等离子纳米技术范例6篇

等离子纳米技术

等离子纳米技术范文1

对一般人来说,发丝是极其细微的。但在显微镜下,发丝的表面仍有很大的艺术发挥空间。现在,借助显微镜和先进的微纳加工技术,一些科学艺术家已经可以在单根头发上进行塑像、雕刻、绘画等,充分彰显了微纳科技与艺术的高度结合。发丝虽小,但已足够为科学艺术家的创作提供“广阔”的平台。

精妙的发丝艺术品

发丝表面艺术是近些年来才引起人们广泛关注的一种微型艺术形式,发丝艺术作品可分为塑像、绘画、雕刻等。英国当代微雕大师维拉德创作的微雕艺术品――“爬发丝的猫”,猫身体、尾巴、四足等的粗细和发丝的直径相当;当代华人微雕艺术家金银华的作品“一根头发丝上彩绘的40位美国总统”则是一副绘画作品;美国麦克马斯特大学皮埃尔教授采用“镓离子束聚焦”刻蚀工艺,在头发丝表面“刻划”出麦克马斯特大学校徽。

从制作工艺上来看,发丝表面艺术作品可分为基于传统手工的作品和基于微纳加工技术的作品。基于传统手工的微雕或微画的创作主要靠手工完成,不过创作或欣赏过程中需要高倍的显微镜,同时,对雕刻、绘画的工具也有很高的要求。基于微纳加工技术的作品则更加微小,如麦克马斯特大学校徽和日本学者松井真二采用离子束化学气相沉积技术在发丝表面上构造的三维体育场。这些作品创作通常需要能够产生高能量聚焦离子束或光束的设备,有时甚至还要求苛刻的实验环境。

一般来说,基于传统手工方法创作的微雕或微画大多都属于物理方法的作品。其过程仅涉及材料的舍弃、搬移或水彩的粘附。而像基于微纳加工技术的雕刻或塑像大多可以归结为基于化学方法的作品。这些发丝表面艺术品的创作过程往往要涉及发质表面成分的变化或新物质的产生。

发丝表面艺术作品可分为百微米量级和微纳米量级两大类。传统手工创作的发丝表面微雕或微画大都属于百微米量级,如“爬发丝的猫”和“发丝上的美国总统”,这些作品的特征尺寸都与发丝直径相当,为几百微米。基于微纳加工技术的雕刻或塑像则大多属于微纳米量级,如“发丝表面的体育场”的高度为几微米,但体育场的柱子和横梁的直径却仅有百十纳米。百微米量级的作品在高倍光学显微镜下就能看得很清楚,而要欣赏微纳米量级的作品则通常需要分辨率更高的电子显微镜。

不断创新的微雕技术

技术的进步不断刺激着艺术家的想象空间,目前,常见的微雕工艺技术有以下几种。

1. 传统的手工创作工艺以“爬发丝的猫”为例,其创作过程大致如下:首先使用极其微小的刻刀(刻刀的刃部尺寸约为发丝直径的1/7)对金块、砂糖粒或沙粒进行微雕;雕刻这些作品时,必须保持高度注意力,呼吸均匀,并抓紧利用两次心跳的间隔来工作;事实上,任何一点失误都会毁掉整个作品。猫雕刻完成后,再移植到发丝上。整个过程,包括作品的欣赏都需要借助光学显微镜来完成。金银华同样是在光学显微镜下完成的“发丝上的美国总统”。为了在发丝表面完成40位总统的彩色绘制,金银华专门用老鼠的胡须和鸡毛杆制作了“鼠须笔”,同时又将普通国画的颜料精研磨成极其细微的微型画颜料;接着,在数百倍的光学显微镜下对发丝表面涂抹,并绘制出了一个个鲜活的美国总统形象。可见,传统的手工发丝微雕、微画创作,不仅要求艺术家要有娴熟的技艺,同时也在考验艺术家的耐心和毅力。

2. 离子束刻蚀技术离子束刻蚀技术采用电磁场加速和聚焦带电的离子,进而可对发丝的表面进行刻蚀。离子束刻蚀原理与目前市场上流行的光刻技术相似,但由于离子的德布罗意波(物质波)波长很短,因而刻蚀精度更高。离子束光刻主要包括聚焦离子束刻蚀和离子投影刻蚀等。其中,聚焦离子束刻蚀发展得较早,也较为完备,特别是镓离子聚焦技术。遗憾的是,离子束刻蚀技术效率低下,很难在实际生产中得到应用,但这并不妨碍科学艺术家用它在发丝表面开展纳米雕刻艺术创作。

3. 离子束化学气相沉积(FIB-CVD)技术离子束化学气相沉积技术最早是日本学者松井真二提出的。该技术需要将一根头发置于芳烃的实验气氛环境中,并采用30keV(千电子伏)的聚焦镓离子束在发丝表面进行化学气相诱导沉积。目前,利用该项技术,松井真二已经在发丝表面制作了多个三维的纳米结构(雕塑)。FIB-CVD雕塑制作的思路如下:沉积时,先固定离子束,在发丝表面诱导形成一个基础立柱;然后离子束被移动一个不超过立柱直径的距离,静止不动直到在立柱顶端沉积出几十纳米厚度的阶梯;继续重复上述过程,就能使得沉积的材料层层叠加在前面沉积的结构上;最终在发丝表面构造出复杂的三维纳米结构塑像来。

等离子纳米技术范文2

摘要:磁性纳米粒子因兼具磁学特性和纳米材料独特性能,被广泛应用于各个领域。就磁性纳米粒子的种类、特性、制备和表面修饰四个方面展开介绍,综述了脂肪酶、漆酶、淀粉酶及其复合酶等生物酶固定化酶技术的最新研究动态,针对磁性纳米粒子在固定化酶技术的研究应用现状进行了总结,以期为磁性纳米粒子固定化酶技术的应用研究提供参考。

关键词:磁性纳米粒子;脂肪酶;漆酶;淀粉酶;固定化

酶酶是具有生物催化功能的高分子物质,具有高效性、专一性、反应条件温和、无污染等特点[1],在食品加工、药学和医学等研究领域中有着巨大的应用潜力。然而,大多数酶是蛋白质,其活性易受温度、pH等因素影响,且与底物产物的混合物不利于其回收,难以实现产物的分离纯化和连续化生产[2]。20世纪60年代迅速发展起来的固定化酶技术很好的解决了这些问题,有效提高了酶的利用率,并实现了产业化发展。其中,酶的固定载体和技术研究一直是酶固定化研究的核心问题,重点是寻找新的载体,确保固定后的酶保持其催化活性、催化特性和稳定性,同时,可实现高负载量和复合酶链式反应[3]。近几年,新型载体和技术有:交联酶聚集体[4]、“点击”化学技术[5]、多孔支持物[6]和以纳米粒子为基础的酶的固定化[7]等。纳米粒子作为酶固定化的新型载体,具有良好的生物相容性、比表面积大、颗粒直径小、较小的扩散限制、较高的载酶量及在溶液中稳定存在等优点[8]。粒子尺寸在1~1000nm范围内的球状或囊状结构的粒子常被用于酶的固定化,用于酶固定化的纳米载体材料可分为磁性纳米载体和非磁性纳米载体等[9]。本文综述了磁性纳米粒子的特性、制备方法及其在固定化酶技术研究领域的应用现状,以期为促进磁性纳米粒子固定化酶技术的应用研究提供参考。

1磁性纳米粒子

纳米材料[10,11]的粒径尺寸为纳米级,通常介于1~100nm之间。磁性纳米粒子[12,13]作为当今最受关注的一类纳米材料,其多功能磁性复合微球常被用于药物释放、生物大分子靶向分离等生物医学和分离工程相关领域的研究。

1.1磁性纳米粒子的特性

磁性纳米粒子不仅具备表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应[14,15]4个基本普通纳米粒子效应,同时还具有特殊的磁学性质:超顺磁性、高矫顽力、低居里温度与高磁化率等[16~19]。1.1.1超顺磁性超顺磁性是指磁性纳米颗粒尺寸小于临界尺寸时具有单畴结构,在较高温度下表现为顺磁性特点,但在外磁场作用下其顺磁性磁化率比一般顺磁材料大好几十倍,称为超顺磁性。超顺磁性即在有外加磁场时,材料表现为有磁性,当无外加磁场时,材料无磁性。故超顺磁性的纳米颗粒具有较好的分散性。

1.1.2高矫顽力

强磁物质(如:铁磁体)一般在外加磁场减小为零时,其磁化强度不为零,剩余的磁化强度称为剩磁。矫顽力是指使剩磁减至为零而添加的反向磁场。矫顽力与成分、晶体点阵和取向等因素无关,其主要影响因素为点阵缺陷,即偏离理想晶体结构的程度。

1.1.3低居里温度

带磁的磁性体会在某一温度因热失去磁性,这一温度称为居里温度。居里温度是物质磁性的重要参数,通常正比于交换积分,与间距和原子构型有关。纳米微粒的磁性常因小尺寸效应和表面效应发生变化,故其居里温度通常较低。

1.1.4高磁化率

磁化强度M与磁场强度H之比称为磁化率,常用cm表示,即M=cmH。当cm>0,为顺磁质,当cm<0,为抗磁质,其值一般都很小。

1.2磁性纳米粒子种类

磁性纳米粒子一般分为天然磁性纳米粒子和人工合成磁性纳米粒子。人工合成磁性纳米粒子主要有:Fe、Co、Ni等[20]金属纳米粒子;Co3O4、Mn3O4等金属氧化物和各种铁氧化体纳米粒子等[21,22]。铁的氧化物能定期排出体外,对人体健康危害较小,具有良好的生理安全性,因此Fe3O4磁性纳米粒子多被用于生物医药领域[23]。

1.3磁性纳米粒子制备

1.3.1共沉淀法

共沉淀法[24]即向铁盐和亚铁盐混合液中,添加合适的沉淀剂,经加热发生共沉淀,制得超微粒的方法。共沉淀法制备得到的粒子尺寸较小,然而,制备过程中因水解平衡反应复杂,粒子的成核过程和生长过程会受到影响,因此得到的粒子有较宽的尺寸分布。总的来讲,该方法有较低的反应温度、简单的设备要求,且反应过程简单易控制,是制备磁性纳米粒子的主要方法。

1.3.2高温分解法

高温分解法[25]是以高沸点有机物为溶剂,有机金属化合物为原料,经加热分解来制得纳米粒子的方法。利用高温分解法制备的磁性纳米粒子表面光滑,结晶度高,粒径小且粒径可控,粒径分布均匀。但此方法反应条件(高温高压)苛刻,设备要求高,反应体系为有机相,且经过表面处理后的合成粒子才能被转移到水相中。

1.3.3沉淀氧化法

沉淀氧化法即二价铁盐在氧化剂作用下,发生部分氧化制备磁性纳米粒子的一种方法,常见的是以空气作为氧化剂氧化Fe(OH)2,李乾峰等[26]用NaNO3、NaClO3、KMnO4替代传统的空气作为氧化剂氧化Fe(OH)2制备Fe3O4磁性纳米粒子,研究了氧化剂、反应温度、反应液pH等工艺条件对制备的Fe3O4磁性纳米粒子粒径及磁饱和强度的影响,结果表明:Fe3O4磁性粒子粒径主要受氧化剂氧化能力和反应液pH的影响。与空气氧化制备的Fe3O4磁性粒子比较,采用NaNO3和NaClO3为氧化剂制备的Fe3O4磁性粒子均为球形,粒子形态与pH无关,且粒径大小相近时,有较高的比饱和磁化强度。

1.3.4溶胶凝胶法

溶胶凝胶法[27,28]是制备金属氢氧化物及金属氧化物超微粒的方法。被用于溶胶凝胶法中作为前驱物的化合物要具备易蒸馏、重结晶技术纯化、可溶于普通有机溶剂、易水解等特性,金属醇盐作为前驱物被广泛用于溶胶凝胶法制备纳米氧化物材料。该方法具有反应物丰富、颗粒粒径均一、高纯度、粒径小、过程易控制等优点。

1.4磁性纳米粒子表面修饰

磁性纳米粒子不仅具有纳米粒子特性,同时还具有特殊的磁学性能,近年来被广泛应用于生物分析等领域。但是,磁性纳米粒子粒径小、比表面积大、表面能高,为不稳定体系,易发生团聚,所以,需要对磁性纳米粒子表面进行功能化,降低其表面能,改善磁性纳米粒子的分散性及稳定性,同时使磁性纳米粒子的磁响应强度、表面活性和生物相容性等特性得到改善和提高。

1.4.1有机小分子修饰

①表面活性剂。表面活性剂含有长链基团,可以形成空间位阻,一方面可控制粒子的形态和尺寸,另外,可改善粒子的表面性能,从而起到稳定磁性纳米粒子的作用。油酸常被用来修饰Fe3O4,靳艳艳等[29]通过高温热解法得到油酸稳定的磁性纳米粒子,以高碘酸钠为氧化剂,氧化其表面的油酸,制备得到单分散羧基化Fe3O4磁性纳米粒子,其粒径为12nm,且粒径均一,在水中有良好的分散性,XRD和VSM表征结果显示,磁性纳米粒子的磁强度和成分在氧化制备羧基过程中基本不受影响。张晓闻等[30]采用改进的溶剂热法,以柠檬酸钠为稳定剂,制备出羧基功能化的Fe3O4磁性粒子,该粒子具有超顺磁性和高饱和磁化强度,磁响应性良好,可应用于磁性粒子偶联或复合。

②硅烷化偶联剂。硅烷化偶联剂既有与磁性纳米粒子结合的Si-OH,又含有-NH2、-COOH、-SH、-CHO等能与生物分子结合的官能团。常被用于磁性纳米粒子表面修饰的硅烷化偶联剂有3-氨丙基三乙氧基硅烷(APTES)和3-巯丙基三乙氧基硅烷(MPTES)。付玉丽等[31]采用化学共沉淀法合成Fe3O4磁性粒子,通过APTES化学包裹得到有机硅表面修饰的Fe3O4磁性粒子,APTES-MNPs呈球形,粒径约17nm,APTES-MNPs对刚果红染料的吸附符合Langmuir等温吸附模型,该粒子吸附性能好、易回收。

1.4.2有机高分子修饰

①天然生物大分子。目前,多糖类聚合物和氨基酸类聚合物是用于修饰Fe3O4磁性纳米粒子主要的天然生物大分子,利用天然生物大分子修饰的磁性纳米粒子其生物相容性得到大大的改善,且赋予复合材料新的生物活性。李璇等[32]以乙酰丙酮铁为铁源,聚乙二醇为溶剂,采用高温热解法制备聚乙二醇修饰的超顺磁性氧化铁磁性粒子PEG-SPIONs,后将糖酐Dex水溶液与PEG-SPIONs混合摇床培养得到Dex修饰的Dex/PEG-SPIONs复合粒子,该复合粒子为单晶体结构且分散性较好,具有超顺磁性,同时,Dex作为一种临时的血浆替代品具有很好的生物安全性,故Dex/PEG-SPIONs在生物医学等方面具有极好的应用前景。吴志超等[33]采用高锰酸钾为氧化剂氧化油酸包被的Fe3O4磁性粒子,制得表面包被有壬二酸的新型羧基磁性纳米粒子,该粒子表面羧基含量高且在水中具有良好的分散性,其水解后带负电荷,可与蛋白质表面带正电荷的氨基发生静电相互作用,这一新型的羧基功能化的超顺磁性纳米粒子吸附牛血清蛋白对固定化细胞、蛋白药物靶向载体和固定化酶载体的研究具有重要的指导意义。

②合成高分子。利用不同的化学方法可合成不同需要的高分子修饰物用来修饰磁性粒子。邓啸[34]选用聚多巴胺修饰磁性纳米粒子,首先采用碱共沉淀法合成MNPs,多巴胺单体可在类似海水的碱性(pH8.5)条件下发生自聚合作用,因此,通过调控pH可在MNPs表面形成一层聚多巴胺层,获得聚多巴胺修饰的磁性四氧化三铁纳米粒子(PD-MNPs),该功能化磁性微球可有效的固定黑曲霉脂肪酶,固定化脂肪酶催化活性及稳定性较游离酶均有明显提高。

1.4.3无机材料

用于Fe3O4磁性纳米粒子表面修饰的无机材料主要是SiO2,制备SiO2修饰的磁性纳米粒子的方法主要有:溶胶凝胶法、气溶胶高温分解法和反相微乳法。张慧勇[35]采用溶胶凝胶法制备Fe3O4/SiO2核壳结构复合纳米粒子,并对不同Fe3O4制备方法(共沉淀法、还原沉淀法和水热法)对应的Fe3O4/SiO2复合纳米粒子进行性能比较。其步骤如下:首先采用柠檬酸钠对纳米粒子进行表面修饰,然后在醇和水的混合体系中,碱性条件下催化正硅酸乙酯水解,磁性纳米颗粒表面被生成物包裹,制得的二氧化硅磁性复合微球具备小粒径核壳结构。结果表明,利用水热法制备Fe3O4粒子的分散效果最佳,包被效果较好,二氧化硅磁性复合微球在室温下表现出良好的稳定性。马丽等[36]采用溶胶凝胶法制备Fe3O4/SiO2复合纳米粒子,用3-APTES对Fe3O4/SiO2复合粒子进行氨基修饰,并用于漆酶的固定化。固定化酶在热稳定性、重复稳定性、pH稳定性方面均优于游离酶,同时,将固定化漆酶用于去除废水中的2,4-二氯酚,反应12h,去除率最高为68.35%,该固定化酶重复使用12次后,对2,4-二氯酚的去除率可保持在52.85%。

2磁性纳米粒子固定化酶技术的应用

通过共聚合表面修饰可将-NH2、-COOH、-OH、-CHO等多种功能基团赋予磁性纳米粒子表面,实现其功能化,因而具有强的磁响应性能、高比表面活性和良好的生物相容性,磁性纳米粒子已被广泛应用于生物化学领域,如天然产物中生物活性物质的分离,有害化合物的降解等。固定化酶技术[37],即将游离酶束缚或局限在固定载体内,酶的生物活性及其特有的催化反应保持不变,并可实现回收重复利用的一类技术。固定化酶与游离酶相比有稳定性好、不易失活、可重复使用等优点,磁性纳米粒子作为固定化酶使用的固体材料,较其他固体材料具有独特的优势[38,39]:磁性纳米粒子的超顺磁性及强磁响应性能,可实现酶/底物及产物的快速分离,提高酶的使用效率;将酶固定于磁性纳米粒子可提高其稳定性;而且磁性纳米粒子巨大的比表面积可同时偶联多种生物酶,因此将分离技术和生物酶磁偶联用于多酶固定,可促进多酶链式反应的研究应用。

2.1磁性纳米粒子在脂肪酶抑制剂筛选分离研究中的应用

Zhu等[40]采用共沉淀法制得Fe3O4磁性纳米粒子,硅酸四乙酯(TEOS)、(APTMS)作为硅烷偶联剂,-NH2/MNPs磁性粒子经二甲基甲酰胺(DMF)和10%丁二酸酐作用发生羧基功能化,获得-COOH/MNPs磁性复合粒子,此复合粒子可很好的与脂肪酶共价结合,酶活抑制实验表明,脂肪酶固定化酶(LMNPs)稳定性及活性较游离酶有明显提高。利用脂肪酶复合磁性粒子(LMNPs)成功的从莲叶提取液中分离出quercetin-3-O-β-D-arabinopyranosyl-(12)-β-D-galactopyranoside和quercetin-3-O-β-D-glucuronide两种脂肪酶配体。Sahoo[41]采用溶剂热法,聚乙烯亚胺(PEI)、乙醇胺(EA)、(EDBE)为氨基前体,制得PEI-Fe3O4、EA-Fe3O4、EDBE-Fe3O4氨基化磁性粒子,分别与戊二醛交联剂作用,获得GLU-PEI-Fe3O4、GLU-EA-Fe3O4、GLU-EDBE-Fe3O4,磁性粒子表面的戊二醛与脂肪酶发生相互作用,实现脂肪酶的固定化。其中,EDBE-Fe3O4酶活性最高,是同等游离酶活性的83.9%,此外,EDBE-Fe3O4具有较好的热稳定性、储藏稳定性和重复利用性,其反应动力学参数与游离酶一致。这为脂肪酶的固定化提供了技术支持,同时,实现了脂肪酶抑制剂的快速筛选分离,为研发新的治疗肥胖的药物提供母体化合物。

2.2磁性纳米粒子在α-淀粉酶配体筛选分离研究中的应用

交联酶聚集体(CLEAs)[42]是一种无载体固定化酶技术,是一种将基本纯化的、高浓度的蛋白先沉淀后交联形成不溶性的、稳定的固定化酶技术。较其他酶固定方法,该固定化方法不需要结晶、无需高纯度的酶,该方法可用于大多数酶或蛋白交联酶(蛋白)聚集体的制备,操作简便,应用范围广;获得的固定化酶活性高、稳定性好;无载体、单位体积活性大、空间效率高;Tudorache等[43]将氨基功能化的磁性纳米粒子加入酶溶液,将磁性粒子与酶液混合液进行沉淀、交联,制备了磁交联酶聚集体(MCLEAs)。功能化的磁性粒子可减少酶内赖氨酸残基数,提高酶聚集体的稳定性,同时赋予酶聚集体磁性以进行磁分离,提高酶的使用率。Liu等[44]通过合成α-淀粉酶磁交联酶聚集体从山茱萸果实中提取分离出Querciturone,其α-淀粉酶抑制活性IC50达22.5μg/mL。

2.3磁性纳米粒子在漆酶固定化研究中的应用

漆酶是一种对底物专一性要求较低且氧化还原能力较强的含铜多酚氧化酶,可氧化分解大部分有机污染物,如多环芳烃、多氯联苯、芳氨及其衍生物、染料、色素、炸药等[45]。漆酶主要分布在植物、菌类和微生物中。由于漆酶氧化分解有机物所需条件温和、最终反应产物为水、无污染、来源丰富等优点,在环境保护、造纸业、生物传感器等领域得到广泛研究。然而,游离漆酶稳定性差,且重复利用率低,限制了其在工业中的应用。为克服游离漆酶的缺点,实现漆酶的工业化应用,漆酶固定化技术研究尤为重要,磁性纳米粒子作为近年来酶固定化材料之一,成为漆酶固定化研究的热点。欧阳科等[46]通过化学交联法将漆酶固定在磁性石墨烯载体上,对固定化漆酶的酶学特性及其对双酚A(BPA)的降解功能进行了考察。结果表明,经石墨烯固定后漆酶的耐酸性、耐热性和稳定性有显著提高,漆酶固定后其重复利用性得到改善,重复利用10次后,漆酶活性仍为最初活性的82.01%。固定化酶的米氏常数Km为5.38×10-4mol/L,较游离酶的大,说明固定化酶与底物的亲和力比游离酶小,固定化漆酶对双酚A具有良好的分解能力,水中BPA质量浓度为15mg/L时,经过18h反应,BPA的去除率能达到82.14%左右。Xia等[47]分别制备了氨基化四氧化三铁漆酶固定化酶(Fe3O4-NH2-laccase)和氨基-聚乙烯亚胺四氧化三铁漆酶固定化酶(Fe3O4-NH2-PEI-laccase),并分别考察了它们的酶学活性和反应动力学参数。结果表明,两种固定化酶较游离酶,酶活性、酶稳定性、酶利用率都明显提高,且对酸的适应能力、热稳定性、储藏稳定性等都有提高;Fe3O4-NH2-PEI-Laccase较Fe3O4-NH2-Laccase有较高的吸附容量和酶活性,Fe3O4-NH2-PEI-Laccase可实现漆酶大量的固定化,更有希望实现漆酶的工业化。

2.4磁性纳米粒子在多酶链式反应中的应用

磁性纳米粒子巨大的比表面积可实现多种生物酶的同时偶联,将分离技术和生物酶磁偶联应用于多酶固定,促进多酶链式反应的研究应用。果汁生产中,颜色、澄清度、口感等是衡量果汁是否合格的重要指标。影响这些指标的因素主要有:细胞壁和细胞质中果胶胶态分散体、淀粉、纤维素和半纤维素等多糖。这些大分子的存在是造成果汁浑浊、口感差的主要原因,而淀粉酶、果胶酶和纤维素酶可以将这些生物大分子分解为小分子,能够有效改善果汁外观和品质。Sojitra等[48]通过共沉淀法合成Fe3O4磁性粒子,以3-氨丙基三乙氧基硅烷(APTES)为氨基源对Fe3O4氨基化修饰,以戊二醛为交联剂,将功能化磁性粒子与酶混合液混合孵育,淀粉酶、果胶酶、纤维素酶分别与磁性粒子结合并固定,制得磁性复合酶纳米生物催化剂。该磁性复合酶纳米生物催化剂在热稳定性、pH稳定性、重复利用性等酶学活性及反应动力学参数Km较游离酶都有明显提高。利用该磁性复合酶纳米生物催化剂分别进行葡萄、苹果和梨果汁浑浊实验,混合反应150min后,浑浊度分别降低为46%、41%和53%,结果表明,这一磁性复合酶纳米生物催化剂可替代传统果汁的生产方法应用于果汁的工业化生产中。

3展望

综上所述,磁性纳米粒子固定化酶技术已在生物医药、食品、环境保护等领域被广泛应用,并取得了一些重要成就,但仍存在一些需要解决的问题,主要有以下几个方面:①目前,关于磁性纳米粒子固定化酶研究主要集中在脂肪酶和蛋白酶上,其他酶类研究甚少,且磁性纳米粒子固定化酶方法具有局限性,只适用于一类酶或几种酶的固定化;②功能化磁性粒子固定化酶通常存在固定化酶含量较高、而固定化酶活性较低的问题,解决这一问题,对于提高酶使用率、降低成本、实现工业化大规模操作至关重要;③目前,国内外学者对磁性粒子固定化酶条件优化研究较多,针对磁性粒子与酶作用机制研究较少,磁性粒子固定化酶作用机制有待进一步研究,为磁性粒子的改性和选择提供了重要依据;④以磁性粒子固定化酶为催化剂进行催化反应的反应机制需深入研究,以实现磁性粒子固定化酶技术的广泛应用。总之,磁性纳米粒子固定化酶是一个正在蓬勃发展的研究领域,发展更为高效的方法制备磁性纳米粒子固定化酶仍是有待深入研究和具有挑战性的研究课题。

参考文献

[1]柳海燕.生物酶在纸浆造纸中的应用[J].黑龙江造纸,2016(1):18-23.

[2]杨光义,雷攀,杜士明,等.盾叶薯蓣中薯蓣总皂苷生物酶预处理法提取工艺研究[J].中国药业,2016(9):8-12.

[3]杨杰,张玉彬.固定化酶技术及其在医药上的应用新进展[J].药物生物技术,2013(4):553-556.

[4]农嘉仪,李敏英,叶剑威,等.交联酶聚集体法制备单宁酶及固定化酶性质研究[J].食品与机械,2012(1):154-158.

[5]杨奇志,刘佳.点击化学在生物医用高分子中的应用[J].化学进展,2010(12):2377-2388.

[6]刘佳,杨启华.介孔材料固定化酶的研究进展及其应用前景[J].石油化工,2014(4):357-365.

[7]高启禹,徐光翠,陈红丽,等.纳米材料固定化酶的研究进展[J].生物技术通报,2013(6):23-27.

[9]辛宝娟.氧化铁磁性纳米粒子固定化酶[J].化学进展,2010(4):593-602.

[10]张中太.纳米材料及其技术的应用前景[J].材料工程,2000(3):42-48.

[11]林鸿溢.纳米材料与纳米技术[J].材料导报,1993,19(6):42-46.

[12]郭艳余.Fe3O4磁性纳米粒子在生物医学领域的应用[J].现代生物医学进展,2016(3):574-577.

等离子纳米技术范文3

纳米技术正全力推动着化学工业未来的发展。随着一些纳米技术的工业产品问世以及所显示出的诱人前景,现在“纳米技术”已经成为家喻户晓的名词。纳米技术能在<100nm的水平上合成、处理和表征物质,这是一个涉及多门学科的广阔领域,它包含有:纳米材料(nanomaterials)、纳米生物技术(nanobiotechn010gy)、纳米电子学(nanoelechonics)和纳米系统(nanosystem),如纳米电子机械系统NEMS和分子机械(m01ecularmachine)等。而纳米技术在化学工业中的应用,主要是新型催化剂、涂料、剂,过滤技术以及一些最终产品,诸如纳米多孔材料制品和树状聚合物制品已成为化学工业的创新点。

一、化学反应和催化方面应用

化学工业及其相关工业,特别是一些化学反应起着关键性作用的产业盛行用纳米技术来改进催化剂性能。纳米多孔材料中的沸石在原油炼制中的应用已有很长历史,纳米多孔结构新型催化剂的发展,为许多化学合成工艺的创新提供了机会,或者使化学反应能在较温和条件下进行,大幅度地降低工艺成本。例如用此类催化剂可以将甲烷有效地转化为液体燃料,作为柴油代用品,而现用的方法比较昂贵。

纳米粒子催化剂的优异性能取决于它的容积比表面率很高,同时,负载催化剂的基质对催化效率也有很大的影响,如果也由具有纳米结构材料组成,就可以进一步提高催化剂的效率。如将Si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。在某些情况下,用Si02纳米粒子作催化剂载体会因SiO2材料本身的脆性而受影响。为了解决此问题,可以将SiO2纳米粒子通过聚合而形成交联,将交联的纳米粒子用作催化剂载体。

在能源工业中,Shenhua集团公司、Hydrocarbon技术公司和美国能源部在中国进行煤液化项目建设,采用了纳米催化剂,取得了20亿美元效益。此工艺可以生产非常清洁的柴油,在中国许多地方它可与进口原油或柴油(以全球平均价格计)竞争。燃料电池也是纳米催化剂起重要作用的领域,当前工业样品应用的是铂催化剂,约2nm宽。

二、过滤和分离方面应用

在过滤工业中,纳米过滤(简称纳滤,nanofiltration)广泛应用于水和空气纯化以及其它工业过程中,包括药物和酶的提纯,油水分离和废料清除等。还可以从氮分子中去掉氧(氧与氮分子大小差别仅0.02nm)。应用此方法生产纯氧可不需要采用深冷工艺,因而可以降低成本。法国于2000年在GeneraledesEaMx建成世界上第一座用纳滤技术生产饮用水的装置,所用聚合物膜其孔径略<lnm。与传统净化工艺相LL,虽然电能消耗较高,但带来一些其它的好处,如不需要用氯。

由于可以精确地控制孔径,所以具有可观的近期应用前景。美国PacificNorthwest国家试验室已经创制一类称之为SAMMS结构,为在介孔载体上自组装的单层结构,含有规整的1-50nm的圆柱形孔,孔上用自组装方法涂上活性基团单层,可用于不同领域。已经利用SAMMS成功地从水溶液和非水溶液中萃取出各种金属和有机化合物。

纳米多孔材料的吸收和吸附性能也提供了在环境治理方面应用的可能性,如去除重金属(如砷和汞等)。使用其他纳米材料的过滤技术也取得了长足进步。例如入rgomide纳米材料公司开发的用直径为2nm纤维制成的高产率系统,可以过滤病毒、砷和其它污染物。

一些聚合物—无机化合物复合材料也可用作气体过滤系统,而且效率也很高。如有一种用排列成行的碳纳米管(nanotLlLe)制成的膜,由于纳米管与气体分子间互不作用,可以高产率地分离出气体。此种材料可满足高流速低压气体的分离需要。此种膜可以从气流中去除CO2,或从CO中分离H2。这种技术可应用于新一电厂、煤液化工厂或气体液化厂。

由精密控制尺寸的纳米管组成的膜在分离生物化学品方面也具有很大潜力。

三、复合材料方面应用

在复合材料中使用纳米粒子可以提高材料强度,降低材料的重量,提高耐化学品、耐热和耐磨耗能力,而且还可赋于材料一些新的性能,诸如导电性,在光照和其他幅照下改变其反应性能等。

以粘土为基础的纳米复合材料在不久将来会有很大的市场。以碳纳米管为基础的新型结构复合材料的开发也为期不远,它的主要问题是成本较贵,要用好的填料(单壁纳米管)。大规模应用较大而不太完善的碳纳米纤维可望在2004年实现,此发展可能会给纳米粘土复合材料的应用形成冲击。

一些公司计划扩产纳米粘土也反映出其发展潜力。如Nanocor公司已转产纳米粘土,每年2万吨。许多主要聚合物公司也在开发纳米复合材料技术。RTP公司已将有机粘土/尼龙纳米复合材料制成薄膜和片材。Triton

System公司应用纳米二氧化硅与一种聚合物材料制成纳米复合材料,开发成一种涂装材料。其它HoneyWell,Ube工业和Unitika等公司已工业规模生产尼龙纳米复合材料用作包装HBP材料,Nanocor最近与三菱气体化学公司联合

制造并出售HBP包装材料。用于食品和饮料行业。Bayer打算用尼龙6纳米复合材料制造多层包装膜,此膜的氧穿透率减少l/2,透明度和韧性有提高。近期,人们关注的另一种纳米复合材料的填料物质,是一种较为复杂的分子多面齐聚物(polyl、cdral01ig(mericsilsc5quioXanes,POSS)。Hybrid塑料公司称其可以大量生产POSS,并与塑料生产厂商和用户进行合作。

四、涂料方面应用

在涂料行业CTJ。纳米粒子已经起着很大的作用,但是,类似于能生成抗刮痕和不粘表面的涂层的溶胶—凝胶单层(solgclmonlolaycr)还在研究。用树状聚合物可以弥补不足,并且可与纳米粒子技术结合应用。

以纳米粒子为基础的涂料具有各种优异的性能,比如:强度、耐磨耗、透明和导电。拜耳公司与Nanogntc公司合作开发导电和透明的涂层。纳米粉体是难以储运的,美国海洋部门采用微型凝聚(microscalengglomerate)方法,即在应用时用等离子(一种热的离子化气体)技术或热喷涂技术,使粉体被融熔,形成涂层。拜耳公司与HansaMetallWerke公司用纳米粒子进行抗水和抗灰尘涂料开发。据中国环氧树脂行业在线(epoxy-)记者了解,2002年BASF公司推出一种用纳米粒子和聚合物制备的喷涂涂料,在干燥时自组装成一种纳米结构的表面,呈现出类似荷叶的效应,即当水落到表面上,由于与表面的互粘性甚小,可以形成水珠而流去,并把灰尘带走。

Inframat公司用纳米涂料作为船壳防污涂料。以防止海藻、贝类附着生长。此种涂料很坚硬。但并不发脆。该公司的纳米氧化铅-氧化饮基陶瓷涂料已获得美海军部门400万美元订货,主要用于涂装潜水艇的潜望镜。应用纳米粒子技术可以制造氧化铝纳米粒子,用于地砖的抗划痕涂层。Nanogate公司为西班牙地砖制造商提供纳米粒子涂料,使之容易清洗,并还为眼镜工业提供抗划痕涂料。

用纳米粒子强化的涂料还可能在生物医用方面应用。例如铜的纳米粒子可以降低细胞在表面上生长,从而解决移植上的一个主要问题。

五、添加剂和树状聚台物的作用

在复合材料领域中,纳米粘土和POSS已经取得进展。在不远的将来,碳纳米管可能产生较大影响。但是,各种不同形状的树状分子结构以及它能易于功能化的性能,可以创制特殊结构的复合材料,使之具有各种性能。早在上世纪90年代中期,BertMeijer教授就阐明了树状聚合物的结构,它是一群小分子,或是小分子的容器。一个“树状聚合物箱”(I)endrimerbox),如同有一个硬壳建于软性树状聚合物周围。如果一个小分子,如染料分子进入树状聚合物中,即可被封装在空穴中。通过对其末端基因的化学改性,全部或部分烷基化,树状聚合物就可以形成与线型聚合物可化学兼容的物质,以改进混合性能。在此情况下,树状聚合物的作用在于创建了分子微观环境,或是在塑料原料中形成“纳米观口袋”(nanoscopicpocket)来聚集染料分子。作为一种形态的、结构的或是界面改性剂,树状聚合物还可提高材料韧性,而对其加工性没有影响。在材料共混和复合中,它们还起着材料组分间的兼容剂和粘接剂的作用,因此可用于工程塑料添加剂。树状多支链聚合物已经被用作环氧树脂的增韧剂,加入重量比5%的树状聚合物可显著提高材料的坚韧性。通过可控相分离工艺,可以使树状聚合物良好地分散在树脂中,树状聚合物和树脂作用可以使接枝在树状结构上的环氧基团的化学键得到加强。杜邦公司制造和应用多支链结构物质作为聚合物共混中的添加剂,可以改善聚合物的加工性能。DSM公司已经将多支链的聚丙烯亚胺(PPl)聚合物工业化,主要用于廉价塑料和橡胶制造中作为添加剂,降低粘度。在涂料、油墨和粘合剂生产中也可应用。美国宇航局向DowCorning公司和MatcrialsElectrochemical

Research公司进行项目投资,开发等离子沉积树状聚合物涂料和树状聚合体富勒烯纳米复合材料,以用作微型和亚微型表面。

六、树状聚台物及去污作用

树状聚合物特别适用于去污,它起着清道夫的作用,可以去掉金属离子,清洁环境。改变一种介质的酸度可以使树状聚合物释放出金属离子。而且树状聚合物可以通过超过滤进行回收和冉用。树状包覆催化剂可用此同样方法从反应产物中进行分离。回收再用。密西很大学的生物纳米技术中心计划开发树状聚合物加强超滤方法,作为新的水处理上艺.从水中去掉金属离子。树状聚合物可以在其分子小间或是在它们的经改性的终端基团上捕捉小分子。

使其能适用于吸收或吸附生物和化学污染物。美国军事部门对它的应用前景作了好的评价。

七、纳米保护(nano-protection)方面应用

树状聚合物在护肤膏中作为一种反应型的组分是很有效的。此应用可以扩展到保护衣服。固定的树状聚合物层可以抗洗和耐环境气候条件变化。有一种称之为“类似树状聚合物”(Amphilicdondrimcr),它一半是树状聚合物,另一半具有末端结构,用以在保护膜中固定活性树状聚合物。

近年来,“一些部门在研究用纳米粒子来监测和防止化学武器袭击。Nanospherc公司不久前推出一个系统,可以用来监测生物武器,如炭疽菌。该系统采用美国西北大学开发的金纳米粒子传感器。Altair纳米技术公司和西密西根大学联合开发用二氧化钛钠米粒子为基础材料的传感器,可用来监测生物和化学武器。NanosPhere材料公司开发氧化镁纳米粒子用于口罩的过滤层,因为它能杀大细菌(包括炭疽杆菌)。深圳新华元具纳米材料公司和Nucrgst公司生产银纳米粒子用于抗菌服。NanoBio公司推出一种抗菌液,可以破坏细菌孢子、病毒粒子和霉菌,它的作用是让表面张力发生爆炸性释放,而这种产品对人体组织不起伤害,现在主要用户是美国军事部门。

八、燃料电池方面应用

随着对便携式电子产品电能需求不断增加。要求降低供电元器件的重量和尺寸,由此而开辟广纳米粒子的新市场。

AP材料公司与Millennium电池公司合作执行美国军方一份合问。开发纳米级二硼化钛用于高级电池组和其它储能系统。Altar公司最近宣布该公司高级固体氧化物燃料电池系列示范试验获得成功,包括联结器、电解质、阴极和阳极等都是由微米和纳米级材料构成。而且,还开发了纳米锂基电池电极材料,其充电和发电率都比当前所用锂离子电池材料快l倍。

有一些公司计划工业生产甲醇基燃料电池,在2004年前后应用于便携式电子设备。在这类电池中,所用催化剂是处在淤浆状态的铂纳米粒子。针对电池应用,Brookhaven国家试验室已制成锂-锡纳米晶体合金,用作高性能电极。用氢化锂与氧化锡反应,前者需过量使反应完全。生产的锂—锡合金中含有剩余氧化铿。重复用氢处理最后生成粒径为20~30nm纳米复合材料,形成稳定金属氢化物的其它元素也可用此法制造纳米复合材料,未来的应用不仅在电池领域,还可以用在催化方面。

等离子纳米技术范文4

【关键词】纳米;医药;应用

1.引言

纳米材料(又称为超微颗粒材料)由纳米粒子组成。粒子尺寸范围在1~100 nm之间。由于纳米材料具有量子尺寸效应、小尺寸效应、表面和宏观量子隧道效应等[1],因而在性能上与相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。

随着人们研究的深入,纳米材料已广泛应用于医药领域,为现代疾病的诊断与治疗、现代药物的开发与创新提供了崭新的技术手段和工具。例如:Drezek等专门研究用于体内组织病理的光学成像技术,正在开发一种仅在遇到特定分子时发光的成像试剂。通过可降解的多肽交联剂与金纳米粒连接在一起,得到了一种分子成像试剂,在与特定分解酶结合时才改变颜色[2]。此外,纳米雄黄、纳米磁石以及纳米胰岛素口腔喷剂等已相继研制成功,并且显示出良好的药理药效作用,其发展前景十分乐观。如林本兰等人制备磁性纳米粒阿霉素白蛋白微球靶向抗癌药物[3,4]。

2.纳米材料在医学领域中的应用

在医学领域中,纳米材料应用于疾病的诊断和治疗,如肿、瘤、心血管病、传染病等重大疾病的诊治方面显示其重大的意义。

2.1 疾病诊断方面的应用[5]

2.1.1 影像学诊

通过将纳米大小的成像试剂靶向到肿瘤或身体其他特定部位,可为疾病诊断提供一种更快捷、对人体损伤更小、更精确的手段。

2.1.2 实验室诊断

一种具有超高灵敏性激光单原子分子探测术问世了,它可通过人的唾液、血液、粪便以及呼出的气体,及时发现人体中哪怕只有亿万分之一的各种致病或带病游离分子。

2.1.3 植入传感器诊断

利用纳米级微小探针技术,可向人体内植入传感器,根据不同的诊断和监测目的,可定位于体内的不同部位,也可随血液在体内运行,随时将体内的各种生物信息反馈于体外记录装置。此项技术有可能成为21世纪医学界常用的手段。

2.1.4 细胞分离诊断

目前生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传器)。美国等科学家利用纳米磁性粒子成功地分离出人体骨髓中癌细胞,从而达到检查细胞,实现癌症的早期诊断和治疗。病理诊断方面,目前肿瘤诊断最可靠的手段是建立在组织细胞水平上的病理学方法,但利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米结构改变,以解决现有的良恶性肿瘤及细胞来源判断不准确的难题。

2.1.5 遗传病诊断方面

为判断胎儿是否具有遗传缺陷,以前常采用价格昂贵并对人体有损害的羊水诊断技术。如今应用纳米技术,可简便安全地达到目的。妇女怀孕8周左右,在血液中开始出现非常少量的胎儿细胞,用纳米微粒很容易将这些胎儿细胞分离出来进行诊断。纳米颗粒对关节疾病的诊断[6],利用准弹性激光散射技术所测量的关节液纳米颗粒的平均粒度数据,可较易分析和判断所检查关节经历的病理生理变化。

2.2 疾病治疗方面的应用

2.2.1 基因方面[7]

如今纳米材料问世,在纳米尺度上建造的设备已使科学突飞猛进。纳米技术为当前基因疗法中的难题提供一些解决办法,并为癌症和糖尿病等顽症的疗法带来显著的疗效。器官移植方面,纳米科技所要做的是寻找生物兼容物质。纳米无机材料Fe3O4是一种天然无机磁性材料,对细胞毒性小,且容易被代谢。对磁性Fe3O4晶粒表面加以修饰[8],使其包覆一层或多层生物高分子,如多聚糖,蛋白质等而形成核壳式结构,可增加材料的生物相容性;将使Fe3O4颗粒作为理想的基因载体成为可能。纳米磁粒靶向基因治疗动脉闭塞性疾病实验研究。张铁民等人[9]采用共沉淀法合成了纳米级磁粒,以逆转录聚合酶链式反应法(RT2PCR)克隆人血管内皮生长因子基因并构建高拷贝的真核表达质粒,应用乳化复合技术合成磁粒基因复合微球。使用纳米磁粒靶向VEGF基因治疗实验性血管闭塞性病变疗效显著,安全可靠,创立了一种新的基因治疗闭塞性血管病的方法。

2.2.2 肿瘤研究方面

现在研究成的极其细小的氧化铁纳米颗粒[10],可注入病人的癌瘤中,然后将患者置于可变的磁场中,使病人癌瘤中的氧化铁纳米颗粒升温46 ℃左右,烧毁癌瘤细胞,而其周围的健康组织不会受到伤害。另一种纳米壳,将其金质涂层贴在特定的束缚肿瘤细胞的抗体上,过充分加热纳米壳也能杀死癌细胞。也可把药物与这种氧化铁纳米颗粒结合注入患者体内,在外磁场作用下,使其向病变部位集中,从而达到定向治疗和提高疗效的目的。

我国研发的纳米药物载体治疗恶性肿瘤技术已取得显著成果,最近将转入临床试验阶段。张阳德教授介绍,这种新疗法是把原有的治癌药物稀释分解后的产物吸附在纳米颗粒上,然后再把带药的纳米颗粒利用靶向技术,直接作用于患病细胞,并在患病细胞上缓慢释放和分解药物,可望征服部分恶性肿瘤。

3.纳米科技在医药领域的发展前景

未来20年纳米与医药学的联系更为紧密,其趋势为:纳米材料将使诊断、检测技术向微观、微量、微型、微创或无创、快速、实时、动态、功能性和智能化的方向发展;应用于分子间的相互作用、分子复合物和分子组装的研究,将在病毒结构、细胞器结构细节和自身装配机理上取得进展;将使药物的作用实现器官和细胞内结构靶向化,这样不但减少了药物在其他健康细胞上的毒副作用,也提高了药物的稳定性、生物利用度和疗效,还可降低制药成本。随着世界上大量人力物力财力的投入,随着人们研究的深入,在科技高速发展的环境下,二十一世纪纳米技术将推动信息、医学、自动化及能源科学的迅速发展,给人类带来新的变化,引导21世纪又一次科技产业革命。

参考文献:

[1]王天赤,路嫔,车丕智,等.纳米材料的特性及其在催化领域的应用[J].哈尔滨商业大学学报(自然科学版),2003,8:501~502.

[2]纳米医药传递系统[英]/shafer c∥Dr.Discov Today.2005,l0(23/24):1581.

[3]张晓琨,于滨.纳米技术在中药研究中的进展[J].中华中医药杂志(原中国医药学报),2007,22(7):465~467.

[4]林本兰,沈晓冬,崔升,等.磁性纳米粒阿霉素微球制备的初探[J].中国医院药学杂志,2005,25(5):424~426.

[5]陈伙德,贾振斌,邱敏,等.纳米材料在医药领域中的应用与展望[J].广东化工,2008,10(35):93~95.

[6]吴昊,屠美,姚平,等.关节液中纳米颗粒的测量对关节疾病诊断的意义[J].中国病理生理杂志,2007,23(1):173~177.

[7]陈伙德,贾振斌,邱敏,等.纳米材料在医药领域中的应用与展望[J].广东化工,2008,10(35):93~95.

等离子纳米技术范文5

1纳米孔生物技术的改进

从嵌入溶血素蛋白通道对血脂的试验研究开始,研究者们在过去10年中开发和探索了多种类型的纳米孔。α-溶血素是一种能天然性地连接到细胞膜中继而导致细胞溶解的蛋白质,它第一个被用来做成生物纳米孔模型。模型中,一层生物膜将溶液分为2个区域,α-溶血素蛋白嵌入生物膜中形成纳米孔。当DNA分子穿过纳米孔时阻断电流会发生变化,这时灵敏电子元件就能检测电流的变化。但是,由于4种碱基的理化性质比较接近,所以读取序列实际上比想象的困难得多。此外,有效减少电子噪声仍旧是个挑战,通过降低DNA的位移速率可以部分减少噪声。最近出现了新形式的仿生纳米孔,其中包括丝蛋白毛孔[1]和仿生核孔复合物[2]。跨孔形成的侧电极使通过纳米孔转运的生物分子的电子检测成为可能[3]。采用等离子体减薄[4]和离子束雕刻技术[5]得到的超薄纳米孔也被开发出来。通过耦合到纳米孔上的扫描探针显微镜[6]和硅纳米线晶体管[7],证实了这种使用静电效应和场效应的替代检测方式的可行性。石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,目前已经成为制作超薄纳米孔膜材料[8]的首选。石墨烯的带电特性、韧度、原子厚度以及其电子抗渗性能,使得其成为纳米孔DNA序列测序的热点材料。石墨烯薄片膜[9]和自对准碳素电击[10]形成方面的新进展,促进了碳纳米结构与纳米孔技术的整合。对进入纳米孔分子的自动捕捉可实现分子结构和动力学的检测分析。这项改进技术已经应用于对孔泡附近的扩散现象研究,这也是未来生物研究的基础。对金属孔上离子转运的研究,例如金表面的纳米孔[11],可以作为一种方法用于创建种选择性纳米孔系统[12],这一系统也是研究者感兴趣的生物分子检测系统。

2纳米孔在生物技术上的应用

迄今为止,DNA是纳米孔研究中最常见的聚合物,脂质嵌入式离子通道检测DNA是这项研究开创性的示范。最近,固态纳米孔已用于检测核小体亚结构的不同[13]以及RNA聚合酶催化DNA转录的关键部分,为了解染色体的结构和转录研究创造了新机遇。生物纳米孔在富含鸟嘌呤的G-四链体检测方面的应用,对基因组学和表观遗传学的发展起着重要的推动作用[14]。脱碱基位点也可以用纳米孔动态检测,通过阻断含离子载体的电解质溶液,高压辅助下的蛋白质易位以及使用配体修饰纳米孔蛋白的不同都得到了论证[15]。某些蛋白质在转运时发生“解压”,转运过程便可用于成为测量解压动力学。许多这种蛋白质的解压行为已经得到了研究,纳米孔可作为无需标记的高效力谱仪[16]动态使用。重要的神经传导物也得到了动态实时区分,以期用于研究大脑对药物的化学反应[17]。与其检测技术相比,纳米孔更具发展前景,其高效、快速且价格低廉,准确度和检测性能良好。其他纳米孔结构为生物领域提供了多种新研究和技术。大型固态纳米孔可以用来动态地捕获释放的细菌,为动态捕获单细胞提供了更快速低廉的方法。使用脂肽包被的固态纳米孔,可以探测到DNA与邻近孔膜的相互作用[18]。热反应聚合物的提出推进了智能纳米孔的发展,智能纳米孔可以作为动态响应温度的装置,电解质刷组成的生物纳米孔可控制孔附近的盐电导。DNA测序纳米孔的研究也取得了进展,一项最新的分子动力学研究显示,运用DNA聚合酶作为棘轮,通过控制石墨烯纳米孔上DNA单链的转运,可获得核苷酸序列的高精读数。使用溶血素中的链霉亲和素可选择性固定DNA链,可高分辨率区分孔上不同几何位置的核酸。P-n半导体结可放慢DNA易位的速度,移位过程中这种半导体结可以动态控制电压。运用新型的基于CMSO的放大器,可实现亚微秒时间内的电流检测。关于DNA测序的理论研究,为解决上述提到的离子电流测定速度的限制问题提出了可行性的建议和方法。模拟显示,石墨烯碳纳米带上的纳米孔可以利用孔隙边缘的电流密度,从而产生较高的分辨率。垂直于纳米通道放置的石墨烯碳纳米带上的电导变化,也被建议作为DNA碱基易位测序设备。

3结语

等离子纳米技术范文6

关键词:纳米金;生物医学技术;应用现状;

1前言

如今纳米技术随着时代的发展已经得到了很大的发展,成为了科学研究的热点,纳米金是指直径0.8~250mm的缔合金溶胶,它属于纳米金属材料中研究最早的种类,纳米金具有良好的纳米表面效应、量子效应以及宏观量子隧道效应,它具有很多良好的化学特性,比如抗氧性和生物相容性。

2纳米金在病原体检测技术中的应用现状

近些年来生物医学界对于流行病学的研究和对病原微生物的诊断已有了不小的进展,传统的分离、培养及生化反应逐渐被时代所淘汰,运用纳米金的免疫标记技术作为新的高通量的、操作简单的检测技术被广泛应用于临床病原体的检测,这种检测技术快速且准确,十分适合在临床上使用。1939年,两位科学家Kausche和Ruska做了一个小小的纳米金实验,他们将烟草花病毒吸附在金颗粒上,并在电子显微镜下观察,发现金离子呈高电子密度,就此打下了纳米金在免疫电镜中的应用基础。从1939年后生物医学技术不断发展,纳米金标记技术也广受世人关注,成为了现代社会四大免疫标记技术之一。作为一种特殊标记技术,纳米金在免疫检测领域受到了广泛的应用,使用纳米金粒子做探针,观察抗原抗体的特异性反应,放大检测信号,由此检测抗原的灵敏性。纳米金技术具有良好的检测灵敏性,在早期还支持诊断并监控了急性传染性病毒,根据这一特性,秦红设计了快速检测黄热病病毒的技术,在纳米金颗粒上标记上金SPA-复合物的标志,通过免疫反应实验我们发现病毒抗体与纳米金颗粒结合,并形成了人眼可见的红线。这种检测方法的优点有:不需要器材、简单、迅速、廉价、高效,极大地推动了黄热病病毒检测技术的更新,在黄热病的防控事业上有着深远意义。利用纳米金作为免疫标记物来检测的除了黄热病病毒,还有致病寄生虫。我国的民族种类多样,一些少数民族人民由于自身的文化特点,喜食生食或半生食物,这就形成了寄生虫病的传播,我国经济大发展后,人民的生活水平得到了提高,但还是喜食半生动物肉或者内脏,造成了食源性寄生虫病发病率的上升,严重影响人民身体健康。目前我国的临床诊断寄生虫病技术包括三方面:病原学检查、免疫学检查以及影像学检查。运用纳米金检测技术,不仅缩短了取材时间、缩小了取材范围,而且检出率高、创伤性小,受到了患者的广泛欢迎。

3纳米金在核酸、蛋白质检测中的应用现状

纳米金粒子具有特殊的表面等离子体共振现象,被应用在核酸构建和分析检测蛋白质领域中,可以把生物识别反映转换为光学或电学信号,因此人们将其与DNA、RNA和氨基酸相结合,在检测核酸和蛋白质方面收效颇丰,并且这种检测方法制备简单,同时还具有很多优点,比如良好的抗氧化性和生物相容性,下面具体讲一下纳米金检测技术在核酸和蛋白质检测中的应用。首先是在核酸检测中的应用。美国首先利用纳米金连接寡核苷酸制成探针检测核酸,将纳米金做标记与靶核酸结合形成超分子结构,由此来检测核酸。利用纳米金技术检测特定病原体和遗传疾病首先要做的就是检测核酸的特定序列,在芯片点阵上整齐排列纳米金颗粒,利用TaqDNA连接酶识别单碱基突变,等待连接后,就可以经过一系列步骤得出单碱基突变结果,得到所需信息。在临床应用中使用纳米金技术的表现有高灵敏检测谷胱甘肽和半胱氨酸的新型电化学生物传感器,这种机器对于谷胱甘肽和半胱氨酸的检出限值更低,在检测及预防糖尿病、艾滋病等疾病方面具有很大的临床优势。其次是在蛋白质检测中的应用。纳米金与蛋白质的作用方式非常多样,有物理吸附方式、化学共价结合方式以及非共价特异性吸附等等方式,在此背景下,我们可以利用纳米金检测并治疗疾病和检测环境污染。

4纳米金在生物传感器制备中的应用现状

目前纳米金在生物传感器检测中的应用受到了人们的普遍关注,如上文所说,纳米金具有特殊的表面等离子体共振现象,这是制备生物传感器的基础。利用这种特性,科学家们做了许多实验,比如拉曼光谱试验,使用Uv-Vis光谱和拉曼光谱仪测试金纳米颗粒的表征,得出结论是可以根据纳米金颗粒的不同形貌制作不同浓度分子的探针,受外周环境介电特性和颗粒尺寸大小的影响,纳米金颗粒会表现出不同的形貌特征,比如吸收光谱、发生蓝移。纳米金是属于一种非常微小的贵金属,作为贵金属,它具有很好的导电性能,利用纳米金进行免疫检测时会大量聚集纳米金,从而增强反应体系的电导,顺利通过电导检测免疫反应。利用纳米金的高检测灵敏性可以进行电化学免疫传感器的制备。

5其他领域的应用现状

目前纳米技术的研究中,纳米金在生物医学技术中的应用研究是重要研究课题,除了上文中说到的病原体检测、核酸以及蛋白质检测还有生物传感器制备中的应用,纳米金技术同时也被广泛应用于肿瘤的诊断与治疗、药物载体以及CT成像。纳米金具有特殊的组成结构,它可以轻易被修饰并负载化合物,可以用于检测并治疗肿瘤,还可以被用于肺癌的检测及治疗,目前的大量数据都表明纳米金技术在诊断并治疗肺癌上有极大的优势。

6结语