而且良好的。学生的积极性被调动起来,抽象的理论被具象化。在我们的应用中主要强化以下两点:一是将课堂上的实验与课后的作业相结合。比如,我们将常见的简单扩频通信系统设计放在课堂上介绍,在课后作业中要求学生解释由教师提供的程序的物理意义。这种方法能够较好的训练和检测学生对所学内容的了解。二是将扩频通信的原理与实际的系统结合,考核学生设计满足某种条件的扩频系统能力。常见的CDMA系统设计就是基于扩频通信系统的,我们为学生指定某种国际标准下的信道模型,设定合理的通信系统参数,指导学生设计满足各项要求的扩频通信系统。这种教学和考核方法能够加强理论课程的实践性,并且将老旧的程序设计具体化、特殊化,培养学生的实际动手能力,满足工业界对通信专业毕业生的需要。

2.3寓教于乐

兴趣是最好的老师,所以如何在将教学变得有趣是教师的重大课题。扩频通信作为一门理论专业课,内容比较抽象枯燥,寓教于乐的难度较大。我们希望用下面的方法来达到这样的效果。

首先,在教学中引入课程的背景知识。作为二战时期发展出来的通信理论,扩频通信的发展历史具有一定传奇色彩,对这段历史的介绍能够激发学生对学科的兴趣。特别是扩频通信的发明人,海蒂・拉玛女士,作为好莱坞知名演员和通信专家,其人生经历就能够编成一部优秀的电影。无独有偶,编码理论的奠基人,伽罗华的人生经历更具特色,这些历史的引入很好地丰富了学科背景,调剂了紧张的教学过程,并将具体的人物投射在抽象的理论中,能够很有效的提高学生的学习兴趣。

其次,鼓励学生学习相关学科最先进的科研成果,为学生梳理理论发展的脉络。扩频通信的研究发展一直没有停止。虽然相关基础通信理论已有较好发展,但更优的编解码方法和扩频抗干扰的研究从来没有停止过。我们希望在教学中引入一两篇最新的扩频通信方面论文,指导学生阅读。加强课程与当下科研发展的联系。

总之,我们希望能将教学从课本的知识延伸开去,追溯学科历史,展望发展前景。这种谈古论今式的教学方法常出现在文科类的教学中,工科教学中使用较少。相信会给学生带来新鲜感。事实上,国外相关领域的授课常常采用这种方式,比如,数学课教授常常从数学史的发展入手,用时间线连起看似无关的各种学科知识,进而介绍本课程的内容,这样的教学能够较好的将知识趣味化,也能避免只见树叶不见树的教学盲区,为学生打开兴趣之门。

2.4编码教学

编码教学是扩频通信教学过程中的重点难点,为了将这一个部分与其他通信知识融会贯通,这里的教学重点应该放在扩频码的使用与效果上。但是这并不意味着编码设计不需要考虑。相反,编码设计才是能够引起学生兴趣和学习热情的部分。现有教材上的编码设计方法着重在查表法,常常有学生提出疑问:我们所用的编码表从何而来?为了解决学生的问题,我们在课上点出编码设计的几种方法,如,搜索法,椭圆曲线相关理论。由于这些知识本身的复杂性,这部分介绍的重点放在知识背景和理论框架的建立,目的在于为学生指出方向,是其未来能够通过学习按图索骥,如果有兴趣,也能继续在这个方面进行探索。

三、结语

以上的教学方法已经被初步应用于我们的教学过程中,教学成果有明显改善。学生对扩频通信的兴趣大大提高,课堂气氛更为轻松活泼,实践经验增加较多,这样的教学成果能够较好地服务于学生未来的工作。如何进一步改善教学手段,提高教学效率是我们未来的工作重点。

参考文献

[1]朱近康.扩展频谱通信及其应用[M].北京:中国科学技术大学出版社, 1993.

[2]李颖,朱伯立,张威. Simulink动态系统建模预防针基础[M].西安:西安电子科技大学出版社, 2004.

扩频技术论文范文5

近年来,由于数据通信需求的推动,加上半导体、计算机等相关电子技术领域的快速发展,短距离无线与移动通信技术也经历了一个快速发展的阶段,WLAN技术、蓝牙技术、UWB技术,以及紫蜂(ZigBee)技术等取得了令人瞩目的成就。短距离无线通信通常指的是100m以内的通信,分为高速短距离无线通信和低速短距离无线通信两类。高速短距离无线通信最高数据速率>100Mbit/s,通信距离<10m,典型技术有高速UWB、WirelessUSB;低速短距离无线通信的最低数据速率<1Mbit/s,通信距离<100m,典型技术有蓝牙、紫蜂和低速UWB。

2蓝牙(Bluetooth)技术

“蓝牙(Bluetooth)”是一个开放性的、短距离无线通信技术标准,也是目前国际上最新的一种公开的无线通信技术规范。它可以在较小的范围内,通过无线连接的方式安全、低成本、低功耗的网络互联,使得近距离内各种通信设备能够实现无缝资源共享,也可以实现在各种数字设备之间的语音和数据通信。由于蓝牙技术可以方便地嵌入到单一的CMOS芯片中,因此特别适用于小型的移动通信设备,使设备去掉了连接电缆的不便,通过无线建立通信。

蓝牙技术以低成本的近距离无线连接为基础,采用高速跳频(FrequencyHopping)和时分多址(TimeDivisionMulti-access—TDMA)等先进技术,为固定与移动设备通信环境建立一个特别连接。蓝牙技术使得一些便于携带的移动通信设备和计算机设备不必借助电缆就能联网,并且能够实现无线连接因特网,其实际应用范围还可以拓展到各种家电产品、消费电子产品和汽车等信息家电,组成一个巨大的无线通信网络。打印机、PDA、桌上型计算机、传真机、键盘、游戏操纵杆以及所有其它的数字设备都可以成为蓝牙系统的一部分。目前蓝牙的标准是IEEE802.15,工作在2.4GHz频带,通道带宽为lMb/s,异步非对称连接最高数据速率为723.2kb/s。蓝牙速率亦拟进一步增强,新的蓝牙标准2.0版支持高达10Mb/s以上速率(4、8及12~20Mb/s),这是适应未来愈来愈多宽带多媒体业务需求的必然演进趋势。

作为一个新兴技术,蓝牙技术的应用还存在许多问题和不足之处,如成本过高、有效距离短及速度和安全性能也不令人满意等。但毫无疑问,蓝牙技术已成为近年应用最快的无线通信技术,它必将在不久的将来渗透到我们生活的各个方面。

3超宽带(UWB)技术

超宽带(Ultra-wideband—UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达等通信设备中使用。随着无线通信的飞速发展,人们对高速无线通信提出了更高的要求,超宽带技术又被重新提出,并倍受关注。UWB是指信号带宽大于500MHz或者是信号带宽与中心频率之比大于25%的无线通信方案。与常见的使用连续载波通信方式不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。因此脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百分之一。在高速通信的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。UWB是一种高速而又低功耗的数据通信方式,它有望在无线通信领域得到广泛的应用。UWB的特点如下:

(1)抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。

(2)传输速率高:UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍。

(3)带宽极宽:UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通信系统同时工作而互不干扰。

(4)消耗电能少:通常情况下,无线通信系统在通信时需要连续发射载波,因此要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按0和1发送出去,并且在需要时才发送脉冲电波,所以消耗电能少。

(5)保密性好:UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。

(6)发送功率非常小:UWB系统发射功率非常小,通信设备可以用小于1mW的发射功率就能实现通信。低发射功率大大延长了系统电源工作时间。

(7)成本低,适合于便携型使用:由于UWB技术使用基带传输,无需进行射频调制和解调,所以不需要混频器、过滤器、RF/TF转换器及本地振荡器等复杂元件,系统结构简化,成本大大降低,同时更容易集成到CMOS电路中。

参考文献:

[1]方旭明,何蓉.短距离无线与移动通信网络[M].北京:人民邮电出版社,2004.

[2]刘乃安.无线局域网(WLAN)—原理、技术与应用[M].西安电子科技大学出版社,2004.

扩频技术论文范文6

关键词:时变非线性;DC-DC开关变换器;混沌;开关频率

中图分类号:TM401.1 文献标识码:A文章编号:1007-9599(2011)07-0000-01

DC-DC Switching Converter Chaos and Application

Meng Junhong1,Zhang Youcheng2

(1. Shenyang Institute of Technology,Automotive Branch,Shenyang11015,China;2.Liaoning Dongmei Commerce Co.,Ltd.,Shenyang110010,China)

Abstract:At present,DC-DC switching power converter of the nonlinear phenomenon of chaos has been developed to control and application.This paper discusses on the DC-DC switching converter in its application,and future prospects of chaotic switching converter applications.

Keywords:Time-varying nonlinear;DC-DC switching converter;Chaos;

Switching frequency

DC-DC开关变换器是一个固有开关非线性系统,因此开关变换器运行中必然存在着丰富的非线性现象。诸如运行状态的突然崩溃、不明的电磁噪声、系统运行的不稳定、无法按设计要求工作等。已有的研究表明上述不规则现象是开关变换器中混沌现象的一种普遍的表现[1]。当DC-DC开关变换器工作在混沌区时,混沌的不确定性将导致系统的运行状态无法预测,从而使DC-DC 开关变换器的控制性能受到极大的影响,甚至完全不能工作。因此要从非线性系统混沌现象的理论高度来探索DC-DC开关变换器运行规律。通过对各种DC-DC 开关功率变换器的混沌现象探索和研究,可以达到如下重要的目的:(1)在变换器设计中优化参数设计,避免有害混沌现象的出现,消除奇异或不规则现象,使DC-DC开关功率变换器稳定工作并在高性能下运行。(2)由于混沌运动中存在很多不稳定的周期轨道,可以采用各种控制策略,控制功率变换器工作在预期的周期轨道上,从而实现周期轨道的快速变换,使DC-DC开关变换器的工作性能实现超常规的提高。

一、DC-DC开关变换器混沌现象的研究现状

20世纪90年代以来,DC-DC的研究逐渐成为国际上专家研究的热门课题。然而由于DC-DC开关变换器非线性工作的复杂性,使DC-DC开关变换器的混沌现象的研究工作尚处于理论探索和实验上的观察阶段。

虽然混沌的概念至今没有一个统一的严格定义,但混沌的基本特征已为人们所普遍接受,这些特征包括有:系统的动力学特性对初始条件极其敏感、存在不稳定周期轨道的稠密集、具有正的Lyapunov指数或有限的KS熵,功率谱连续、具有非遍历性等。DC-DC 开关变换器是一种时变非线性开关电路,除了稳定工作外, 还可能出现分叉、准周期、混沌等多模式的工作状态。

二、混沌状态在DC-DC 开关变换器中的应用

对于实际的功率电源设计者来说,变换器工作于混沌状态是一种不正常的、不可靠的现象,长期以来总是被回避和抵制。对DC-DC 变换器中的混沌现象产生方式与产生过程的研究有助于人们在设计中避开这种不理想的现象的发生,而使变换器工作于稳定的周期工作状态。然而,实际上混沌状态是一种有界的不稳定振动,具有整体的稳定性,因此DC-DC 开关变换器的混沌工作状态不会对电路产生破坏性的危害。相反,混沌状态的一些特性(如连续宽带频谱、遍历性、对扰动极其敏感性等)可为人们所利用以获得某些实际的应用。如扩展频谱以减弱电磁干扰[2],利用混沌同步以实现保密通信[3]等。开关变换器的一个明显缺点是会产生电磁干扰(EMI),尽管可通过优化设计、滤波及屏蔽等方法可使EMI得到一定程度的减小,但要达到国际电磁兼容标准的要求往往是十分困难的。由于电磁兼容(EMC)标准规定宽带噪声在一定程度上是可以容许的,而窄带噪声应受限制。因此可通过扩频技术来减少干扰频谱峰值,以满足电磁兼容性要求。通常的方法是对脉宽或开关频率进行周期调制,但需要增加额外的调制电路。然而可考虑令变换器工作在混沌工作状态以达到扩频的目的。因为开关变换器的混沌工作态是一种类似噪声的非周期工作态,具有连续的宽带频谱。尽管仍存在频谱尖峰,但相对于稳定的周期工作状态要平坦得多。文献[2]对峰值电流控制的Boost变换器进行了实验研究,证实了混沌工作态与周期工作态相比频谱峰值有较大的减小,平均减小达3.6dB,而且这还没有采取任何优化手段的结果。但这种扩频方法也衍生出一些问题,首先是混沌工作态的低频噪声功率增加了;其次为了实现扩频,必须保证变换器有一定的鲁棒性。

混沌系统的吸引子中有着极其稠密的不稳定周期轨道,且混沌运动具有遍历性,这就促使人们设想利用混沌状态的这些性质实现各周期之间的快速切换,虽然至今人们对这种快速切换在工程上有何应用价值并不十分清楚,但它实际上蕴涵了一种可能的潜在作用。为了使工作于混沌态的DC-DC开关变换器稳定于某个周期轨道上,需要对变换器的混沌工作态加以控制,基于混沌系统具有对微扰极端敏感的特性,可设计出DC-DC开关变换器的各种混沌控制方法。而令混沌开关变换器稳定于其混沌吸引子的某个不稳定周期轨道上所需的控制力是最小的,所以为实现对混沌的控制,首先均要从混沌吸引子的无数个不稳定周期轨道中分辩出需要加以控制的目标周期轨道,然后通过参数扰动法或修正导通时刻的方法使变换器运动轨迹稳定在这个目标周期轨道上。这些混沌控制方法的概念都非常清晰明了,且计算量小,不需构造离散时间映射,具有简单实用的特点。

经历了三十多年的研究,DC-DC 开关变换器尽管新的拓扑结构仍有可能不断出现,但从分析方法和控制方案上来看,已基本趋于成熟。然而,目前对DC-DC 开关变换器的混沌现象及其应用的研究才刚刚起步,技术手段仍然以数值仿真和典型电路的实验为主,对各种开关变换器电路的研究总是逐个进行,没有一种统一的混沌分析的理论方法。此外,开关变换器混沌的控制与利用仍为一片未开垦的处女地,其中应用混沌开关变换器实现高频混沌开关电源,可望使开关电源的EMC 问题得到解决。总之,有理由相信控制混沌和利用混沌的前景必定是十分广阔和无比美好的。

参考文献:

[1]D.C Hamill and D.J.Jefferies. Subharmonics andchaos in a controlled switched2mode power converter.IEEE Trans[J].Circuits systems,1988,35(8):1059-1061