油料作物和经济作物的关系范例6篇

油料作物和经济作物的关系

油料作物和经济作物的关系范文1

Abstract: Based on the theory of industrial ecology and recycling economics, this paper described the structure of the bio-energy industrial chain of HB Corporation in Mongolia, which has the three characteristics of the ecological, recycling economics and network chain. On this basis, from the perspective of the longitudinal extension and circumferential process, this paper further put forward several suggestions on perfecting the network of the bio-energy industrial chain.

关键词: 生物质能产业;生态产业链网;循环经济;生态工业

Key words: bio-energy industry chain;ecological industry chain network;recycling economy;ecological industry

中图分类号:F273文献标识码:A文章编号:1006-4311(2011)01-0109-03

0引言

生物质能作为一种化学态能,不仅能够发电、供热,而且还能转化为液态燃料和生物基产品,是唯一可大规模替代化石燃料的能源,主要发达国家的技术专家和决策者都非常重视生物质能产业的开发[1]。近年来,伴随着针对生物质能产业创新而发生的“车人争粮”、“人道危机”、“环境问题”等激烈论争,在此背景下,生物质能产业基于循环经济理论、工业生态理论所建立的生物质能生态产业链网具有良好的经济效益和环境效益,已成为生物质能产业发展的新的趋势和特点。

1HB集团生物质能产业链网结构解析

HB集团发展生物质能产业,主要是利用各种植物秸秆、林作物以及不能作为食用油的油作物等。HB集团所在城市耕地面积中有可耕地1100万亩,灌溉面积900万亩,有待开发面积760万亩。其主要粮食作物包括小麦、玉米,种植面积各为190.8万亩、208万亩,另外还有油葵、食葵等经济油料作物,这为HB集团生物质能产业的发展提供了足够的纤维类原料;巴彦淖尔市边际性及周边的土地多为沙荒地、盐碱地、荒坡地,共有2000万亩,其可作为生物质能产业发展的林木种植基地,种植面积可达300万亩以上。HB集团现已在该市边际性土地上建立石油植物园,重点培育油料作物文冠果,该植物为落叶灌木或小乔木,生长周期为2年,主要产于内蒙古地区,适应性强,喜生于沙质肥沃土壤,根系深,有抗干旱的优良特性,一般在干旱沙荒地带生长良好。

目前集团开发的生物质能三大产品包括生物甲醇、生物柴油和燃料乙醇。该集团以石油植物园、甲醇基燃料系统、生物柴油――生物油联产系统、纤维制乙醇系统、热电联产系统、环境综合处理系统为框架,各系统之间通过中间产品和废弃物的相互交换而互相衔接,从而形成了一个比较完整的生物质能产业链网(图1)。本文将从企业链、产品链、生产链、技术链四个方面对HB集团生物质能产业链进行阐释。

1.1 HB集团企业链解析从图1中可以看出,HB集团主要由三条企业链组成,企业链①:石油植物园生物柴油、生物油联产系统环境处理系统,是以环境综合处理系统为链中下游企业,该系统的物料投入主要是来自集团内生物质能生产系统和热电联产系统生产过程中排出各种废水、废渣和废气等废物;企业链②:生物甲醇系统生物柴油、生物油联产系统石油植物园,以环境综合处理系统为链中上游企业,它表示废水、废渣和废气等经该系统处理后,被集团内其他系统循环利用的过程。其中该系统主要利用回用水工程,将废水经过处理以后,达到了工业用水的要求,因此又重新被集团中甲醇基燃料系统、燃料乙醇系统所利用;企业链③:石油植物园燃料乙醇系统环境综合处理系统石油植物园,以热电联产系统为链中上游企业,它表示该系统以利用甲醇基燃料系统的余热和其他投入为基础,将产生的电、汽、热全部应用于集团内三大生物质能产品系统的生产过程。

另外,可以看出环境综合处理系统、热电联产系统与集团内三大生物质能产品系统的联系紧密,实现了集团内的水循环、能量循环。

1.2 HB集团产品链解析从产品结构视角看,产品链是指以某项核心技术或工艺为基础,以市场前景比较好的、科技含量比较高的、产品关联度比较强的优势企业和优势产品为链核,以产品技术为联系,投入产出为纽带,上下连结、向下延伸、前后联系形成的产品链。产业链中,上一个企业的产出是下一个企业的投入――这是产业链的“基础内含链”[2]。

从企业链的角度来讲,HB集团仅有三个生物质能产品系统,但从产品链的角度来讲,HB集团生物质能产品共有五种:生物甲醇、生物柴油、生物油、燃料乙醇、碳酸二烷酯等。从生物柴油、生物油联产系统的工艺流程看出,油酸甘油酯通过酯交换、酯化,分别生成了生物柴油、生物油两种生物质能产品;甲醇基燃料系统最终生产出生物甲醇、碳酸二烷酯两种生物质能产品,碳酸二烷酯以生物甲醇为原料,由生物甲醇进一步加工而生成。另外生物甲醇作为中间投入,用于生物柴油、生物油系统中,作为最终生物质能产品生物柴油的中间投入,由此便形成了HB集团生物质能产品链。

1.3 HB集团生产链解析生产链是与最终产品生产直接和间接相关的诸多企业及社会经济的若干部门之间的一种相互依存、相互制约的链状经济技术关系。

生产链结构及运行有两个突出特点[3]:一是各个环节在空间上的并存性和运行时间上的继起性。所谓空间并存性,是指链条的基本环节在空间上不能空缺,也就是在同一时点上各个环节都必须同时存在;所谓时间的继起性,是指生产链的每一个生产环节的运动不仅自身不能停止,而且必须一个继一个地有序地跟着前进;二是链状结构之间的比例性和运动的平衡性。只有各环节在组织规模与作业数量保持一定的比例,才能保持各环节在运动中的动态平衡,也只有保持链状环节的动态平衡,才能保持整个生产链良性互动,并产生出整合的前推力量。

对于HB集团的五个系统,各个系统之间是相互联系、相互作用的。其中任何一个系统产品产量和规模的变化都会给其他系统带来影响。如:热电联产系统,该系统存在的意义是保证集团各系统的电、汽、热及时、保质保量供应给其他的系统,这样才能保证集团生物质能产品的正常生产。但是如果三大生物质能产品系统中任何一个企业想要扩大生产规模,那么该系统对电、汽、热的需求便会增加,此时就应该相应的扩大热电联产系统的规模。

1.4 集团技术链解析产业链中每个企业为了保证产品生产的质量,都有一系列的技术支撑,所有不同环节企业的技术之和便构成了产业链的技术链[4]。由于每个企业都有自己的核心竞争力,因此每个企业也都有独特的技术,这些技术是企业的竞争优势所在。当市场需求发生变化时,首先就要引起产业链的技术链的变化,只有技术链能顺利对接才能保证产业链生产上的对接,才能保证产业链的稳定运行。HB集团各系统之间存在着紧密的经济技术联系,没有了各种生物质能技术的支撑,就不能形成生物质能产业链。

以纤维制乙醇为例,该工艺与发酵法纤维乙醇相比,成本相当于其58%,投资低65%,生产规模是其2-3倍,与天然气制醇类燃料相比,大大节省了温室气体CO2的排放(是其26%),该技术工艺是由HB集团自己开发的。

HB集团吸纳国内三所在生物质炼制领域技术领先的重点大学作为股东,共同办企业。由大学教授与企业科研人员共同组成课题组;用大学的基础研究设施和企业的应用研究、小试生产、中试生产设施共同完成科研开发;由大学的基础理论研究与企业的产品研发、应用技术研究结合。队伍精干、具备一流的研发试验设施,形成灵活高效的运作机制,显著的自主创新优势和突出的技术特色,能够持续不断地为生物质炼制产业技术进步提供有力支撑。

2HB集团生物质能产业链的特性分析

2.1 生态产业链特性生态产业链一般是指依据生态学原理,以恢复和扩大自然资源存量为宗旨,为提高资源基本生产率和根据社会需要为主体,对2种以上产业的链接所进行的设计(或改造)并开创为一种新型的产业系统的系统创新活动[5]。生物质能产业链本身是一种借助于高新科技将“生态工业系统”与“自然生态系统”相耦合而形成的产业链,因此其必定具有一定的生态特性:

2.1.1 从集团发展生物质能的原料来看,甲醇基燃料系统、纤维制乙醇系统均以植物纤维、草这样的农林废物为原料,这些纤维素类物质是地球上最丰富、最廉价的可再生资源,对其的利用不但可恢复、扩充自然资源增量,还会减少这些废物对生物生存空间的侵占和一定的环境污染;另外该集团利用巴彦淖尔市边际性土地(沙荒地、盐碱地、荒坡地)种植文冠果果树等生物质能林木,原料供应不但做到了“不与人争粮”,“不与粮争地”,从而避免以往生物质能产业引起的“车人争粮”、“人道危机”、“环境问题”等激烈论争,而且将能源林基地建设与防风固沙、城市周边绿化融为一体,更是很好的体现了该集团生物质能产业链的生态特性。

2.1.2 从生物质能产业链的“生态工业系统”角度来讲,集团研发部依据生物质C、H、O循环机理、生物质炼制与环境的协调性、生物质产品技术经济分析等设计和改进生物质能生产工艺,其生产过程中处处体现绿色、无毒和安全的特性。例如:在生物柴油、生物油联产系统整个工艺生产过程中,利用国际领先的工艺(生物柴油生产过程采用国际先进的汉高法;生物油生产过程采用国际先进的有利凯玛法,这些方法为国际通称的“绿色精细化工”行业),不添加任何对环境可能造成污染的添加剂,且工艺安全合理。另外,在生产过程中,涉及外运的易燃易爆品为工业溶剂油和甲醇,将采用专用车、专用道、专用时间运输。

2.1.3 从生物质能产品利用的角度来讲,生物质能产品较石油能源产品来讲,其本身具有很好的环境友好特性。生物柴油具有优良的环保特性,主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境污染的芳香族烷烃,因而废气对人体损害低于柴油。

一直以来,煤炭作为不可再生的化石能源,是我国主要依赖的能源,在一次能源消费中其比例高达70%,然而煤炭的利用给我国带来了巨大的环境问题,CO2、SO2等有害气体的大量排放,造成环境污染的同时也制约着我国经济社会的可持续发展。生物质能作为世界第四大能源,是唯一既可再生又可直接储运的能源,其开发利用可使人类摆脱对化石能源的依赖,对生态环境保护具有重要的意义。

2.2 循环经济特性循环经济是指为保护环境,实现物质资源的永续利用及人类的可持续发展,按照生态循环体系的客观要求,通过清洁生产、市场机制、社会调控等方式促进物质资源在生产中循环利用的一种经济运行形态。资源的循环利用是循环经济的核心内涵,“循环”则是循环经济的中心含义。“循环”是指经济赖以存在的物质基础――资源在国民经济再生产体系中各个环节的不断循环利用[6]。

HB集团循环经济特性主要表现在:

2.2.1 在生产加工过程中对能源原材料的果实、秸秆、叶子等全方位的利用。以石油植物园中生产的文冠果为例,文冠果是我国特有的优良木本油料树种,种子含油量为45%-50%,种仁含油量70%。从能源角度看,是一种理想的能源林植物。HB集团将文冠果果实作为生物柴油、生物油投入的原料;其废枝条用于燃料乙醇和热电联产系统;文冠果叶被采摘直接销售到市场,经其他企业加工生产高级茶叶。

2.2.2 通过适当的技术尽量将生产的副产品进行回收。HB集团三大生物质能产品系统在生产过程中均有一定数量的副产品生成。如:甲醇基燃料系统副产品二氧化碳、堆肥;生物柴油、生物油联产系统副产品甘油、粕;纤维制乙醇系统堆肥。其中,副产品堆肥作为有机复合肥用于石油植物园的中间投入进行使用,以实现节约资源、减少集团开支的作用。另外,副产品甘油、粕等直接流入市场,为集团创造了额外的经济效益。

2.2.3 在各系统生产过程中,一个系统排出的“废物”作为集团内其他系统的最初投入进行生产。以甲醇基燃料系统为例,其在生产过程中产生的“废热”就被热电联产系统所利用;集团内各系统生产过程中所排出的“废渣”、“废水”等废物,均是环境综合处理系统的最初投入。在环境综合处理系统中,通过回用水工程,实现了集团内的水循环。

2.3 产业链网结构特性根据以上论述,HB集团生物质能产业链既具有生态性、又具有循环经济特性。这就造成在集团内部,一条产业链的“下游企业”有可能另一条产业链的“上游企业”。产业链的这种特性,很好的实现了系统间的物质集成、能量集成,通过上下纵向延伸和横向环向拓展,形成产业间的工业代谢和共生关系,构建出生物质能产业共生网络系统。其中上下纵向延伸是对生物质资源进行深加工,环向拓展就是将上下延伸的产业链排放出来的副产品或废弃物再深度加工。

产业链网状结构的构建需要多种技术,除包括循环经济技术中通常使用的替代技术、减量化技术、再利用技术、资源化技术以外,还包括系统优化技术以及共生链接技术。系统优化技术从系统工程的原理出发,通过资源、能源工业代谢分析,实现区域物质流、能量流、信息流、价值流等优化配置的软科学技术,可用于指导产业链网状结构的构建;共生连接技术是在构建产品组合、产业组合、实现产业链链接和产业共生时所需要开始的链接技术,这对于构建生态产业链的成功起到关键作用。

根据前面对集团产业链的解析结果,该集团目前存在的纵向主导产业链有以下几种:文冠果果实――生物柴油――市场;文冠果果实――生物柴油――生物油――市场;文冠果纤维茎秆――燃料乙醇――市场;生物质纤维――生物甲醇――市场;生物质纤维――生物甲醇――生物柴油――市场;生物质纤维――生物甲醇――碳酸二烷脂――市场。

而环向产业链的构建主要是靠集团内两大寄生型共生系统为媒介进行搭建。环境综合处理系统吸收并消化三大产品系统产生的废水、废渣、废气,并实现了废水回用于集团各系统,实现了水系统集成;热电联产系统利用石油植物园中植物纤维以及生物甲醇系统的余热实现发电,并用于集团各系统对于热、电、汽的需求,但是从对该集团生物质能产业链耦合程度的考察结果来看,其在纵向延伸的深度和横向延伸的广度可进一步加强,从而构建出更加健全稳定的生物质能产业链网状结构。

3HB集团生物质能产业链网改进措施

HB集团生物质能产业链网在其结构形成和发展过程中,会不断加深各种链网结构的纵向延伸和横向联系,从而又形成新内容的链状结构,最终形成更复杂的产业链网状结构。根据目前HB集团生物质能产业链网的发展情况,提出了如下改进措施:

3.1 燃料乙醇产业向上延伸与化石能源煤炭产业接轨,利用劣质煤炭褐煤与植物纤维双原料技术,生产乙醇基燃燃料。内蒙古自治区具有丰富的煤炭资源,在该地区煤炭资源开发与利用过程中,一部分劣质煤市场竞争力较弱,价格低廉,在对其开采过程中往往造成很大的浪费;另一方面,集团现有的纤维制燃料乙醇气化技术存在着能量利用率低、过程污染严重等问题,因此该技术亟待改善。本文建议结合当地煤炭资源优势在纤维制乙醇系统中将褐煤这一劣质煤作为原料与植物纤维混合制乙醇,在改进技术工艺的基础上,使生物质能产业向上延伸与煤炭行业接轨。

3.2 延长生物甲醇产业链网生物甲醇系统可进一步利用甲醇催化脱水制备二甲醚、再度脱水制备汽油技术,生成最终产品生物汽油,延长其产业链长度,增加经济效益。生物质能产品的主要风险来自市场的竞争,而产品的价格竞争又是市场发展的重要因素。该项目直接利用本集团生产的生物甲醇来生产生物汽油,降低了原料成本,提高了生物汽油的市场竞争力,与原有生物甲醇产业链相比,其经济效益的提高非常明显。

3.3 扩大环境综合处理系统的规模改进污水处理技术,并将处理后的水用于石油植物油的灌溉和生物柴油系统中,更好发挥集团水集成系统功能。集团环境综合处理系统虽然在一定程度上实现了水集成系统的功能,但是其集成程度并不完善,这直接造成以环境综合处理系统为主导企业的产业链网络中的环链结构不够发达。另外,集团中生物柴油系统也是一个用水量较多的系统,而目前其用水主要来源为新鲜水,因此为节约水资源,提高环境综合处理系统的水处理能力势在必行。

3.4 构建CO2利用产业链纵观本集团生物质能产业链网络,我们发现在其生产过程中,排放的主要废弃物就是CO2,且以生物甲醇系统为最,每生产一吨生物甲醇就会产生0.1吨的CO2。

结合本集团种植业与工业生产相结合的现状,可考虑利用CO2发展生态农业。具体做法是:收集各系统产生的CO2气体用于集团石油植物油温室育苗过程,以达到减少温室气体排放的目的。与此同时,还可利用集团中各系统产生的余热来维持温室温度。

4总结

通过对HB集团生物质能产业链网的分析,得出以下结论:

4.1 生物质能产业链网是一种借助于高新科技将“生态工业系统”与“自然生态系统”相耦合的资源循环利用型产业链,以此发挥该产业在经济部门中的静脉作用。生物质能产业链网的培育要充分发挥产业集成技术与循环经济技术的优势。

4.2 生物质能产品企业的核心技术是提高生物质能产业的生产效率和经济效益的关键因素。HB集团应进一步加大对生物质能技术的开发力度,使其成为产业链中技术创新、专利、标准、品牌等方面具有竞争优势的核心企业,以其良好的发展前景吸引更多的生物质能产品的消费者。

4.3 通过探讨各产业之间的链网结构以及其特性,找到产业链上生态经济形成的原因,并借此进一步提出了完善集团生态产业链网内部的“物质流”和“能量流”的几个建议,以实现整个集团产业链网的和谐健康发展。

参考文献:

[1]International Energy Agency Bioenergy 2006 Annual Report..

[2]Fischer G,Schratten L.Global Bioenergy Potential Through 2050 [J] .Biomass and Bioenergy,2001(20):151-159.

[3]K. Maniatis,G. Guiu and J. Reisgo. The European Commission perspective in biomass and waste thermochemical conversion. In:A.V. Bridgwater,Editor,Pyrolysis and gasification of biomass and waste,CPL Press,Newbury(2003),pp.1-18.

[4]刘贵富.生态产业链研究―产业链基本理论[M].吉林:吉林科学技术出版社,2006:96-98.

油料作物和经济作物的关系范文2

关键词:生物质能源;开发;利用

20世纪70年代以来,面对常规矿物能源的日益枯竭和环境的逐渐恶化,世界许多国家将目光逐渐转移到了具备可再生、环保、可转化等优点的生物质能源上。改革开放以后,中国也逐步迈上了发展生物质能源的轨道。进入21世纪,谁能把握住生物质能源开发利用的先机,谁将在未来的国际竞争中立于不败之地。因此,应该提高对发展生物质能源重要性的熟悉,为顺利开展生物质能源的开发利用创造有利环境。

1生物质能源的概念

生物质是一种通过大气,水,大地以及阳光有机协作产生的可持续性资源。生物质假如没有通过能源或物质方式被利用,将被微生物分解成水,二氧化碳以及热能散发掉。

生物质产业是指利用可再生或循环的有机物质,包括农作物、树木、能源作物和其他植物及其残体、畜禽粪便、有机废弃物等为原料,进行生物基产品、生物燃料和生物能源生产的产业。

生物质能是以生物质为载体的能量,即通过植物光合功能把太阳能以化学能形式在生物质中存储的一种能量形式。碳水化合物是光能储藏库,生物质是光能循环转化的载体,生物质能是惟一可再生的碳源,它可以被转化成许多固态、液态和气态燃料或其它形式的能源,称为生物质能源。煤炭、石油和天然气等传统能源也均是生物质在地质功能影响下转化而成的。所以说,生物质是能源之源。

2生物质能源开发利用的必要性

2.1缓解能源、环境危机的必然选择

煤、石油、天然气等矿物燃料是工业社会的核心能源,但它们是不可再生资源,储藏量有限。据国际能源机构统计,煤、石油、天然气可供开采的年限分别只有240年、40年和50年。随着人类经济社会的飞速发展,能源消耗的速度越来越快,尤其是矿物燃料消费的不断增加,导致了对它们的过度开采,使得价格日益上涨并渐趋枯竭;同时,高强度的利用使多余的能量和碳素大量释放,打破了自然界的能量和碳平衡,造成臭氧层破坏、全球气候变暖、酸雨等灾难性后果,引起了国际社会的极大忧虑。假如没有新的能源来取代常规能源在能源结构中的主导地位,21世纪必将发生严重的、灾难性的能源和环境危机。

处在一体化的国际大环境之下,中国的能源形势也十分严重。改革开放以来,中国经济迅猛发展,虽然经济增长方式正在由粗放型向集约型转变,但对于矿物能源的需求量仍和日俱增,然而中国的常规能源储备和开发利用潜力却不容乐观,每年尚需要从国外大量进口石油,潜在的能源危机将逐步威胁中国经济的快速发展。同时,中国的环境压力也在不断加大。环境友好型经济已被纳入国家的发展战略,生态型、循环型能源的开发利用也已被提上重要的发展议程。

为缓解双重危机,人们把视线聚焦到可再生能源身上。太阳能、风能、小水电等虽然是可再生能源,但不能进行物质生产,而生物质既能贡献能量,又能像煤炭和石油那样生产出千百种化工产品。如燃料乙醇和车用普通汽油相比,一氧化碳的排放可降低7,碳氢化合物可减少48;生物柴油富含氧,和普通柴油混合使用,可使燃烧更加充分,据检测,生物柴油无毒,能进行生物降解,添加20的生物柴油,可减少排放二氧化硫70,降低空气毒性90[1];使用生物塑料能解决白色污染新问题。同时生物质能源以作物秸秆、畜禽粪便、农林废弃物、城市有机垃圾等为原料,使之无害化和资源化,将植物蓄存的光能和物质资源深度开发和循环利用,符合发展循环经济的理念。因此,生物质能源既能满足缓解能源危机的需要,又符合保护环境、实现可持续发展的要求,是中国进行可再生能源开发利用的必然选择。

2.2保障国家平安的现实需要

随着能源危机的逐步扩大,各国对本国常规能源资源的保护和对国外能源市场的争夺将日益升级,极不利于世界的和平和稳定。据有关专家预计,到2010年,中国石油进口依存度可能会进一步上升。固然,发展生物质能源不是获得新能源的唯一途径,人类可以发展核能源,甚至可以通过高技术手段从外太空获得能源,但后两者蕴藏着巨大的风险。首先,核能源的发展极可能给世界带来新的不稳定因素,甚至直接威胁到人类的生存环境;其次,各国家或集团受技术水平的限制,在有限的外太空区域内进行能源开发,将不可避免地引发新的国际争端。能源平安已经成为国家平安不可分割的重要组成部分,能源新问题直接关系到中国经济的快速增长以及社会的可持续发展和稳定。

相比之下,生物质能源则是能生产出其它能源的最平安、最稳定的能源。目前,许多国家,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。20世纪90年代以来,美国在生物质能源方面的探究经费逐步加大,按照美国能源署的要求,到2010年混合性生物柴油(90常规柴油和10生物柴油)的产能要从现在的100万吨提高到1200万吨。欧盟委员会提出,到2020年,运输燃料的20将用生物燃料替代[2]。中国在生物质能源发展方面也作出了积极部署。据推算,利用中国现有生物质资源的一半,以生物质为原料生产燃料乙醇、生物柴油、生物基塑料各达年产1200万吨生产能力计,每年相当于建设一个大庆油田,并可减少1.6亿吨二氧化碳净排放量,相当于2003年进口石油量的55或从俄罗斯进口量的9倍并节约150亿美元外汇,可以大大减轻中国外交、援助、贷款的压力,降低遭讹诈、受制于人的危险,减少资金投入和政治外交代价付出。从这些意义上说,发展生物质能源无疑是保障国家能源平安、国防平安和经济平安的大战略。

2.3解决“三农”新问题的良好途径

“三农”新问题是中国经济发展的根本性新问题,对它解决的质量将直接影响着中国经济社会发展的全局,全国上下都给予了足够的重视。生物质产业利用中国丰富的农林废弃物和非农田为原料和基地,生产出市场前景广阔、环境友好和高附加值的能源及生物化工产品,既帮助解决中国部分农村剩余劳动力的就业新问题,又能够实现农业和农民增收,是解决“三农”新问题的一条有效途径。据推算,只要利用中国50的低质地,生产能源作物,发展生物质能源,就可以实现年产值约1万亿元,加上秸秆、畜禽粪便等,生物质产业就可以催生1000个生物质能源企业,带动500万农户,促进5000万农业劳动力转移,实现农民增收400亿元[3]。同时,生物质能源如沼气等还能为农民提供价廉、清洁的燃料,使4000万农户生活用能效率提高2~3倍。除此之外,发展生物质产业还能有效降低秸秆露地燃烧、畜禽粪便污染、石油基地膜等对环境的污染。

3生物质能源的利用目前状况

3.1国外生物质能源的利用概况

生物质能源的开发利用早已引起世界各国政府和科学家的关注,许多国家都制定了相应的开发探究计划。美国已做出到2010年生物基产品要由2001年占总产品量的5增加到12,燃料乙醇由占运输燃料总量的0.5提高到4的规划;日本和印度分别制订了“阳光计划”及“绿色能源工程计划”。其它诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的探究和开发,并形成了各具特色的生物质能源探究和开发体系,拥有着各自的技术优势。

国外对生物质能源的开发主要利用了沼气技术、生物质热裂解气化技术、生物质液体燃料技术等。

1)沼气技术

此技术主要是利用厌氧法处理禽畜粪便和高浓度有机废水,是发展较早的生物质能利用技术。20世纪80年代以前,发展中国家主要发展沼气池技术,以农作物秸秆和禽畜粪便为原料生产沼气作为生活燃料。发达国家一直以来则主要发展厌氧技术,以处理禽畜粪便、垃圾和高浓度有机废水。目前,印度、菲律宾、泰国等发展中国家也建设了处理禽畜粪便的大中型沼气应用示范工程。

2)热裂解气化技术

早在20世纪70年代,美国、日本、加拿大、欧共体等发达国家就开始了对生物质热裂解气化技术的探究和开发。其中,流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、气化强度大等优点,从1975年以来一直是科学家们关注的热点[4]。到20世纪80年代,美国已有19家公司和探究机构从事生物质热裂解气化技术的探究和开发;加拿大12个大学的实验室在开展生物质热裂解气化技术的探究;菲律宾、马来西亚、印度、印尼等发展中国家也先后开展了这方面的探究。1996年,芬兰坦佩雷电力公司在瑞典建立了一座废木材气化发电厂,装机容量为60MW,产热65MW。瑞典能源中心在巴西建设了一座装机容量为20~30MW的发电厂,该电厂利用生物质气化、联合循环发电等先进技术处理当地丰富的蔗渣资源,效益可观。

3)液体燃料技术

生物质液体燃料开发是一项备受关注的技术,因为生物质液体燃料包括燃料乙醇、生物质液化油、生物柴油等,可以作为清洁燃料直接代替汽油等石油燃料[5]。在液化油应用方面,美国、新西兰、日本、德国、加拿大国家都先后开展了探究开发工作,其发热量达3.5×104kJ/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了3个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/h的试验规模,并拟进一步扩大至生产应用,该技术制得的液化油得率达70,液化油低热值为1.7×104kJ/kg。在燃料乙醇方面,巴西是开发应用最有特色的国家。20世纪70年代中期,巴西为了摆脱对进口石油的过度依靠,实施了世界上规模最大的乙醇开发计划。到1991年,乙醇产量达到130亿升,在980万辆汽车中,近400万辆为纯乙醇汽车,其余大部分汽车燃用的是20的乙醇汽油混合燃料,乙醇燃料已占汽车燃料消费量的50以上。在生物柴油方面,德国发展比较快,现有23家生物柴油生产企业,拥有1717个生物柴油加油站,2004年生产能力已达到109.7万吨。德国还将建成世界上最大的生物柴油装置。美国也很重视生物柴油的开发利用,目前有4家生物柴油生产厂,总能力为0.30Mt/a。马来西亚利用自身的资源优势,自1980年起就开始研发棕油生物柴油,并计划发放9张许可证建立棕油生物柴油厂。巴西也是较早把握生物柴油技术的国家。

4)压缩技术

生物质压缩技术可将固体农林废弃物压缩成型,制成可代替煤炭的压块燃料。如美国曾开发了生物质颗粒成型燃料,泰国、菲律宾和马来西亚等第三世界国家发展了棒状成型燃料等。成型燃料主要应用于二个方面:一是进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;二是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。

3.2中国生物质能源的利用状况

中国政府及有关部门对生物质能源的利用极为重视,中心几位主要领导人曾多次批示和指示加强农作物秸秆的能源利用,国家科委已连续在三个国家五年计划中将生物质能技术的探究和应用列为重点探究项目。在此背景下,涌现出了一大批优秀的科研成果和成功的应用范例,如户用沼气池、禽畜粪便沼气技术、生物质气化发电和集中供气、生物压块燃料等,取得了较好的社会效益和经济效益。同时,中国已组建起了一支高水平的科研队伍,拥有一批致力于生物质能源技术探究和开发的闻名专家学者,具备一定的产业和技术基础。

1)沼气技术。此技术是中国发展最早、较为普遍的生物质能源利用技术。20世纪70年代,中国为解决农村能源短缺的新问题,曾大力开发和推广户用沼气池技术。在“九五”期间,应用于处理高浓度有机废水和城市垃圾的高效厌氧技术被列为科技攻关重点项目,现已取得预期的进展。“十五”科技攻关课题《大型高效厌氧沼气发电技术及示范电站》以污水处理达标和大功率沼气发电机组为课题攻关的突破口,利用污水处理产生的沼气建造沼气发电示范工程,促进了沼气工程的进一步推广,使沼气工程在中国社会经济发展过程中发挥出更大的能源、环保效益。至今,中国已建成大中型沼气池3万多个,总容积超过137万m3,年产沼气5500万m3,仅100m3以上规模的沼气工程就达630多处。

2)生物质气化技术。中国生物质气化技术近年有了长足的发展。气化炉的形式从传统上吸式、下吸式发展到先进的快速流化床和双床系统等,应用上除了传统的供热之外,在农村家庭供气和气化发电上也取得了重大突破。“八五”期间,国家科委布置了“生物质热解气化及热利用技术”的科技攻关课题,取得了丰硕成果:采用氧气气化工艺,研制成功生物质中热值气化装置;以下吸式流化床工艺,研制成功l00户生物质气化集中供气系统和装置;以下吸式固定床工艺,研制成功食品和经济作物生物质气化烘干系统和装置;以流化床干馏工艺,研制成功1000户生物质气化集中供气系统和装置。“九五”期间,国家科委布置了“生物质热解气化及相关技术”的科技攻关专题,重点探究开发1MW大型生物质气化发电技术和农村秸秆气化集中供气技术[6]。“十五”期间,中国在利用生物质能源方面硕果累累。由中国科学院广州能源探究所研发的“4兆瓦生物质气化联合循环发电系统”,以谷壳、木屑、稻草等多种生物质废弃物为原料,发电效率可达20~28,运行每度成本约0.35~0.45元,能满足农村处理农业废弃物的需要。目前全国已建成农村气化站200多个,谷壳气化发电机组100多台套,气化利用技术的影响正在逐渐扩大。

3)固体和液体燃料技术。“八五”期间,中国开始了利用纤维素废弃物制取乙醇燃料技术的探索和探究,主要探究纤维素废弃物的稀酸水解及其发酵技术。此外,中国还重点对生物质压缩成型技术进行了科技攻关,引进国外先进机型,经消化、吸收,研制出各种类型的适合国情的生物质压缩成型机,用以生产棒状、块状或颗粒状生物质成型燃料。中国的生物质螺旋成型机螺杆使用寿命达500小时以上,属国际先进水平。“九五”期间,开展了野生油料植物分类调查及育种基地的建设。“十五”期间,中国对植物油和生物质裂解油等代用燃料进行了初步试验探究,包括植物油理化特性、酯化改性工艺和柴油机燃烧性能等。

4)生物质工程技术优势。在生物质工程中,国际公认有三个需要解决的重大工程技术新问题。一是克服木质纤维素分子对生物转化的抗性--由多糖降解为可发酵糖,二是通过微生物代谢工程和基因工程探究高速、高效、高收率的利用可发酵糖生物转化,三是简捷、高效的下游过程技术--产物分离[7]。尽管中国生物质技术整体水平和发达过相比仍较低,但在这三个生物质生物利用关键技术难题方面却有着独到的技术优势。首先,中国采用分子振动技术和微生物酶法相结合处理木质纤维素,可以提高纤维素水解速度和水解液中还原糖浓度,显著降低可发酵糖成本。第二,在五碳糖、六碳糖微生物共代谢探究方面,中国不仅构建了可以利用木糖生成乙醇的基因工程细菌,提高了用秸杆生产乙醇的经济性,还筛选、诱变得到了共代谢木糖、葡萄糖生产高光学纯度乳酸的真菌等。第三,中国开发的一体式膜生物反应器连续发酵技术,不仅解决了产物对菌种生长的抑制新问题,可以使微生物在高浓度发酵,而且不含细胞和生物高分子杂质的澄清发酵液有利于目标产物的分离纯化,可以简化下游提取过程。这三方面的技术突破,可以使中国在新兴的生物质产业领域处于国际先进水平。将大幅度地提高生产燃料乙醇的经济效益,降低聚乳酸前体乳酸的生产成本,使生态塑料聚乳酸树脂具备和石油基塑料竞争的经济性,最终构建起中国成熟的生物质产业。

3.3中国生物质能源利用和国外的差距

虽然中国在生物质能源开发方面取得了巨大成绩,但应该清醒地熟悉到,中国的生物质能源发展水平和发达国家相比仍存在一定差距。

1)技术单一,开发不力

中国早期的生物质利用主要集中在沼气开发上,近年逐渐重视热解气化技术的开发应用,也取得了一定突破,但其他技术进展却非常缓慢,包括生产酒精、热解液化、直接燃烧的工业技术和速生林的培育等,都没有突破性的进展。

2)标准欠缺,管理混乱

在秸杆气化供气和沼气工程开发上,没有明确的技术标准和严格的技术监督,很多不具备技术力量的单位和个人参和了沼气工程承包和秸杆气化供气设备的生产,造成项目技术不过关,达不到预期目标,甚至带来平安新问题,给后续开展生物质能源利用工作带来了很大的负面影响。

3)规模小,效益低

由于资源分散,收集手段落后,中国的生物质能源工程的规模很小,大部分工程采用简单工艺和简陋设备,设备利用率低,转换效率低下,造成投资回报率低,难以形成规模效益。

4)投入少,效果差

相对科研内容来说,投入过少,使得探究的技术含量低,低水平重复探究较多,未能有效解决一些关键技术,如:厌氧消化产气率低,辅助设备配套性差,设备和管理自动化程度较差;气化利用中焦油新问题没有彻底解决,给长期应用带来严重新问题;沼气发电和气化发电效率较低,相应的二次污染新问题没有解决,导致许多工程系统常处于维修或故障状态,降低了系统运行强度和效率;生物质液化方面虽然有一定探究,但技术仍比较落后。

4生物质能源的开发前景

4.1生物质资源丰富

中国生物质资源开发利用潜力大,现有森林、草原和耕地面积41.4亿公顷,理论上年产生物质资源可达650亿吨以上(在每平方公里土地上,植物经过光合功能而产生的有机碳量,每年约为158吨)。以平均热值为15000kJ/kg计算,折合理论资源量为33亿标准煤,相当于中国目前年总能耗的3倍以上。目前实际可以作为能源利用的生物质主要包括秸秆、薪柴、禽畜粪便、生活垃圾和有机废渣废水等。据调查,目前中国秸秆资源量已超过7.2亿吨,折合约3.6亿吨标准煤,除约1.2亿吨作为饲料、造纸、纺织和建材等用途外,其余6亿吨均可作为能源被利用。薪柴的来源主要为林业采伐、育林修剪和薪炭林,一项调查表明:中国年均薪柴产量约为1.27亿吨,折合标准煤约0.74亿吨;禽畜粪便资源约折合1.3亿吨标准煤;城市垃圾资源可折合标准煤1.2亿吨左右,并以每年8~10的速度增加。这些都是中国发展生物质产业的稳定资源。此外,中国还有1亿多公顷的边际性土地不宜垦为农田,但可种植高抗逆性能源植物,这对生物质产业而言是一笔宝贵的财富。我们可以在广大的山区、沙区栽种乔灌木油料植物,后者可以作为生物质燃料油的原料,而且中国含油植物资源丰富,分布范围广,共有151个科、1553种含油植物,其中含油量在40以上的有30多种,对它们的有效利用又可以为中国的生物质燃料油工业提供丰富的可再生原料。据估算,中国可开发的生物质能资源总量约7亿吨标准煤,在此基础上,国家提出至2020年中国农林生产的生物量要相当于15亿吨标准煤,相当于每年再建设多个“大庆油田”。

4.2市场需求旺盛

随着国民经济的发展和人们生活水平的提高,市场对于可再生能源的需求量将会越来越大,生物质能源的市场前景十分诱人。

1)国家对于能源的需求要求生物质能源产业加快发展。

以生物液体燃料乙醇和生物柴油为例:2005年,中国共生产燃料乙醇81万吨,在未来几年中国对石油进口依靠度加深、国际石油价格进入高价时代等大背景下,国内燃料乙醇产能扩大已经成为不可阻挡的趋向,加上国家的财政补贴,燃料乙醇的利润空间也在逐渐上升。预计未来10年内,全球燃料乙醇年消费量将达到160亿~180亿加仑,中国燃料乙醇需求量保守估计每年也将达500万吨[8]。同时,中国生物柴油的发展潜力也相当大。麻疯树、黄连木等油料植物可满足500万t/a生物柴油装置的原料需求,废弃动植物油回收每年可生产约200万吨生物柴油。近年来,中国相继建成了许多年产量过万吨的生物柴油厂。预计到2010年,中国生物柴油需求量将达2000万吨。

2)生态型经济社会发展需要生物质能源。

随着国家和社会对于生态环境保护的逐步重视,生态型能源也将会越来越受欢迎。如用燃料乙醇、生物柴油来替代或部分替代常规汽油或柴油,可大幅度减少汽车有害尾气排放量。面对越来越严重的白色污染,生物塑料有着广泛的需求市场。为改善农村的生产、生活环境,提高农民的生活质量,以作物秸秆、畜禽粪便、农林废弃物和环境污染物为原料,使之无害化和资源化,生产生物质可燃气等作为他们的生活能源,一举改变原来直接燃用秸秆薪柴烟薰火燎的炊事取暖局面,起到既办实事又赚效益的功效。

3)边远地区需要生物质能源。

中国的边远、穷困地区多缺电、少能,但生物质资源丰富,并可以利用边际性土地生产能源作物,以它们为原料,可以进行生物质能源的开发,利用生物质气化技术建设沼气工程等发电、产热、供能,满足边远地区广大农民的能量、燃料需要。

5生物质能源进一步利用的方向和办法

5.1生物质能源的发展方向

开发生物质能源是一项系统工程,是中国实现可持续发展的基本建设工程,应实现"两个结合",即做到"和经济发展及生态环境保护相结合"和"和中低产田改造及农业结构调整相结合"。根据中国经济社会发展的特征,生物质能源的开发利用既要学习国外的先进经验,又要强调自身的特色。

1)加强生物质工业化应用和规模化生产。

加大生物质能源利用的比重,提高生物质能在能源领域的地位,扩大生物质能的影响,为生物质能源今后的大规模应用创造条件。

2)充分发挥生物质能作为农村补充能源的功能。为农村提供清洁的能源,改善农村生活环境,提高农民生活质量。这包括沼气利用、小型气化发电等实用技术。

3)探究生物质能向高品位能源产品转化的技术。以先进技术提高生物质能的利用价值,为未来多途径利用生物质能,更好地发挥生物质能的功能奠定基础。

4)开发新的能源资源。以现有的资源为基础,利用山地、荒地和沙漠等边际性土地,发展新的生物质能资源,探究、培育、开发速生、高产的植物品种,在当前条件答应的地区发展能源农场、林场,建立生物质能源基地,生产规模化的木质或植物油等能源资源。

5.2生物质能源的开发办法

依据上述生物质能源的发展方向,针对性地提出以下应对办法。

1)提供政策支持。考虑到生物质能源发展在成本上尚难和石油基产品相竞争,国家要有计划、有步骤地支持一批新能源骨干企业的发展,在投资、价格和税收等方面给予相关政策性补贴。开展国际合作,引进国际先进技术和资金;建立专门的生物质能源资源展示区,增加公众认知度及节能意识。

2)推动产业化。应制定整体性科技研发计划,启动产业化项目,建立部级的质量监测系统,抓好产品生产的标准化、系列化和通用化。相关部门要加强生物质能源利用技术的商品化,制定严格的技术标准,加强技术监督和市场管理,规范市场活动,为生物质技术的推广创造良好的市场环境。生物质能源企业要依靠科技进步和提升经营管理水平来加强生物质能源的综合利用和产品多元化,从不同环节统一协调布局并进行系统优化,使产出和效益最大化。

3)扩大工业化生产。加强生物质技术和工业生产的联系,在示范应用中解决关键的技术,重点突破推广应用中出现的技术难题,在生产实践中提高并检验生物质能技术的可靠性和经济性,为大规模应用生物质能源创造条件。当前及今后一段时间可以将燃料乙醇、生物柴油、生物乙烯、生物塑料以及沼气发电和固化成型燃料等作为主导产品进行工业化生产。

4)加快技术探究。要分层次、按类别逐步推进生物质能的科研工作,坚持点面结合、整体推进的原则,将近、中、远期目标相结合。既要支持前景好的基础性探究,如秸秆能源利用,有机垃圾处理及能源化,工业有机废渣和废水处理及能源化等,也要推动技术相对成熟的项目进入中试阶段或产业化,如高效生物质气化发电技术、有机垃圾IGCC发电技术、高效厌氧处理及沼气回收技术、纤维素制取酒精技术、生物质裂解液化技术、能源植物培育及利用技术、生物质制氧等先进技术,争取短期内取得“点”上的突破。

5.3生物质能源发展须协调处理的关系

随着中国发展生物质能源发展时机的逐步成熟,国内企业和各地的生产热情日益高涨,可能会产生一些盲目蛮干的势头,而发展生物质能源是一项涉及长远的系统工程,因此必须加强引导,按照经济规律运做。统筹考虑各种因素,生物质能源的发展需要正确处理好以下关系。

1)确保粮食平安和发展能源作物并重。一要坚持基本农田保护制度不动摇,不能因为开发种植能源作物,破坏或减少基本农田。二是大力引导在荒山、废弃地开发种植木薯、甜高粱、木本油料植物等。三是充分发掘农林废弃物的利用潜力,变废为宝。

2)稳定传统能源和发展生物质能源并行。当前首先要做好传统能源的开发利用工作,同时积极发展生物质能源,尽可能做到两者有机配合,共同保障国家能源平安。

3)立足市场和政府支持并立。要严格市场准入制度,提高市场进入的技术、资金门槛,确保产品质量和生产过程环保达标,杜绝环境污染。同时,按照鼓励先进的原则,在以上市场准入的企业中,实行招标制度,对效率高、补贴低的企业和实体给予支持。

4)全面推进和因地制宜并虑。发展生物质能源作为新能源开发利用的一项战略举措,需要创造有利条件,全面推动,但也不可无视资源条件的限制,全面开花,造成资源的无序开发和巨大浪费。同时,生物质能源资源采集及运输成本较高,因此要以运距合理、经济可行为前提,在确定单个项目生产能力时不能盲目求大。

5)自主发展和对外合作并进。目前国外一些生物质能源公司已进入中国市场,它们一方面要利用中国的资源,另一方面会抢占中国的市场。这要求我们既要加强对外合作,学习先进技术,更要坚持自主发展,抓住难得的机遇,把握核心技术,培育壮大中国的生物质能源产业。

油料作物和经济作物的关系范文3

20世纪世界经济虽然经历了多次萧条、景气、危机、复苏的反复,但是世界经济有了很大的发展。发达国家经济继续发展,许多新工业化国家和地区,特别是发展中国家的经济呈持续快速发展势头。21世纪的世界经济,特别是未来的20—25年中世界经济仍将保持高速发展。

在未来经济的发展中,人类将面临有限的资源和保护生态环境的严峻挑战。在今后25年内,世界人口可能达到100亿,需要满足如此大量人口的食物和必要的物资。同时,需要供应相应能源、交通、住房、学校以及各种机器等需求。呈指数增长的需求和有限的资源形成了尖锐的矛盾。

回顾20世纪的发展,特别是20世纪30年代以来,正是烃类经济发展的历史,主要资源来自于化石资源(煤、石油和天燃气),许多国家都认为化石资源是保证能源和原材料供应的基础。从20年代以来的靠其提供经济发展的需要,以至于达到今日的生活水准。据统计,生物基资源所占份额很小,在能源方面低于1%,在原材料方面也不到5%。尽管烃类对经济发展的贡献呈强劲势头,但是有限的资源令人担忧,而各种化工产品带来的生态和环境问题也日益严重,因此可持续发展战略已成为全球共识,并且已被广泛接受和推行。

在可持续发展的施行中,要使经济发展与生态环境保持平衡,经济持续增长、生活健康标准不断提高、国家安全与稳定,保证资源供应具有重要的作用。因此,许多国家政府的产业界都呼吁开发和利用可再生资源来补充和取代目前过于依赖的非再生并日益减少的化石燃料资源。

早在1996年,美国政府就组织有关行业协会、学术团体、产业界和教育科研部门专家讲座可再生资源开发利用问题,并于1998年后提出题为《2020植物/农作物为基础的可再生资源——通过可再生植物/农作物资源利用加强美国经济安全性的设想》(以下简称“设想”)。该设想公开发表后,美国农业部和能源部支持全国玉米种植者协会组织跨产业部门研究讲座设想的实施问题。经过长时间讲座产业界、深信界和政府部门对设想目标的实现、存在问题和实施步骤取得共识,并提出了题为《实施植物/农作物为基础的可再生资源2020年设想的技术指南》(以下简称“技术指南”)。这两份报告内容详实、焦点明确、逻辑性强、实施步骤清晰,许多观点和技术课题及措施具有启迪性。从该两份报告中,不仅可以弄清可再生资源和内涵、开发利用的必要性和可能性,而且对如何开展和促进可再生资源的开发利用提供了实施途径。对目前可再生资源开发利用的经济技术状况、存在的障碍和误区也都作了明确的阐述。虽然两份报告都是针对美国情况提出的,但是其科学性和前瞻性以及许多技术内涵对我们仍不乏借鉴参考价值。

“设想”是有关于发展以植物/农作物为基础的可再生资源产业的战略,是由美国农业、林业和化学工业部门(其中有各类美国公司企业)、非盈利组织、商贸协会和学术部门、各行各业的专家学者共63人经过讲座研究,首先提出对此新兴产业未来发展的设想。

1996年12月美国全国玉米种植者协会组织战略设想研讨会,目的是草拟一个产业设想,使植物/农作物为基础的的可再生物质可以作为当前惯用的原料的补充来源以满足人们对化学品、材料和其他产品不断增长的需要。

本“设想”广泛地规划了此产业如何从目前家庭式的产业走向全国规模的核心制造产业的道路。公开此“设想”的目的是为了吸引更多读者关注,出谋划策,共同开发,使其能成为现实的技术实施方案。

对于世界资源能否足够支持当前已经发生的急剧经济膨胀,社会上历来存在两种不同观点:一种是悲观的认为,世界资源难以满足呈指数的经济增长。如果现有技术不能进一步发展,而非再生资源又有限,这种悲观看法确实是现实的评价;另一方面,当前的技术正在突破,并有无限潜力,因此对未来产生乐观看法。

历史教育人们,只有通过协调提出明确设想,才能引导人们去解决关于未来发展的重大问题。

过去一直谈如何解决未来25年世界超过100亿人口的食品问题。获得食物只是人类生存的一种需要,其他还有呈指数增长的对能源、运输、住宅、学校、机械以及计算机等的需要,而满足这些需求的资源从何而来是应当考虑的问题。

钻探更多、更深的油气井可以供应更多的烃类原料,但是油气储量毕竟有限。对现有烃类的有效利用率将会不断提高,但是效果不大。纳米技术可能会促进小型化从而节省材料,但是有些物件不能缩小。问题是资源正在耗尽,何时耗尽并不重要,重要的是探求一种新的资源模式,使之逐步转化。

“设想”序言称,不论适用性技术应用如何,凡将现有资源转化为可再生资源,都是符合可持续发展的方向,也适应环境和生态要求。因此,应用植物/农作物资源的设想是乐观的。

随着适用性研究和开发的进展,人们可以发现许多经济上可行的方案来满足整个地球的需求。该"设想"确定了方向和相应的规划,采取措施建立利用植物系统中能源和碳源的可再生资源基础。面临的挑战是严重的,但机遇也是难以衡量的。人类可以适应变化,但必须接受所面临的挑战。序言中从两方面进一步阐明“设想”提出的背景:

1、界定植物/农作物基资源

植物/农作物基(有时用生物基bio-based)资源是指来自于一定范围的植物系统,主要是农作物、林产品和食品、饲料和纤维工业加工过程中的副产物。它们可以通过一年生的作物和树种,多年生植物和短期轮作树种等途径在一个较短的时间内再生。石油化学品原本也是以植物为基础,其基本分子为烃类。植物/农作物基可再生资源当前所用的大量基本分子是碳水化合物、木质素和植物油。也有一些量少高值的分子是来自二级植物新陈代谢。另一个主要区别是烃类及其提取系统已经开发并加工处理其所需要的原料型产品,而植物基可再生资源在某些程度上虽然也被认定,但某种植物会含有某种资源,加工后会留下什么,尚未完全搞清。

最近生物技术进展可以改变植物成分和酶提取系统,这就为现在需要的化学产品和新型中间人体及产品制造提供了新的经济机遇。据统计,美国的森林、耕地、牧场等面积约22.46亿英亩(1英亩=0.405公顷,下同),其中主要农作物的种植面积有4.24亿英亩,可以生产大量植物/农作物基资源。过去50年,这类资源的重点主要是面向食物、饲料和纤维生产。

2、烃类经济

20世纪后期,世界经济发展很快,生产增长率有很大提高,尤其是各发达国家,一些发展中国家也不断增长。成功的增长和发展过程中起主要作用的是烃类经济。自20年代以来,矿物化石燃料的采取和利用提供了人们当前所享受的经济效益和生活水准。许多国家都依靠这种资源来满足能源和原材料的需要。

在过去50年中,大量的研究开发在能源生产和基础产品制造方面创造了许多可以大量增值的工艺过程。市场经济明显地受人们提高生活水准的意愿所驱动,以创造各种产品。生物基资源的(主要是用植物基)用量很小。据统计,在能源方面少于1%,在原材料方面亦低于5%。美国1996年玉米、黄豆和小米等生产用作食品和饲料量约为6900亿磅(1磅=0.4536公斤,下同)。由此从经济角度看还不能赶上工业原料,而以烃类为基础的经济却繁荣昌盛。

烃类虽然将继续起到非常有效的经济发展平台作用,但是在其未来应用中却有若干问题有待解决。首先是对石油化学产品的应用环境问题日益受到关注,随着又产生了许多相关的问题。化石燃料是一类正在减少的原料资源。应用植物/农作物基资源作为一种补充,由于它们是可再生的,所以为经济有序地向可持续发展转变创造了机会。

通过对能源状态的审视就可看到可再生资源作为一种补充的必要性。烃类资源有限,许多专家提出世界可采和探明储量,如按现在消费水平计算只能提供50-100年,此处的一个重要假设是“现在消费水平”是保持不变,但是从全世界人口增长和生活水准变化来考虑,此假设是不合理的。当前世界上按人口平均的能源消费水平差距很大,详见表1,许多发展中国家都将增加能源消费。未来的能源供应问题是多方面的,因为发展中国家人口众多。例如,中国按人口平均能源消费相当于美国水平的1/3,其需要增加的能量数量约相当于美国现在全年能源使用总量。

表1当前按人口平均能源消费水平KWh/人美国法国日本巴西泰国中国

122007500700015001200900

一些有效利用烃类的开发将有助于需要增长问题的解决,但是对烃类找到补充资源是完全必要的,只有如此才能保持可持续发展的工业基础。

新技术开发和应用需要时间。石油化学工业本身的发展就是一个事例。1920年烃类原材料经济并不像今天这样具有吸引力,过了50年,开始适应化石燃料状况的工艺。因此,要使植物/农作物基系统达到同样现代化水平也需要时间。

当前正是开展大量研究开发工作、利用各种可再生资源和各种新工艺、并开始在各种可供选择的途径中提出选择标准的时候。现在进行研究并不意味系统要立即改变,但是,烃类经济的经济学未来将出现问题:要支付高额环境费用,或是由于原料缺少而价格上扬。

投资适用性研究可以在未来能源和原材料间进行相关的比较,提供非常需要的选择。在中期至长期,选择植物/农作物基可再生资源可能是要兼顾环境方面容许和经济方面具有吸引力。而在近期,研究和开发可能只在一些领域内进行,使植物/农作物可再生资源能开始进入基本化学原料市场,从而扩大资源基础,延长有价值的化石燃料储备的应用寿命。

在上述背景环境下,通过研究讨论,提出了2020年开发利用植物/农作物可再生资源的设想的目标;“设想”是要通过植物/农作物基可再生资源的开发来提供经济继续发展、生活的健康标准和强大的国家安全。植物/农作物基可再生资源可以改变当前对日益减少的非再生资源的依赖。

本“设想”的内涵重点是建立新的观念,即植物基资源是越来越重要的工业原料资源。非再生资源可能因经济和环境因素逐步被植物基再生资源所取代,“设想”反对等到危机发生时现开始启动替代。

展望2020年,化石燃料可能仍将占90%,增加植物基可再生资源并不是可有可无的,它对满足未来的需求非常迫切。当然,需要有效地加工和利用这些植物衍生原料。其新途径的研究从现在就要开始,为经济发展有足够的时间,保证解决环境而进行良好的合作。

要取得有成效的进展,应当确定以下的方向性目标:

1、2020年化学基础产品中至少有10%来自植物的可再生资源原料,到2050年提高到50%。

2、建立植物基(农作物,林产,加工业)系统,用有效的转化加工工艺生产可再生原料,为2020年选中的产品提供经济合理、对环境瓜敏感的制造平台。用此生产链来示范一个综合的植物/农作物基原料系统的经济合理性和潜在效益,显示工业应用机遇的新领域,为2020年以后国内和出口的需求做出贡献。

3、在工业投资者、植物商、生产者、学术界和各级政府之间建立合作伙伴关系,开发从小范围到大规模的工业应用,重新激活农村经济,改进增值加工和制造链的集成,消除食品、饲料和纤维加工业与基础材料制造业之间的差别。

“设想”中提出,科研与开发方面要制定有详细目的和要求的相应计划,支持上述方向性目标的实现,从而也可取得投资的优势。

植物/农作物基资源利用现状和前景

一、现状

烃类提供人类能源和衣着。塑料、油料、油漆、染料、药品等基础原料,已经成为现代生活的主要依靠。1970-1990年间石油基的塑料增加了4倍,已经逐步代替了玻璃、金属甚至纸张。植物/农作物基资源目前尚未有效利用,主要是因为可用性差、质量不高、供应不稳或是价格高。要推动和提高植物/农作物可再生资源应用的兴趣,需要从以下几个方面来分析。

1、实用性

尽管消费总量不高,但是植物基原料当前在化学品方面应用面很广,如用于油漆、粘合剂及剂等。黄豆是植物袖的传统原料,随着基因工程进展,可以生产满足特殊剂市场需要的专门油。最近,可用黄豆衍生物制造油墨,在乙醇、山梨醇、纤维素、拧槽酸、天然橡胶、多数氨基酸以及各种蛋白质等化学品生产中,植物基资源是主要原料,详见表2。

表2、美国植物基资源用量万t/a类别用量用途

木材8090纸,纸板,木质素纤维复合材料

工业淀粉300粘合剂,聚合物,树脂

植物油100表面活性剂,油墨,油漆,树脂

天然橡胶100轮胎,家用品

木材提取物90油料,胶

纤维素50纺织纤维,聚合物

木质素20粘合剂,丹宁,vanillin

在多数情况下,应用的植物基材料主要是原始状态分子。如木质素纤维、植物油和橡胶等复杂分子的应用也只有有限的改性。这就与石油化学工业构成明显的反差,石油化工则是用化学方法按需要将烃类裂解成几种简单分子,如甲烷、丙烯等。用这些基础原料进行化学合成,制造所需要的复杂的分子。

在少数情况下,植物/农作物原料进行裂解成为不同的基础分子,例如高果糖的玉米生产糖浆和玉米淀粉发酵生产燃料乙醇。1996年美国用211亿磅(1磅=0.4536公斤,下同)玉米采用新型酶发酵方法生产9亿加仑(1加仑=4.546L,下同)乙醇,从而加工为90亿加仑混合汽油。从许多实例看,植物基原料有一定实用性,虽还未生产像药物那样的高度专业化的分子,但却包括了大量生产的中间体及产品。

2、供应及质量

植物系统地区分布广,由于土壤和气候条件不同,导致供应和质量的差异。森林和农业系统的发展已经缩小了天然野生植物的供应差异。

生物质的总产量虽然很大,但是由于没有经济的转化技术而使其应用受限制。一些新进展如快速裂解提供了从中获得低分子量产品的机会,如果能在分离技术上进一步创新,就可以推动此应用。生物质资源可以来自快速增长木材、田边作物以及其他专门培植的植物物种。另一潜在的生物质资源是当前为食用和饲料种植的农作物,如玉米、黄豆、小麦和高梁等。一般情况下这些作物只应用其产量的一半。此4种作物估计每英亩(1英亩=0.405公顷,下同)约有2600磅(以干物质计,下同)遗留在田地中,总计约有5200亿磅。一部分留在耕地以改良土壤结构,但大部分运出去,作为原料应用。因此要求有适当的、成本低的储运系统和加工技术。

供应方面的主要问题是对原始生产的管理。当前,树木可作木材和纸浆,种植农作物只是为食品、饲料和纤维加工,没有在综合利用上进行优化。对植物/农作物投入的成本评价基础是未经优化的植物生产系统,因此经济性不佳。一些边际土地的利用可以扩大植物基可再生资源原料基地。但是从经济上比较,其很难达到经济可行目标。在估算其经济回报时,要考虑化肥、农药等化学品的使用费用。要增加可再生资源来源,除了要提高边际土地利用率外,主要应是如何对良田建立优化种植生产系统。

当前低投入、低产出的植物生产对农民难以盈利,并不利于农村发展,也不能为加工业提供低价原料。但是在产出方面,数量和质量相差甚大,从此系统得到的产品必然价格较高,严重地限制了经济上的可行性。而且,由于低产出生产就需要更多的土地,其对环境的单位影响常常大于更为强化、密集的系统。因此要优化生产系统,同时改善边际土地的利用。此外利用生产率高的土地作为植物/农作物可再生资源的原料基地,这也有利于解决数量和质量上的波动变化。

农村根据市场需求规划种植计划,如根据乙醇市场还是植物油供需情况,做出种玉米还是种黄豆的选择,其次则要进行第2轮对品种的选择,作乙醇则要种高淀粉含量的玉米品种,如要种饲料,则种含高油量玉米更佳。这些选择都对产出经济效益有很大影响。面对“设想”需要扩大食品或饲料、饲料或原料、油料或淀粉、纤维或糖、药品或聚合物等等选择范围。要根据供应或需求来决策,就需要进一步仔细研究有关课题。

3、植物/农作物基原料成本

利用植物/农作物基可再生资源主要是成本问题,它与烃类相比是不经济的。工业生产要求大量的便宜原料。植物原料价格便宜,如果能开发适当的系统将极具竞争能力。利用植物/农作物基原料生产化学品的成本比较,详见表3。

表3、植物/农作物基化学品生产成本类别生产量万吨通常方法美元/1b植物衍生美元/1b植物衍生占总产量%

糠醛300.750.7897.0

粘合剂5001.651.4040.0

脂肪酸2500.460.3340.0

表面活性剂3500.450.4535.0

醋酸2300.330.3517.5

增塑剂801.502.5015.0

炭黑1500.500.4512.0

洗涤剂12601.101.7511.0

颜料15502.005.806.0

染料45012.0021.006.0

墙涂料7800.501.203.5

油墨3502.002.503.5

专用涂料2400.801.752.0

塑料30000.502.001.8

实际上,在制造业中选用不同的化学加工工艺对其成本影响很大。

植物/农作物基可再生资源不是一种替代性资源,而是为工业原料提供的补充资源。成本问题并非只限于原料,而且与加工过程有关,因此要进一步开发新的化学和生物加工工艺,才能扩大植物基可再生资源应用范围,使之成为经济可行系统。

二、前景

由于植物/农作物基可再生资源的来源不同,每种来源的原料又可以利用不同的加工工艺,构成了一种多维的发展前景。本“设想”运用矩阵分析方法进行探讨。不同投人的植物原料,可以运用不同的加工系统,并取得各种不同的开发效果。

1、废料和副产物利用

从当前看,利用机会多,但需要有新的加工技术才能使其成为更重要的资源。

(1)现代化学

森林工业已经将副产物利用发展成为一个较大的行业,如纸浆副产液转化为磺酸木质素表面活性剂CH3SOCH3以及用树皮制丹宁。农作物的磨榨工业开发了许多应用副产物进行加工的工艺,如从燕麦制糠醒、淀粉粘合剂、专用棉籽油、从湿磨料生产拧蒙酸盐和氨基酸等。但是,许多食品加工业,如蔬菜和水果却没有开发相应的副产利用加工工艺,经常将副产淀粉和糖排放入周围环境。副产物的利用具有许多发展机遇,提取及销售其所含的有效成分是降低主产物成本的手段,而且从战略上看是扩大利用植物基资源。

(2)改进化学

木本植物和有些农作物加工中有较高的木质纤维素含量和一些碳水化合物,如烃类工业一样,可以将复杂分子转变为较小分子技术。便宜的植物衍生发酵制糖的开发已在进行。用金属有机物化学将碳水化合物转变为增值化学品是扩大利用植物基原料的又一技术途径。改进化学方法具有潜力,可以使植物衍生的废料加工利用提高经济回报率。

(3)生物加工

在比较复杂的料浆中用微生物发酵法生产某种分子,再将其分离出来成为需要的产物。生物转化是应用微生物、细胞或不含细胞的酶系统的一步法工艺,它提供了改进废物料和副产物利用机会,随着分离技术的提高,生物加工工艺可以获得更为广泛的应用。

(4)新分子

在此方面似乎不太重要,从废料中生产新分子不是一条最佳途径。

2、现有农作物

从近期看扩大应用具有最佳机会。

(1)现代化学

从化学工业整体看,并没有|认为植物衍生材料具有较高的经济价值,但是具体|问题要具体分析。石油化工利用烃类而不用碳水化合物和其他生物基分子。

(2)改进化学

如果植物衍生原料是结构型的生物质,含有木质素和纤维素等成分,其具有一定优势。一些新技术,如综合燃烧或金属有机化学等都能提供更好地利用此类资源的机会。除林产资源外,约有5200亿磅的生物质资源目前尚未加以利用。改变加工工艺路线可以提高利用现有资源的效益。新的工艺开发可以提供利用糖和淀粉的机会。植物淀粉有不同来源,如水稻、土豆、玉米和小麦,它们的性质、用途都不同,因此需要改进其化学方法,发挥其潜能。新化学工艺与生物加工及先进的分离技术综合起来可产生很大效益。

(3)生物加工工艺

植物作为生物加工原料量大而多样,从结构型生物质到一些专门的植物组分,在生物加工方面潜在优势很大:用酶转换玉米衍生的葡萄糖生产高果糖的玉米糖浆。最近从玉米葡萄糖经过发酵制琥珀酸也取得成功。琥珀酸盐可以用作制一些化学产品如丁二醇、四氢呋喃,这些中间体又可进一步加工制成许多种产品。当前,用10亿磅这种原料可得到价值13亿美元产品,现在正在中试。多种学科进行合作就可取得良好的效果,这是短期内取得成效的一种良好运行模式。

(4)新分子

植物原料的投入固定,利用基因改性所用微生物或是专用酶,可产生新分子。此工作目前只在很小的市场中进行。当市场对具有特殊性能的新产品需求增加,投入产出可能会促使其发展,技术和经济的综合研究要沿着产品开发链进行,从界定所需要的产品——需要的特性——分子结构——中间体——酶技术——蛋白质/基因工程——投入植物的最佳原料——生产优化等。

3、新鲜农作物

此项作为中期发展机遇。

(l)现代化学

因为化学工业一般不认为农作物的利用能获得较高的经济价值,因此新鲜农作物并无吸引力。过去曾认为可以降低成本,但是实际上的技术限制否定了其经济性。

(2)改进化学

从投入产出看,存在类似问题,如果改进的化学工艺需要专门的农作物,-新鲜农作物可能会有优势。另一优势是在物流方面。按照改进工艺实施和运作规模,所需原料只能就近供应新鲜农作物。因此改进工艺应当与供应系统平行进行才能互相支持共同发展。植物作为原料补充资源时,困难在于许多烃类加工装置不位于农作物和森林种植地区,而植物基原料运输费用很高。

(3)生物加工工艺

与改性化学类似,区别在于如何将原料加工成中间体和最终产品。在技术上要考虑农作物品种的适用性,一种生物工艺可以对多种品种进行加工。优化工艺是影响运作经济很重要的因素。

4、改性基因类植物

这是中长期发展机遇,其可提供的成效目前尚难以想像,今后是否出现碳水化合物经济,或是其他经济,这要看建立在生物工程基础上的新工业平台所能发挥的作用。

(1)现代化学

基因改性植物基原料可能成为现有的烃类加工系统原料。但是,改性植物分子在烃类系统中降解所花代价太高。因此投入技术要能跨越加工技术,或者是较复杂的分子能直接得到并进入制造链,再有是新工艺路线能高效地应用此改性原料。当然这些变革都要从经济和环境两方面来评价其效益。

(2)改性化学

对优化植物/农作物基原料投入和加工有好处,应当进行此方面研究。至于何时见效则要根据基因技术进展及其达到工业化时间来确定。

(3)生物加工工艺

微生物或酶进行基因改变达到强化工艺过程目的。生物工程具有长期潜力,在原料投入和生物技术本身之间创优,有时所需要的可作基础原料的分子可以部分在植物原料内进行合成,用生物转化或高度专门化的生物/化学工艺进行分离。为了继续应用化石燃料生产专门产品,需要进行研究开发,使有限资源能取得最大的价值。

(4)新分子

过去20年中,塑料已成为最大的工业部门,在日常生活中代替了玻璃、陶瓷、木材和金属。市场将会根据消费者的意愿和需求发生变化。材料科学将继续发展,市场销售者将继续设计新的消费品,塑料的未来变化难以预料。能作为新工业发展平台基础的新分子将会很多,物理与化学科学与生物工程材料结合将产生新的领域。植物基可再生资源将是未来的主要资源。新陈代谢工程是将丰富资源制造成所需基础原料的渠道,支持社会基础设施。开发和拓宽其可能性,需要先进的技术,这将是未来新领域。

生物技术的潜在影响及实施“设想”的工作途径

生物技术的潜在影响

对一个新的技术领域进行评价,可以从如下几个方面来分析:近来变化的速度和引入的速度、量度及其带来利益的水平及公共公司投资、评价专利活动和有关协会的活动、观察开发进程、审视所取得的成功进展。

90年代初期,许多人对生物技术将对农作物带来很大变化是持怀疑态度的。到1996年,转基因作物在产业化方面取得成功,明确地澄清了这个问题。这些早期的成效是关于新的作物保护途径,对保护植物生产免受病虫害起了重要作用,对进一步了解和掌握如何改进植物组分也很重要。

由于管理方面的需要,转基因大田试验记录由美国动物和植物健康监测服务中心保存。从记录中可以看到一些行之有效的转基因改变植物组分的工作正在进行之中,试验范围也在不断扩大,一些主要的公司如杜邦、孟山都和PioneerHi-Bred等都在进行。

为了改变植物组分以提高营养价值,改善加工性能,或是为了某些工业和制药的应用,一些转基因改性品种已经进行了评价,包括碳水化合物的变革、油和脂肪酸改性、提高氨基酸水平、蛋白质形态操作(typemonipulation)、纤维特性改性、产生抗体、工业酶生产、二级化合物操作(甾醇,earotenoids等)、新型聚合物生产。

转基因技术发展非常迅速,为植物基材料扩大应用开辟了新的途径,使其可以为工业生产提供分子基础原料和更为复杂的分子原料。用植物基原料主产聚合物,制造塑料就是一个成功事例。从A1-coligenenentrophus细菌的3种基因已经能转入植物的1ipid合成中,可以得到polyhydroxybutyrate(聚羟基丁酸酯),浓度可达14%。这种生物可降解的热塑性塑料正在进一步开发,使之可以从黄豆、棉花和油菜籽制备。

在过去50年内,通常用的植物培植产率已经提高了3倍,根据农作物满足食物、饲料和纤维不同用途,选择不同的方法得到具有不同特性的产物。高级植物种植要用基因图谱和转基因技术,进一步提高食物和饲料生产需要供应的植物基原料。

生物技术对植物基原料已经产生革命性的影响。但是,用生物技术来改变植物,使之适合烃类经济需要,并不是一条最佳途径。这就需要进一步弄清什么是工业链需要的因素,而这些因素又是能在未来转基因植物基可再生资源中具有最大的优势。

实施“设想”的工作途径

要成功实施美国可再生资源开发利用的战略设想(以下简称“设想”)中所提出的大纲,需要将研究、开发、工业过程工程以及对未来的市场了解等项工作有效地集成起来。适应“设想”的多学科计划以及各个项目的协作都要求有一共同的目标,向前沿技术迈进。应用改进的化学工艺加工现有的农作物,包括集成运用生物工艺,可以纳入短期计划之内,从当前到今后10年可以着手实施。这是研究中的一个热点。另一个热点是观念上的飞跃,超越当前的烃类化学,结合基因改性植物,运用新的工艺,这可以纳人中长期计划中,在10到20年甚至更长时期内实施并产生影响。上述两个热点都是当前在研究中进行投资,在不同期限内可以取得回报。

如果在这些领域内取得成功,在工业应用上就可以有了一个可行的坚实科学基础。新鲜作物应用开发将被看作是一个降低这些系统成本的一种机制,或是改善供应状况(数量和质量),满足工业发展需要。

当审视植物基可再生资源的前景时,可以看到供应链本身包含着许多重大课题。不同物种发展有各自的地理优势,可以形成专门原料的加工中心,包括进入国内和国外两个市场。对转基因作物的鉴别保护机制仍在变化,植物基可再生资源上的这些系统都需要进一步研究。

本“设想”并非要给各种问题以答案,而是指出未来潜在的可能,在各方面采取一定的步骤就可以使其实现。下一阶段就要进行各方的协调工作,使多方面的投资者能有一个投入的基础,针对“设想”提出的目标进行开发工作。该规划要订出各项目计划,通过研究和开发来支持“设想”中提出的方向性指标。各计划项目要符合下列一个或几个方面的要求。

优化生物质和农作物基原料生产,达到计划应用要求状况。

为植物基原料的供应链提出装置、地点、贮运和分销措施,包括加强农村经济的机制。

加速发展基于改性化学和生物工艺的新工艺,同时考虑利用植物/农作物基可再生资源原料。

对多类投资者支持的项目,对上述三个方面中一个或一个以上将产生影响的项目,或是多学科项目等将给以优先和优惠待遇。投资项目选择标准应考虑时间要求和潜在影响的大小来确定。

植物/农作物基可再生资源对工业基础原产的需求增长是一个战略性措施,也是使美国在21世纪继续保持领先地位的战略性选择。开发基础资源具有经济、环境和社会方面的好处。机遇是明确的,考虑未来的设想是需要的,要联合投资者对新途径进行投资,才能创造一个安全的未来。

“设想”文本中不止一处引用达尔文的名言“能够幸存下来的物种,不是最强的,也不是最聪明的,而是能适应变化的”。

2020年可再生资源应用将增加五倍

《植物/农作物基可再生资源2020年设想实施的技术指南》(以下简称“技术指南”),是《植物/农作物基可再生资源2020年设想》(以下简称“设想”)的补充,提出的目的是:支持“设想”方向,确定发展中的主要障碍和问题,确定优先的研究领域。

要达到上述目的需要进行协调观念开发,收集专家证明,组织多学科研讨会、听证会,优势排队试验和团队行动计划等多项工作。在“技术指南”编制过程中吸收了各方面人士的意见,参加研讨的共有66名有关部门不同行业的专家。专家们就全球性问题提出“设想”,针对“设想”结合现实状况提出存在的主要障碍与问题,再确定研究与开发领域,从而找出优先研究开发的课题。这些课题所属领域都是能为利用可再生资源实现可持续发展起最大杠杆作用的研究领域。通过参加“技术指南”研究和编制的专家的专业情况反映出在化工制造中应用生物基原料需要涉及多门学科。但是有3个产业是中心,即化学、生物和农业,每个产业都涉及几门不同的学科,如农业,林业和石油化学。

1、农业和林业

农业:是一个广泛的概念,包括谷物生产、林地和牧场等。这些土地上生产的农产品和林产品一起构成生物基材料,它们通过太阳能,大气中的CO2和土壤中养分进行原始生产而成为可再生资源。美国拥有大量优良土地,丰富的自然水资源和先进的技术基础,通过资源保护和利用,每年可产生可再生资源的巨大财富。林业:在美国有超过6.5亿英亩(1英亩=4046.24平方米)的森林,从业人口140万,每年生产价值2000亿美元产品。过去10年内,纸张部门的增长比木材业快。木材和纸产品回收循环利用率高,每年有约4000万t纸再生利用。美国的林业已经制定出2020年发展设想以及相应的研究计划。该设想呼吁进行研究,用先进的生物和遥感技术以及树木生理学和土壤科学等理论。

农业和林业通过应用基因学技术和转基因植物等新手段将会出现大的跃进。在不久的将来,可生产出大数量和高质量的作物。除了饲料和食品,还可以为工业部门提供原材料。而且还可以引入某些酶标记基因,可能会在植物体内制造完全新型的聚合物,并可大量生产,成为经济的消费用品。

美国将技术进展应用于植物和农作物的调整,使其在农业、林业和制造业中保持可持续发展的领先地位起着主要作用。国家的未来明显地要依靠近期开发可再生资源基础的研究来支持。

2、石油化工业

化学、工程学、物理学和地理学等几门学科在石油化学工业中的应用,对人们生活产生的影响是50年前难以想像的。石油化学工业成功地创造了众多产品,从高性能的喷气发动机燃料到基础化学品以及许多聚合物,如聚丙烯、聚苯乙烯、聚丙烯腈、聚偏氯乙烯和聚碳酸酯等。

石油化学工业:是资本密集型工业,已经建立了可观的基础设施来处理和加工化石燃料。美国每天要用1390万桶烃类原料,多数是作为燃料型产品,用于化工及其他工业基础原料生产,每天约为260万桶油短类原料。

近年来,工业化学品和塑料生产都有巨大的增长。塑料工业从业人员120万人,有20000套生产加工装置,过去在研究开发上花费以10亿美元数计的投资,才获得了今日成就。如果塑料制品的原料没有可再生资源,迟早有一天会变得十分昂贵。一方面,是否还有上万亿桶的石油开采量,原油价格能否在每桶10美元以内。世界原油生产已经变化迅速,而且有许多不定因素。另一方面,化石燃料资源是有限的,这是无可争议的事实。重要的是考虑当供应呈峰值时未来价格的敏感度,而不是去争论何时是油将用尽的理论时间。最近由于几处新资源的发现及应用,在20年内原油产量可能会有所增加。但是,必须注意美国一直是原油进口国,50%原油靠进口。如果原油进口一旦停止,北美可采用的化石燃料资源储量按目前消费水平只能维持约14年。如果保持目前进口水平而不增加,也只能使用28年。当然,将会有新的改进的抽提技术,例如水平钻探和核磁共振钻孔等,但是要在近年取得成效,希望是不大的。

用可再生资源补充石油化学品,要从现在开始,由少量到大量逐步进行,有关研究工作要立即开始。不考虑化石原料供应衰退时间表的争论,由于人口增长以及一些新兴国家人们生活水平提高,需求将继续增长。在可再生资源取代化石燃料之前,它将作为一种补充资源。因此,无论如何在美国开发可再生资源作为工业原料都是十分重要的。

“设想”中提出的指标是“2020年基础化学品至少有10%来自植物衍生可再生资源,随着发展观念到位,2050年要提高到50%”。要注意无论是美国还是全世界总消费量的增加是很快的,因为即使2020年的10%目标是按当时的生产总量计算,也比当前消费水平要提高4—5倍,绝对的增加更大。如果2020年消费水平本身提高1倍,可再生资源的绝对指标也要翻番。

换言之,不能期望可再生资源在不变的需求环境下能完全取代烃类资源,而只有当消费产品需求增加,可再生资源可以能满足此增加需求中的一部分。在2040年时间框架中,指标可以是:可再生资源应用使化石燃料能稳定地维持现在的消费水平。按此指标可以形成以下的观念:

由于不是一个竞争替代战略,可再生资源并不与非再生资源直接竞争。

需要用可再生资源和非再生资源两种资源来满足未来20年的需要。30年以后,可能要更多依靠可再生资源,因为那时的化石燃料将会很贵而且有限。满足近期指标的支持和研究完全与长期目标保持一致,这些方向性指标,非常清楚地表明面临的挑战是巨大的,需要从现在就采取行动,应当开始建立通向扩大利用可再生资源的道路。除了建立可操作的可再生资源基础指标外,其他一些相关的指标也是很重要的,包括:

建立系统,通过加强经济可靠性的基础设施支持,将供应、制造和分销等活动集成起来。

通过功能基因学来提高对植物新陈代谢的理解,优化对专门的增值加工工艺的设计和应用,除应用现有的组分外,要开拓新型聚合物生产和应用。要保证开发的新工艺过程的效率高于95%,同时应用伴生工艺,应用所有副产物,消除废料,保证新的平台能在特殊的环境条件下坚持目标方向对确定目标与研究指标要反复交叉检验,使其能坚持可再生燃料/能源需要的目标。

在生产和分销中要开发保持稳定供应的途径,在年生产一定范围基础上控制一些因素,如价格、数量、性能、地区分布、质量等。同时要制定提出这些因素的标准。

建立进一步合作伙伴关系,改进综合集成,通过加强农村发展来支持取得成功。

“设想”的目标要实现,主要要使本“技术指南”中所列出的目的大纲都能达到。基因改性植物生产专门的代谢产品和开发补充性的化学改性产品取得成效就可以达到2020年可再生资源应用增加5倍的目标。这些进展也将为2020年以后的进一步发展奠定基础。

可再生资源应用技术和市场的障碍及问题

将可再生资源制成消费产品的整个系统中有许多障碍和问题,其中关键和问题是:

植物科学方面:基因学、酶、新陈代谢和组分。

生产方面:单位成本、收率、持续性、基础设计、植物设计。

加工方面:经济学、分离、转化、生物催化、基础设施。

应用方面(由技术和材料驱动的问题):经济学、功能性、性能、新用途。

应用方面(由市场和需求驱动的问题):价格性能比、性能、知觉、市场开发。

现将上述关键和问题择要分别介绍于下。

一、关于应用方面(材料驱动问题)

1、经济学

单位成本是当前植物衍生材料使用的主要障碍,也是经常引起争论的一个问题,问题的核心是竞争性成本状态。在多数情况下,应用植物基原料的成本都比较高,难以与以烃类原料为基础的加工工艺竞争。但是,成本竞争情况有几个非常复杂的因素互相影响,诸如产品价值、材料成本、产量、需要加工程度以及所用基础原料的性能等。因此如果未来的战略只考虑降低本是不会成功的。最重要的经济推动因素不是成本本身,而是制得的产品和制造费用的差价(即增值)。

产品价格是诸多因素的函数,诸如产品利用、性能、消费者喜好和需求等,而制造成本则受原材料价格、供应的持续性、加工、废料处理费用和投资等诸因素影响,要符合当前的具有竞争性的通用化学品工业的低成本需要。但是,从长远考虑,只进行成本比较是有问题的,因为未来的化石燃料的成本是难以预测的。

在当前情况下,用烃类原料生产消费型产品的加工效率是很高的。但这并非是化石原料本身具备的特点。因为石油化工已经研究了100年,有了3代科学家,政府投入了大量资源才使之达到今日的水平。与之相比,植物基材料应用尚处于较低的水平,开拓植物基原料应用来适应已臻成熟的烃类加工需要并不是一条唯一的道路,目前应用数量还是很少的。另一条路线是通过弄清植物衍生材料性能进行技术开发,用基因改性植物,使之能提供含有需要功能的组分。

2、功能性

改变植物中的不同组分含量的目的是提高其功能性。在石油化工中先进行原料裂解降级成为简单的分子,随后用它们再行合成为较复杂的分子和聚合物。植物中已经含有不同形态的聚合物,可以在许多产品中应用。但是,在现在加工系统中尚无大量应用。用量有限的原因有几个方面,其中主要的是由于缺乏对其功能性的理解,而只注意其成本。最近,已经由植物衍生的蛋白质聚合物研制出塑料薄膜的试验产品,显示出其应用的潜力。而且,植物拥有立体化学结构,可以得到一些有价值的手性分子,如糖类、维生素、氨基酸等。从总体看,目前对植物基础原料的反应性和功能性尚不够了解,因此限制了新应用思路的产生。

二、关于应用方面(需求驱动问题)

1、市场开发的费用

植物衍生材料应用的一个关键是市场开发费用高。正如许多新产品市场一样,新产品的研究往往是由小公司开始的,它们投资不足,缺乏继续发展的资源,常常只停留在试验阶段。工业化的成功率低,由于没有一定的供应量而常使产品衰落。因此,需要大力改进产品开发和支持机制,而且要进行与产品相关的市场开发,这是扩大利用可再生资源的主要工作。目前市场上应用的标准都是基于石化产品,没有适应生物基产品的标准,这也是要成功地与石化产品竞争的另一障碍。

2、认识问题

植物衍生材料常给人以较低级的印象,这可能是由于当前处于“石化时代”之故。对某些制造厂商来说,它的性能较差,主要是因为未得优化。虽然公众环境意识增强,但是对植物基产品需求尚不足以创造市场来拉动技术开发。因此,当前可再生资源的进展主要是基于技术推动的结果,只有增加市场拉动才能有力吸引公司更多投资。没有要变革的冲击,就不会有更多的变革。因此,如果没有各种经济倾斜途径,现状是难以改变的。

三、加工问题

1、基础设施中分销问题

多年来石油化学工业已经建立了加工和分销烃类基础产品的有效基础设施。由于依赖进口原油,美国的多数基础设施是建设在海岸线上。因此,许多现有的加工装置并不适合大量植物基材料的收集。植物原料都是在木材加工厂、榨油厂和玉米湿法加工厂进行加工,它们最好接近于供应地。要应用大量植物原料就需要进一步将供应和加工制造集成起来。应当开拓确立农村发展优势和重点的战略和措施,更好地鼓励多用可再生资源。

2、分离技术

应用植物于工业用途的一个关键是缺少植物组分的分离技术。树木具有非常复杂的成分如木质纤维素。此成分强度高,但要将它分离为有用的分子组分则很困难。多数农作物收获品是种子,它们含有碳水化合物、蛋白质、油分和数万种其他组分。通常对许多谷物发芽和生长都能进行良好的安排,而对其作为原料进行分别管理则很困难。一些除去原始粗组分的工艺,如榨油和提取糖分等已经开发,但如何将专门形态的蛋白质和纯的含碳组分分离则仍是困难。在植物基原料加工中常遇到非常稀的水溶液物料,处理费用很高而且技术困难,这是应当要解决的问题。将反应与分离集成起来的加工系统(如催化蒸馏)可能是一个解决问题的方向。但是此类系统目前应用有限。而且还未被开发作为植物基原料方面的应用。通过引入某些基因而使植物增加新的组分,就更需要应用先进的分离技术来回收有意义的新组分。例如生物聚合物开发中目前就因缺少高效纯净的经济上可行的分馏工艺技术而受到限制。植物的组分如不能有效地分离出来,就不可能控制最终产品的特性和质量。

3、转换技术

要利用植物中各种组分的另一问题是将这些非均相的混杂原料转换成较为简单的分子,这才可以进行进一步反应。在植物基原料中,加工工艺需要有高性能的多功能生物催化剂或是非均相催化剂,这些催化剂具有多种功能并可以进行回收。

知识不足是另一关键,目前人们尚缺乏关于植物组分的自然差别和来自不同作物的同样组分的特性等方面知识。这些知识的缺乏和不足就构成难以鉴别植物的差异性,缺少鉴别的手段,因此也就难以考虑作为原料的应用。发酵是用来将某些农作物转化为各种产品的工艺,转化是非均相的。所用的转化方式,副产利用和分离等方面仍有许多有待改进之处。一般地说,植物系统的复杂化学问题使新型或改进植物基加工工艺的设计较为困难。烃类化学制造中有丰富的氧化化学知识,还原化学方面较少,这些都是植物系统加工所需要的。目前特别缺少关于还原生物催化剂共生因子系统方面的实践知识。

植物原料加工工艺开发的另一个大的障碍是当前缺乏有关的教育培训。目前化学工程课程中只有少数涉及生物化学课题,多数毕业生成为化学工程师只拥有非常基础的生物工艺知识和有限的重要生物分离的知识。多年来,工艺化学家和工程师的培训重点都是烃类化学,考虑植物基可再生资源加工需要很少。

四、生产方面

1、收率、持续性和基础设施

因为目前尚未利用大量植物基原料,除木材和造纸外,只是关注未来的供应分销而不是现实存在的问题。但是,这些对实现可再生资源的目标都是十分重要的。在供应的持续性方面,数量和质量都是未知数。如果植物基原料能加工成简单的碳分子,其持续性问题就不成关键。但是如果要设计应用其中某种特殊组分(如聚合物),或是要直接抽取其中某种专门组分,原料的质量和数量的稳定性就非常重要。

在一些情况下,供应持续性中的不确定因素实际上就是风险管理的内容。未来的石油化工供应问题和可再生资源供应问题都有风险。对石油化工来说,未来的供应不桷定因素可能因世界上一些区域的政治变化而增加。而对植物基原料来说,气候可能成为不确定的地区因素。如果某些专门植物不能大量生产可能导致贸易上的不确定因素,这些问题不需要采取断然措施,但是需要重视通过改变基础设施来保证经济可靠性。另一个冲击供应持续性的不确定因素是未来的农作物用途是作为食物还是作为工业原料。一方面是根据供应短缺理论,认为农业难以供应飞跃增长的人口和消费品增长所需的原料。实际上,从需求角度看,食物和原料都在增长,即使不考虑可再生资源进行工业利用,食物本身也存在问题。解决食物问题的方案也可能就是解决工业原料问题的方案。因此,在供应方面必须应用新技术,如生物技术,这样才能保持产率不断提高,使农业能达到一个新的水平。

2、植物设计、植物科学、基因学

转基因技术已经显示出令人鼓舞的前景,要进一步充分利用尚有大量工作有待进行。存在的一个主要障碍是对植物本身内在新陈代谢过程还不够了解,不能按特殊聚合物和其他材料的需要进行设计。因此,对植物新陈代谢和碳流的知识匮乏是其发展中的限制因素。

近年来功能基因学的进展有望促进对材料合成设计的理解。但是这门科学目前刚开始,与类似的医学领域相比所取得的支持还是很有限的。基因转变中的另一成就是让更多的专用基因嵌入和对质体以及细胞核的常规转变。在植物变化、基因学和生物信息等方面有着广泛的研究项目,但是将这些出现的新技术应用于可再生资源的专门研究则很少。

要使科学知识不断深化,在一定程度上取决于消除这些主要障碍,有些已被称为多学科的研究。但是,需要努力加强和协调才能促进现有的障碍及时地被克服。换言之,基因管理的研究必须紧密地与植物内含聚合物的功能性以及分离工程等研究相结合。

研究和开发的课题

《美国植物/农作物基可再生资源2020年设想的技术指南》(以下简称“技术指南“)列出为解决植物/农作物基可再生资源利用中的主要障碍应当进行研究开发的课题。“技术指南”按4个主要方面的障碍依重要性大小列出研究开发课题,每个研究课题的影响都有其时间范围,其中近期表示0—3年、中期表示2010年、长期表示2020年,近期目标的达到可用以衡量面向2020年可再生资源开发利用设想的前进步伐。

一、植物科学研究方面

1、近期影响课题(按重要性依次减小顺序排列,,下同)

(1)应用功能基因学了解植物新陈代谢和组成,至少要与1种主要农作物基因计划结合;

(2)开发能实时进行植物组分的定量分析工具;

(3)改进转基因方法,特别是对麦杆基因的专门嵌入,要在1998年基础上提高效益10倍;

(4)开发1—2种主要农作物的基因标记系列,使之有助于摆在有用的可再生组件含量;

(5)将80%现有的germplasmbase进行编目,有效利用各类淀粉、蛋白质和油分;

(6)找寻发展中的生物信息学利用途径,推动可再生资源的研究和开发,

(7)弄清nuclear-plastid相互作用。

2、中期影响课题

(1)在新陈代谢过程和碳流中至少弄清50个限制速率的关键步骤;

(2)利用功能基因学弄清分子、细胞和整个植物的控制管理;

(3)为主要植物用于可再生资源的组分制定标准;

(4)在2种植物中,建立碳库并为细胞分割确定控制点;

(5)在plastid转变中高效率(大于90%)方法的建立;

(6)创建示范工厂,使主要组分利用率大于60%(如油料、淀粉)或是专门碳键(如C5)大于3O%;

(7)利用基因开关的方法;

(8)建立为植物可再生资源利用的生物信息学基础。

3、长期影响课题

(1)重新设计新陈代谢过程,提供有用的碳结构骨架;

(2)应用有针对性进化技术建立100个未来原料的品种库;

(3)设计新型分子或改性现有化合物,使之适应于功能需要;

(4)为提供工业用原料,创制2种新植物种类;

(5)利用简单的细胞组织进行成本和能源效率评价;

(6)利用计算机技术设计植物组分。

二、生产研究方面

1、近期影响课题

(1)提高亩产量10%~15%以降低原材料单位成本;

(2)改善农业管理,提高肥料利用效率和虫害防治,

(3)确定至少10种影响原料组分和质量的因素;

(4)对至少10种具有潜力的系统和植物类型的亩产效率进行定标赶超(如主要农作物、林业和多年生种类等);

(5)调节气候条件对生产的影响;

(6)每年对2种农作物的潜力进行评价或用其他方法评价亩产量;

(7)提高当前农业加工中废料利用率5倍;

(8)在单位投入基础上提高贫瘠土地产量2倍。

2、中期影响课题

(1)提高产量,使单位投入的碳产出为1998年基础上的2倍;

(2)为长期可持续发展,开发尽量减小土地、大气和水利用影响的系统方法;

(3)对收获产物和主要植物成分建立标准;

(4)专门设计收获装备,尽量增大碳的收获;

(5)开发新的利用方法,使现在遗留在土地上的农作物45%能得到利用,

(6)培育适应专门土地和土壤的农作物;

(7)建立农业信息学基础,重点是不同来源的可再生资源植物类型、生产价值、质量和单位成本。

3、长期影响课题

(l)在化石燃料排出废气中CO2的固定;

(2)从现在植物/农作物生产中消除碳的废料;

(3)设计新的农作物/植物生长系统,优化原料回收率(大于95%可利用);

(4)对主要能源获取和固定,提高化合效率;

(5)对收获前期工作和部分就地加工的装置进行设计;

(6)对连续生产系统进行设计和评价。

三、加工研究方面

1、近期影响课题

(1)改进分离技术,处理大于95%的非均—植物材料;

(2)改进单体基础原料变换的生物催化剂;

(3)开发3种具有高选择性的快速反应强力催化剂;

(4)为将植物聚合物转换为有用的单体,找出新型和性能优良的酶(具有10倍活性)并进行评价;

(5)将微生物进行工程化,改善非均—植物的发酵;

(6)提高废物利用率2倍;

(7)开发高效的除水技术并对改进的非水溶剂反应系统进行评价;

(8)在植物材料中利用天然立体化学方法的评价。

2、中期影响课题

(1)应用5种以上高级分离系统(如自行清净膜、离子交换、精馏等);

(2)为经济捕集植物单体和聚合物开发改进的分离——纯化技术;

(3)为2种以上植物类型建立经济共生系统;

(4)通过分子进化技术设计并创制50种新型酶;

(5)开发100种以上具有性能成本特性的新型酶库;

(6)研究反应性分级系统;

(7)对微生物、酶和化学品库的性能建立信息学基础,用于特殊的转化。

3、长期影响课题

(1)实现原料加工中无废料的多种产出的连续工艺;

(2)为改性植物和组分设计新设备;

(3)为3种以上新产品(如将工程化酶转入植物并在收获中得到活化)设计新机制;

(4)固态酶转化;

(5)设计14种化学与生物结合型反应器;

(6)评价植物组分在分离前相内的作用。

四、应用和基础设施研究方面

1、近期影响课题

(3)探求3种在现有加工装置(如玉米湿法加工厂、纸浆厂)上扩大应用植物原料的机遇;

(4)分析测量系统,对90%以上的主要植物组分进行定量;

(5)实时评价单位性能成本和增值成本的方法;

(6)评价运输系统及成本;

(7)计算出100%年加工贮存量和投人产出的需求量;

(8)创建基础设施,扩大利用农业废料。

2、中期影响课匾

(1)深入掌握植物中10种以上组分和碳键新陈代谢体的结构与功能关系知识;

(2)开发对高质量原材料的100%鉴别保护系统;

(3)为价值驱动的生产和定货实现营销系统;

(4)对在同一地点的多目的利用区的协同作用进行评价;

(5)对原材料组分和加工过程中的中间产物实现实时定量分析手段(小于3分钟/试样);

(6)开发生产预测手段,准确性大于95%;

(7)在一组植物原料性能基础上建立信息学基础,如单位成本、性能、功能性、最佳来源、应用范围等。

3、长期影响课题

(1)所需功能进行分子结构设计制备植物化合物至少10种;

(2)在植物生产区内开发至少5个制造利用中心;

(3)开发3种以上有新功能的新材料;

(4)提出扩大利用可再生资源所需的教育培训需求;

(5)在植物组分功能间协同作用的利用;

(6)设计最终产品的贮存和运输,使之到达销售中心和出口;

(7)为供需关系的控制创建减轻超过90%风险的战略。

当前,美国有一些项目已在进行,可视为工业原料中应用可再生资源的先驱,也可视为本“技术指南”中研究项目的示范事例。其一是在转基因植物开发中的聚羟基丁酸酯(PIB)。PHB可在植物中生成,作为制造生物降解塑料的原料,用适当的细菌基因进行转化并弄清植物内在的新陈代谢路径,从而构成制备方法。现在正在进行分离、生产标准等项工作。

其二是用玉米淀粉作原料,通过酶反应制备聚乳酸(PLA)。Cargi11-Dow合资企业已在充分研究的基础上进一步投资数百万美元建立制造装置进行工业开发。PLA是一种生物裂解聚合物,原料是由玉米湿法加工工艺制备的葡萄糖,其中发酵过程和酶的活性是重要因素。最终的PLA树脂可视用户制膜、纤维、碳制品和涂层的需要分别制出不同规格品种。PLA具有聚苯乙烯、聚烯烃和纤维素的功能性。

协同与合作是取得成功的途径

未来利用可再生资源需要采取一条多学科和跨行业途径。在许多领域内的研究成就都提供了发展机遇,如生物聚合物、立体结构型分子、新型酶、新材料和转基因设计等。但是每个方面内的任何进展如果只当作孤立的技术领域是远远不够的,需要更有力的相关研究计划,采取平行的和协调的方式进行工作,才能取得成果。

要取得有效益的进展必须采取多学科的途径,这是非常清楚的。但是,任何一个组织都难以具备有如此深度和广度的技术能力。因此,对研究提供的支持应当是多方面的,而且要在跨行业的系统中进行。

“植物/农作物基可再生资源2020年设想”(以下简称“设想”)中提出的要求需将重点瞄准有限的热点目标同步取得进展。对于研究工作则需要有准确的时间表和系统中各方面的广泛交流,所有这些都要走相互协同的道路。例如,一位科学家可能发现一种新型聚合物,具有可以作为高级生物降解塑料的功能,但是,此研究成果的价值受到以下一些因素的限制:发现适当的基因、新陈代谢过程可靠性、:最佳作物类型是否能有足够的产率和可承受的成本、各种聚合物组分分离可能和利用此材料制造新产品的方法等。所有这些因素都需通过研究和开发才能取得相应的进展。进行这些研究开发要采取最佳途径保证研究成果关键的目标互相协调、平行地进行,此途径要鼓励私营部门的参与。

当前,植物和农作物作为生物质和原料已被应用,诸如淀粉、蛋白质、脂肪酸和异戊二烯化合物。林业主要是为纸浆和造纸提供原料。黄豆则是用于油墨和涂料。玉米通过湿法加工发酵工艺已经进入几个工业部门,但是各种用量都很少。由于基因工程可以通过新陈代谢操作使植物或农作物生成有功能需要的材料,从而显示出新的发展机遇。

“技术指南”已经突出了未来取得进展的途径,而且确定了系统的各个组成部分的目标。成功地达到这些目标就可实现“设想”中确定的到2020年可再生资源利用增加5倍的目的,同时也为2020年以后进一步发展奠定了基础。按“技术指南”目标提出课题是人们用所有的天然资源满足不断增长的消费品和能源的需要。当前进行研究将为今后的产品选择提供机会。可再生资源需要将注意焦点放在以下几个方面:发展方向、最佳科学思维的应用、最先进技术的应用和最高级智能水平的继续研究等。本“技术指南”已经提出了需求和研究开发课题,其目的就是为美国开拓实施一条成功的可再生资源战略。而且也选出了需要优先支持的领域,它们都是从几个已经确定的科学研究和工业开发需求中选择出来的,而且考虑了在高级可再生资源的关键部门有最大的投资回报。

未来世界许多方面都会延续但将发生变化。幸运的是我们已看见其需求并具有科学智慧适应变化的发展。美国要保持领先地位就要继续采取迅速的行动来满足扩大利用可持续发展的可再生资源的需求。不断的科学突破和技术进步(正如“技术指南”文件中所列出的项目和课题)才能满足资源利用的挑战。这些挑战正在我们面前,我们面临的挑战是为满足人们对产品不断增长的需求。

“技术指南”中从两个方面表明多学科和跨部门的研究开发对实现“设想”的重要性:

一是植物的投人,同时要考虑废料和副产物利用、改性基因学的应用。

油料作物和经济作物的关系范文4

关键词:低碳经济;低碳物流;河北省

中图分类号:F127 文献标识码:A

收录日期:2012年6月2日

我国政府承诺到2020年单位GDP二氧化碳排放比2005年下降40%~45%,作为约束性指标纳入国民经济和社会发展中长期规划,这标示着我国政府进一步加大了节能减排、大力发展低碳经济的决心。在低碳经济发展形势下,物流业作为我国十大振兴产业之一,发展低碳物流势在必行。目前,河北省物流业发展较为粗放,社会化、专业化水平低,经济增长所付出的物流成本较高。粗放和低效率的物流运作模式,造成了能耗的增加和能源的浪费,低碳物流与可持续发展成为未来的必然选择。

一、低碳物流的内涵

低碳物流的兴起,源于低碳革命和哥本哈根环境大会对绿色环保、低碳经济的大力倡导,随着气候问题日益严重,全球化的“低碳革命”逐渐兴起,“低能耗、低污染、低排放”的低碳经济理念被越来越多的国家和地区认可并执行。物流业在我们目前生活的社会环境中,实实在在扮演着一个高碳排放者的角色。有调查结果显示,交通运输业是仅次于制造业的第二大油品消费行业,油品消耗量约占全社会油品消耗总量的33%。各种运输方式的二氧化碳排放比例依次为:小轿车52%、货运汽车31%、海运6%、航空3%、铁路3%、其他5%。因此,发展低碳物流是实现低碳经济的必由之路,是世界各国经济发展的必然选择。

目前,学术界尚未对低碳物流做出一个定义,我国国家标准物流术语中也未对低碳物流作出定义。低碳物流的定义必须建立在科学的基础上,笔者认为低碳物流是要在可持续发展和物流系统论的理念下,对物流系统进行合理的分析并达到低碳的目的。物流作为一个系统化的概念,包括运输、储存、配送、装卸搬运等要素,从全局出发,以系统论的观点,对低碳物流进行系统化的分析,才能发展真正的低碳物流,达到为低碳经济服务的目的。

二、河北省发展低碳物流的必要性

(一)河北省第二大产业为物流业。据统计,2011年河北省社会物流总额达5.5万亿元,同比增长18%;物流业增加值达1,780亿元,同比增加20%,物流业已经成为河北省继钢铁产业之后的第二大产业,对经济的拉动作用日益显现,对经济结构调整和经济发展的贡献率不断提高。《河北省现代物流业“十二五”发展规划》明确提出要着眼发展低碳经济,以降低物流业资源消耗和健全回收服务体系为重点,构建节能高效、绿色环保的现代物流服务体系。到2015年,社会物流回收利用率达15%,物流行业碳排放量有所下降,初步建立起节能高效的物流运作模式。

(二)河北省物流业有着巨大的节能减排空间。河北省物流业专业化水平不高。企业物流外包比例偏低,产业联动效应较弱,产业链割裂现象较为突出,不能适应重点产业园区和大型企业发展需要,社会物流总费用占全省生产总值比重高于全国平均水平1.3个百分点,现代物流的增值潜力没有得到有效挖掘,有效需求不足和有效供给能力不强并存,物流效率和服务水平有待提升。

河北省物流业空间布局不合理。项目布局小、散、乱现象仍然突出,土地集约利用效率不高,基础设施配套性、兼容性不强,交通设施衔接不畅,区域一体化运作能力较弱,物流园区缺乏统一规划,内部功能划分不合理。

(三)发展低碳物流对于建设低碳经济意义重大。运输是物流活动的主要功能要素之一,而运输形成的交通运输业是碳排放的主要来源之一。在交通运输业中,公路运输一直是河北省最重要的运输方式之一。公路运输虽然运量小,但运输成本高,对能源消耗大,且不可避免地存在着汽车尾气排放,造成环境污染。在河北省的大中型城市,汽车尾气排放已成为主要的大气污染源。公路运输在不断地消耗地球上的资源,其使用的汽油约占全球汽油消费量的1/3。机动车的燃料消耗成为石油资源的最大消耗源。而航空运输与海洋运输是另外的主要石油资源消耗源,并且伴随着噪声污染和水资源污染。

无论是煤炭、石油还是天然气,碳是所有化石燃料的重要组成部分。碳燃料使得大气中的二氧化碳浓度在迅速增加,从工业革命前的280ppm增加到今天的370ppm。如果目前使用矿物燃料的趋势继续下去,到本世纪末二氧化碳浓度可能超过700ppm,而这可能导致全球气候上升1.4℃至5.8℃,恶劣天气更加频繁,许多自然生态系统被破坏。作为第二大油品消费行业的物流业自然而然要走“绿色之路”。没有低碳物流,低碳经济的建立就无从谈起。

三、河北省低碳物流建设路径

(一)健全回收物流服务体系

1、完善旧货回收交易体系。加快传统旧货市场升级改造步伐,适应消费升级带动的产品淘汰,围绕二手车、旧家电、旧家具等淘汰商品,建设一批集回收、加工、整形、拼装等功能为一体的旧货交易市场,积极拓展回收加工、信息服务、价格评估等业务,形成旧货物流分拣加工基地。

2、建立健全再生资源回收利用网络。加大市场整顿力度,建立一批规范化运作的再生资源回收网点,发挥再生资源加工企业带动作用,谋划建设再生资源物流园,积极开展回收、采购、加工、配送等业务,提高再生资源利用效率。

油料作物和经济作物的关系范文5

【关键词】生物能源 产业 再思考

生物能源,是通过种植含有大量能源的植物,并对这些植物进行加工转换而生产出的电力、气体或液体燃料等二次能源。它既是可再生能源,又是无污染或低污染的绿色能源。生物能源主要包括生物电能和生物燃料两大类。生物电能主要是利用各种植物秸杆进行发电,而生物燃料则是通过发酵而产生甲醇和乙醇燃料等。

一、发展生物能源产业的必要性与可行性

1、有利于维护国家的能源安全

近几年,国际市场油价维持在70美元/桶的高位,给我国高速发展的社会经济带来越来越大的压力。由于石油是工业社会的核心能源,加之我国正处在重化工业阶段,对石油资源的需求特别巨大。石油是不可再生资源,而且我国石油资源相对贫乏,专家预测石油稳定供给不会超过20年,这给我国经济的持续健康发展将带来巨大的压力。2004年我国进口原油1.2亿吨,占国家石油总供给量40%以上;2005年石油进口依存度上升到57%。到2010年,我国石油消费量将达到4亿吨,而国内生产能力仅为1.6到1.7亿吨。另据有关部门统计,2004年国际原油价格上涨,使我国增加支付金额60亿到80亿美元,相当于2000万城镇失业职工一年的低保费用。2005年以后,纽约油交所的油价多次刷新70美元/桶的高价;同时,美国高盛公司预测油价还将继续上升,最终可能达到每桶105美元。若以我国丰富的多品种、高产量植物及前几年形成的陈化粮资源作原料,以我国现有的大规模工业发酵技术作手段,以我国不断增长的财力作支撑,在我国未来的能源结构调整与发展中,通过合理发展生物能源完全能够维护国家的能源安全并维持经济社会的可持续发展。

2、有利于大、中城市的环境保护

随着改革开放的深入,我国经济得到突飞猛进的发展,人民生活水平不断提高,私家轿车作为代步工具已成现实。这在经济发达的北京、上海、深圳等大城市表现得尤为明显。在轿车大举进入平民百姓家的同时,汽车尾气也给城市环境保护带来巨大的压力。汽车尾气污染的一个重要原因就是燃烧汽、柴油产生氮氧化物等,而生物质燃料甲醇或乙醇则是可再生的清洁燃料,无污染、可再生,目前天然气、生物质燃料等的燃烧排放小于石油类40%。按我国城市化进程,2020年前还将有4亿人“进城”,汽车保有量将进一步增加,不采用洁净的替代能源(包括生物质能源),将无法维持适宜的城市居住环境。

3、我国丰富的自然地理及物种资源具有发展生物能源的可行性

我国南北纬度跨度大的自然地理特征决定了我国丰富的动植物物种。首先,我国林业生物质能源原料丰富,在已查明的油料植物中,种子含油率在40%以上的植物有150多种。其次,可以利用边际性土地种植非粮能源作物。据专家估计,我国存在约1亿公顷的山地、滩涂、盐碱地等边际性土地,不宜种植粮食作物,但可以作为能源等专业植物种植的土地。按这些土地20%的利用率计算,每年约生产10亿吨生物质,每年至少可产酒精和生物柴油约1亿吨。第三,我国农林业的废弃物都可作为生物能源原料。我国每年生产粮食5亿吨,产生秸杆近7亿吨,这都可以成为生物能源的主要原料。

4、我国发展生物能源产业已有相当的产业规模与技术基础

“十五”期间,国家批准建设了4个生物燃料乙醇生产试点项目,截止目前,已具有102万吨/年的生产能力。另外,乙醇燃料的推广使用也取得积极效果,经有关省和中石油、中石化两大公司的共同努力,已实现年混配1020万吨生物乙醇汽油的能力;生物乙醇汽油的消费量已占全国汽油消费量的20%,收到了良好的经济效益与社会效益。

发酵技术是我国传统的工业生物技术。近年,在国家倡导的自主创新的大背景下,通过大专院校、科研院所的原始创新、改革开放的引进和创新、大型企业的集成创新攻破了一个个难关,我国在生物质能的转化方面有了相当的技术积累,奠定了一定的技术基础,形成了相当的产业规模。

二、我国发展生物能源产业面临的问题

1、威胁国家粮食安全

目前,中国生物质能源发展迅速,但也出现了些问题。例如,随着世界生物能源的快速发展,尤其是美国大规模发展生物质能源政策的出台与实施,我们必须重新审视中国是个有着13亿人口而耕地资源又十分有限的基本国情,维护国家粮食安全是重中之重;另外,利用剩余粮食如玉米等作为饲料的养殖业,也在中国动物性食品安全方面有关键作用。以大量粮食作物为生物能源的原料,已对中国和其他国家的粮食安全造成了一定的影响,出现了生物能源制造与人口粮食消费和畜牧业饲料消费的激烈竞争,即加油站与厨房的竞争。近期,由于作为饲料玉米的量明显减少,导致了以玉米饲料需求量大的养猪业为代表的养殖业成本上升,养猪业快速萎缩,猪肉供应不足,猪肉价格快速上升并在短期内不会回落,给国家主要动物性食物安全造成影响,给群众生活带来不便。

2、挤占普通老百姓的生产与消费资源,加剧新的两极分化

以粮食为原料的大规模乙醇生产,使许多土地被用于种植所需的农作物原料,致使用于基本生产的土地、水和化学肥料等资源异常紧张,基本生活物资的价格上涨,给普通老百姓造成负担。这样势必造成汽车与人畜争夺粮食,对穷人及穷国打击尤大,造成新的不公平。因此,以粮食为原料生产乙醇,挤占了穷人的生产与消费资源,加剧了新的两极分化。

3、破坏了种植地与生产基地的生态环境

环保学家指出,尽管生物燃料是减少温室气体排放的“非凡手段”,但发展生物燃料的热潮可能会造成相同程度、甚至更严重的破坏。种植单一作物可能影响生物多样性,导致土壤中的养分流失,这可能会引发“无法挽回的后果”。另外,燃料乙醇在生产过程中产生的大量废水及废渣对环境也造成巨大压力。在燃料乙醇生产阶段,它消耗相应的原材料,也排放相应的污染物。目前生产1吨乙醇要消耗60吨水;如果年产500万吨燃料乙醇,每年要排放废水3亿方,要产生COD9万吨、BOD3万吨,产生对水体质量有严重影响的总磷0.15万吨,总氮0.6万吨。以安徽丰原生产燃料酒精为例,由于其生产规模较大且治污设施未跟上,已对淮河蚌埠段的水环境造成了不小影响。

三、发展生物能源产业的理性思维及对策

1、大力发展非粮乙醇

既然我国已具备发展生物能源产业的必要性与可行性;但在发展的过程中又带来了影响粮食安全,加剧了新的两极分化,环境保护等问题。那么该如何协调呢?首先,应停止在建粮食乙醇燃料项目,在不占地、不消耗粮食、不破坏生态环境的原则下,坚持发展非粮乙醇。对于燃料乙醇的发展路径,两院院士石元春总结为:“试之粮,发之非粮”。在燃料乙醇的原料路线上,“十五”期间,主要是转化陈化粮,缓解生产区粮食过剩的问题;“十一五”期间则要因地制宜,积极发展非粮替代作物,实现原料多元化的原料路线。强调发展非粮乙醇产业,是由我国人多地少的基本国情决定的,是中国发展生物能源的必然选择。

2、突破非粮乙醇的制造技术难关

我国用玉米生产乙醇的工艺已经很成熟了。玉米乙醇,也就是第一代燃料乙醇,生产成本大约是1.5美元/加仑;而纤维素乙醇,也就是第二代燃料乙醇,生产成本大约是3~4.5美元/加仑。正因为如此,非粮乙醇的制造技术突破已迫在眉睫,第二代燃料乙醇的生产成本与第一代燃料乙醇持平之日,就是整个生物质能源产业大发展之时。如何降低成本使得纤维素乙醇可以大规模商业化生产是个世界性的攻关课题,目前,中国最大的燃料乙醇制造商中粮集团与诺维信公司合作建立的生物乙醇实验室正在进行秸秆发酵制燃料乙醇的实验。

我国《生物产业发展“十一五规划”》也明确提出,针对我国生物能源生产面临的原料约束、创新能力弱、关键技术尚未突破的现状,专项将以“非粮原料”为主导的生物能源实现产业化、规模化为主要目标,建设纤维素乙醇技术,重点突破能源植物优良品种培养、生物燃料新工艺、微生物菌种的改良等共性关键技术,实现非粮乙醇制造的整体技术突破。

3、借鉴国内外粮食乙醇、非粮乙醇的成功经验

首先,国际上粮食乙醇、非粮乙醇的经验可以借鉴。美国总统布什在2007年国情咨文中指出,未来10年美国对石油的依赖性要降低20%,替代油品的一个主要品种就是生物乙醇。巴西发展甘蔗乙醇产业积累了很多经验,可以供我们发展非粮乙醇作参考。其次,我国发展粮食乙醇积累了很多经验,从技术上讲,已经前进了一大步;从产业规模上讲,已经奠定了大规模工业化生产的产业基础;从市场布局上来说,也形成了数省的终端消费市场。总之,生物能源产业的完整产业链在我国已经形成,我们要珍惜这宝贵的存量资源平台,将其嫁接、利用到非粮乙醇产业的发展上去。

4、发展非粮乙醇产业要处理好几方面关系

(1)处理好发展生物质能源与确保粮食安全、能源安全的关系。为此,一是坚持保护基本农田制度,不能因为开发种植能源作物,破坏或减少基本农田;二是大力引导在荒山、荒地、废弃地开发种植木薯、甜高粱、木本油料植物等。

(2)处理好发展生物质能源与稳定传统能源的关系。当前首先要做好传统能源开发利用工作,同时积极发展生物质能源,尤其是非粮乙醇产业。尽可能做到传统能源与生物质能源相互配合,共同保障国家能源安全。

(3)处理好立足市场与争取政府支持的关系。要严格市场准入制度,提高市场进入的技术、资金、产业规模门槛。另外,按照鼓励先进的原则,在市场准入的企业中,实行招标制度,谁的效率高、补贴低,政府就支持谁。

(4)处理好自主创新与对外合作的关系。对外开放、对外合作是为了增强自我发展能力,如果不掌握过硬的核心技术,将永远受制于人、永远只是个加工工厂。因此,我们必须站在国家的高度,全面部署原始创新、引进吸收创新和集成创新的各类承担主体,并将这些创新最终建立在企业掌握生产非粮乙醇核心技术的基点上,以增强非粮乙醇制造企业走向市场、驾驭市场的核心竞争力。

【参考文献】

[1] 国家发改委:生物产业发展“十一五”规划。

[2] 刘丹:叫停粮食乙醇,中国替代能源再寻新路.科学时报,2007-6-25。

[3] 石元春:发展生物产业.科技日报,2005-3-2。

油料作物和经济作物的关系范文6

关键词:生物质能源;竞争手段;农产品贸易保护;粮食安全

一、引言

20世纪90年代以来,不可再生能源的枯竭问题开始真正显现,世界经济,尤其是发达国家的经济发展面临“缺血”威胁。为应对这一挑战,美欧等能源消费大国和巴西等农产品贸易大国开始大力发展新型的可再生能源——生物质能源。6①由于美欧及巴西等国的第一代生物质能源发展是建立在对农业资源大量占用和农产品大量消耗的基础之上,能源与农业及农产品因此被直接联系在一起。2003年以来,随着粮价的快速上涨,各界普遍认为生物质能源的快速、大规模发展是高粮价的“罪魁祸首”,生物质能源生产大国的美国更是成了众矢之的。多数国家都出于国内供给安全考虑,对农产品贸易,特别是粮食贸易采取了限制性政策,新一轮农产品贸易保护主义也因此抬头,这给农产品贸易自由化和缺粮国的社会稳定蒙上了一层新的阴影(sdc,2008; schmidhuber,2007; fao,2008),也引发了各界对生物质能源发展动机的质疑(jull,et al, 2007; berndes,et al, 2007; thomas,et al, 2008)。

生物质能源发展与粮食安全的矛盾或冲突的凸现,需要我们对美欧及巴西等国发展生物质能源的真正动机及诱因进行科学评价,认清其本质及其对世界粮食安全的影响,为中国积极介入未来生物质能源及与此相关的农产品贸易规则的制定和掌握决策的主动权提供依据。

二、生物质能源的发展动机与支持和保护措施评价

(一)发展动机

应对原油价格上涨,降低能源进口依赖固然是发展生物质能源的一个“合理”动机,但各国的动机绝不仅仅于此,而且这也不一定是最主要的动机。从实践看,不同国家面临的内外部环境不同,其发展生物质能源的优先动机或核心目的也存在较大差异。oecd秘书处在2007年和2008年分别对其30个成员国和印度、巴西、印尼和马来西亚等发展中国家的调查表明,发展生物质能源的优先动机集中于四个方面。

1.减少温室气体排放,改善生态环境

美欧等发达国家提出发展生物质能源的一个最重要理由就是履行《京都议定书》,减少温室气体(green house gases,ghg)排放,改善生态环境。客观地说,通过大量种植能源作物发展生物质能源固然能减少温室气体的排放和改善生态环境,但据权威测算,它所减少的仅仅是co2排放量,所减少的co2排放量占总温室气体排放量比例还不到1%。而温室气体除了co2外,还包括因工业发展直接或间接排放的甲烷、氧化亚氮、氢氟碳化物、全氟碳化物、六氟化硫等。从对生态环境的破坏看,后者的危害性可能更大。另外,虽然生物质能源的使用能减少温室气体排放量,但因目前第一代生物质能源技术的制约,生物质原料转化center过程同样会产生大量温室气体(oecd,2008a)。考虑到这一点,发展生物质能源的环境改善效应将会缩水。不仅如此,生物质能源发展诱发的土地用途改变和过度经营还会导致土壤营养径流量流失,生物多样性也会受到一定影响,因而生态系统自身的修复能力会不断下降(braun, 2007;marland, et al, 2008)。所以,发达国家提出的“减少温室气体排放,改善生态环境”的优先目标的可靠性就很值得怀疑。这样,合理解释就应该是这些国家以一个“合理”的借口,转移其所承担的国际义务,而不是保护国际环境资源。其实,经济实力雄厚的发达国家完全可以选择“花钱换减排”的“京都模式”来免除自己承担的义务zw(“京都模式”是《京都议定书》中规定的一种独特的贸易,即如果一国的排放量低于条约规定的标准,则可将剩余额度卖给完不成规定义务的国家,以冲抵后者的减排义务。zw),但很少有国家采取这一独特贸易来转嫁自己的义务。特别值得一提的是,作为世界上最大的温室气体排放国和最大生物质能源生产国的美国在2001年宣布退出《京都议定书》,这更加彰显了其真正的动机。

2.降低能源进口依赖,保障能源供给安全

能源短缺问题是全球面临的共同问题,但不同国家受之影响的程度存在较大的差异。对于广大的发展中国家而言,由于其工业化程度低,经济发展对能源的依赖性相对较小。但对美欧和日本等工业化发达国家而言,情况则全然不同。所以就这点看,发达国家发展生物质能源具有一定的合理性,但这一合理性并不能掩盖其真正的目的。其实,目前世界能源危机的根本原因不是原油本身,而是国际政治旧秩序复苏的结果。美欧等国为了维护自己的世界经济和政治霸主地位,从经济、政治和军事上对中东和拉美主要产油国进行制裁、军事打击和军事威胁,影响了原油的可持续性供给。特别值得指出的是,布什执政以来的中东政策和国内的原油战略储备政策搅乱了世界原油市场,造成原油价格上涨和能源危机的提前到来。

从更深层面看,能源短缺问题的实质就是经济增长方式的科学性问题。如果我们从不可再生能源的消耗量和可持续利用世界能源角度对各国经济增长方式进行重新划分,那么发达国家的经济增长是一种典型的粗放式增长,而且这种粗放式增长模式决定了他们必须要能始终控制能源市场。以原油消费和进口为例,2006年30个oecd国家原油消费占世界总量的58.1%,美国、eu和日本三大经济体原2油进口量占世界总进口的64.4%,而广受指责的中国人均石油消费仅为美国的8.7%、新加坡的2.8%zw(环球能源网:“2006年世界石油储量、产量和消费量统计评论”,tp://oilgas.worldenergy.com.cn/。

3.刺激经济发展,增加就业

由于生物质原料的种植、加工和转化具有劳动密集型特征,对增加就业具有一定作用,因而对20世纪90年代以来就业压力凸显的发达国家具有一种政治上的吸引力和舆论上的支持率(markandya,et al, 2008)。其实,发达国家经济与就业问题的根本原因不是原油价格,而是其产业结构调整和发展中国家竞争力提高。随着发展中国家总体竞争力的提升,发达国家为了维持其竞争力,将多数“夕阳产业”以直接投资方式“恩惠”于发展中国家。由于转移出来的多是就业贡献较大的价值链低端部分,这样其国内的就业压力必然出现。不仅如此,由于转移出来的多是价值链中污染程度较高环节,因而发展中国家的环境问题、温室气体问题也开始显现,这就为发达国家要求发展中国家履行《京都议定书》找到了最好的理由,也为其自己不履行减排义务找到了一个“公平”的托辞。

4.培育新的农产品市场,促进农村发展

这一目标是巴西等少数热带发展中国国家提出的发展生物质能源的优先目标。从表面上看,由于生物质能源的发展建立在农业原料和农产品的基础之上,在国际农产品贸易自由化受阻的情况下,生物质能源发展的确能为其过剩的农产品提供新的出路。另外,能源作物的大规模种植和相适应的农产品加工业的发展对于协调国内区域发展差异、推动农村发展也具有一定的推动作用。但从深层次看,由于这些国家多为农产品出口大国,农业资源丰裕,因而它们的选择实际上成为变农产品出口为新型生物质能源出口,改变与发达国家斗争的一种新形式。

与具备技术或资源条件国家不同的是,大多数发展中国家由于缺乏发展生物质能源的技术和大规模的资本投资,因而高成本的生物质能源是其经济发展的一种“奢侈品”,其经济的增长只能寄希望于价格日益高涨的化石能源。虽然这种发展的中短期成本相对较低,但这一被动抉择的长期成本将是高昂的。因为从长期看,化石能源的枯竭是一种必然的趋势,其价格超过生物质能源价格只是时间问题。最后的结果就是发展中国家的经济发展将由对化石能源的依赖转向对生物质能源的依赖,这种依赖实质上就是对少数生物质能源大国的依赖。所以,土地资源的制约使得未来能源供给的唯一希望就是生物质能源技术能发生“跳跃性”的进步,否则发展中国家经济发展将会面临“断血”的困境。应对“断血”的唯一选择就是用原料换能源,即发展中国家将会沦为发达国家生物质能源的原料产地,新一轮的经济“殖民化”可能会出现。

综上所述,对于美欧等发达国家而言,发展生物质能源的核心动机不像是应对能源危机,而更像是抢占未来可再生能源市场。对于巴西等热带发展中国家而言,发展生物质能源的核心动机是规避农产品贸易保护,改变与发达国家的斗争形式和斗争领域。

(二)支持与保护措施

目前生物质能源的生产成本普遍高于化石能源,还难以与化石能源展开竞争。tyner等(2008)在综合考虑美国可再生燃料生产授权、税收减免和贸易壁垒等因素的情况下,研究了原油价格和玉米乙醇生产的补贴情况。结果表明:在目前的技术水平下,美国生产玉米乙醇的每蒲式耳玉米的补贴值是1.60美元左右(tyner,et al, 2008)。在农产品价格高位运行的情况下,各国为了鼓励生物质能源发展,采取了一系列的政策和措施。这些措施涉及生物质原料进出口和生物质能源的生产、国内销售、消费等各个环节。

1.生物质原料的生产支持

为了降低农业能源作物和其它生物质原料的生产成本,一些国家采用直接补贴形式。最具有代表性的就是欧盟(eu)2003年共同农业政策(cap)改革方案中的能源作物援助计划(eca)。根据该计划,eu根据2003年的产出水平建立了一个分离支持给付系统,该系统将已经存在的多种给付形式合并为一种单一农场给付形式(sfp),要求其各成员方按照45欧元/公顷的标准对农业生物质原料和林木生物质原料生产者提供直接补贴(oecd, 2008b)。除此之外,对那些不适合种植食用农产品的土地,由政府提供机械,鼓励农民种植能源作物。

2.生物质原料的转化支持

由于生物质原料转化的初始投资成本高于化石能源,而其收益具有不确定性,因而许多企业不愿投资生物质原料的转化。为解决这一问题,不少国家采用资本拨付的形式,由政府直接承担转化设备或其它固定资产的一部分投资,或为企业提供无需备案的信贷担保,以刺激生产者的积极性。这种支持最典型的国家就是美国。美国1980年的能源法案中就建立了乙醇燃料的生产转化支持系统。根据该系统,联邦政府通过免税、许可证和有条件选择投标人等办法对生产者提供支持,鼓励企业提高转化效率。近年来,美国一方面借鉴eu的模式,对达到质量要求的能源按产量单位提供直接补贴,另一方面要求企业转化的原料中必须有一定比例的农业原料(即原料定额计划),对达到要求的企业给予额外支持。由于生物质原料的转化实际上是农产品加工的一种形式,因而这种直接对企业投资的支持与o的 “黄箱补贴”并没有本质上的区别。

3.生物质能源的价格支持

为了保证生物质能源生产企业的利润,美国、eu和巴西等国均对生物质能源提供了最低价格保护,要求经销商对生产者支付的价格不得低于最低价格。这种价格有两种形式:一是不变的季度最低价格,这种价格一般多个季度保持不变,目的是为了降低生产者的不确定性;二是可调整的最低价格,该价格可以经常性调整,以防止不可测因素引致的生产成本变化。在多数情况下,对因不可测因素引起的成本增加和批发价销售造成的损失,政府通过环境改善奖励和绿色奖励的形式进行追加补偿。这种价格支持与o明确禁止的“黄箱补贴”并没有本质上的不同,但因其适用对象是绿色的可再生能源,因而游离于o框架之外,成为一种“合法”的措施。

4.生物燃料销售与消费支持

为了鼓励生物质能源产业部门的发展,美欧等国还在销售和消费方面制定了一系列的强制性政策措施,以为本国生物质能源产业的发展提供市场支持。从销售环节看,美国的销售最具有代表性。根据联邦政府的规定,所有汽油销售企业必须销售一定比例的乙醇汽油或直接要求这些企业按照一定比例将乙醇汽油和传统汽油混合后销售(比例一般为5%),同时对销售者征收燃料特许税。被征税的企业接下来就可以以销售混合燃料为由,获得政府的税收信贷支持。对于那些完全享受税收信贷支持的企业,政府还为之提供所得税抵免。从消费环节看,为了刺激消费,多数国家一方面以强制消费的方式,要求公共运输部门和消费者必须购买一定数量的生物燃料,并对购买者免征燃料消费税。另一方面,在挪威、瑞典和丹麦三国,政府对购买生物燃料的普通消费者和企业免征co2排放税,并提供所得税方面的优惠。

5.生物质原料和生物质能源的进出口限制

进出口限制也是各国扶持生物质能源产业发展的一个重要措施。其中eu的最为典型。2007年eu各国对加入甲醇的成品乙醇进口每百升征收10.2欧元进口税,没有加入甲醇的成品乙醇每百升征收19.2欧元的进口税,生物柴油进口每百升征收6.5欧元的进口税。除了成品燃料进口税外,为保障国内生物质原料,尤其是农业原料的生产,鼓励地方生产企业使用国内原料,eu各国对农业原料和农产品(主要是小麦、糖类、玉米、油菜籽)进口也广泛征收进口税。特别值得指出的是,eu还专门制订了限制生物质能源及其原料进口的非关税壁垒,这就是2007年出台的燃料品质标准(fqs)。fqs指的是液态燃料中可再生燃料与不可再生燃料的混合比例,这一比例不是固定不变的,而是根据eu生物燃料的生产成本和生产技术变化经常调整。 zw)由于目前各国乙醇汽油和生物柴油的主要原料是玉米、小麦、糖类和油菜籽(菜籽油),因而这种贸易限制实质上就是农产品贸易保护。

6.生物质技术r&d支持

未来生物质能源的市场前景取决于其竞争力的高低。为了降低生产成本,增强生物燃料的价格竞争力,许多国家都制订了庞大的r&d支持计划。计划的主要目标是改进现有的生物质能源生产技术和开发以农业秸秆和其它有机废物为原料的第二代生物质能源技术。例如,2008年美国能源部提供了3.85亿美元的研发补贴,用于纤维素生物质能源技术的开发。加拿大2008年也为生物质能源的发展提供了22亿美元的巨额支持,其中很大一部分用于第二代生物质能源技术的商业化推广。

综上可见,这些支持与保护政策措施除了直接补贴和研发补贴类似于o的“绿箱政策”规定外,其它的政策措施均属于o明确禁止和严格限制的范畴,因而必然会扭曲生产和消费。其实,这些措施的出台决非偶然,而是发展中国家、凯恩斯集团、美欧和日本这些利益集团农产品贸易保护与反保护博弈的结果。所以,从这个意义上看,与生物质能源相关的直接或间接支持和保护措施均是农产品支持与保护措施的一种特殊形式,是新一轮农产品贸易保护主义抬头的表现。只是由于其与绿色能源的生产密切相关,因而披上了“绿色”的外衣(steenblik,2007)。

三、生物质能源发展对世界粮食供求的影响

目前各国发展的是第一代生物质能源,其使用的原料主要是玉米、小麦、糖类和油料zw(美国的主要原料是玉米和大豆油,eu的主要原料是玉米、小麦、大麦、菜籽油和大豆油,巴西的主要原料是甘蔗和大豆油,加拿大的主要原料是小麦和玉米,中国和印度的主要原料是玉米,马来西亚、印尼的主要原料是棕榈油。2003年以来,全球生物质能源发展规模急剧增长。2007年全球液态生物燃料的产量达到3600万吨,其中乙醇汽油2857万吨,生物柴油7.56万吨。在所有生产国中,美国和巴西的产量分别占世界总产量的43.73%和29.37%。

由于美国是世界最大的粮食生产和出口国,而其生物质能源的主要原料又是与小麦、稻谷两大主要粮食存在直接资源竞争关系的玉米,因而其生物质能源战略成为了世界的焦点,国际社会普遍关注美国的玉米乙醇战略对国际粮食供求的影响。统计资料显示,因大规模发展生物质能源,美国三大粮食作物的种植结构发生了较为明显的变化。与2003年相比,2007年美国三大作物的总种植面积下降了1.51%,其中小麦的种植面积下降了3.87%,稻谷下降了8.33%,但玉米的种植面积却上升了21.99%。种植结构的改变导致其三大粮食出口全面下降,其中玉米下降28.17%,小麦下降9.13%,稻谷下降4.29%,总量达到1661.50万吨zw(根据美国农业部生产、供给和分配数据库(usda-psd)资料整理得到(tp:///pc/">计算,玉米种植面积要增加152.17万公顷。耕地资源的有限性和用途的竞争性使得小麦和稻米的种植面积必然会下降。由此可以推断,未来世界的粮食供求形式将会进一步恶化,粮食安全这一人类最基本的权利将会受到前所未有的挑战。而挑战者却是少数国家,尤其是美、欧和巴西等农产品贸易大国。所以从道义上看,生物质能源的发展是少数国家把国家利益置于人类生存权之上的一种表现。

四、结论及其对中国的启示

能源是经济发展的动力,化石能源的枯竭趋势和科学技术的进步催生了生物质能源的发展。但通过对现行国际生物质能源的发展格局和国际农产品贸易格局的比较发现,目前各生物质能源大国发展生物质能源的核心动机似乎不仅仅于此,抢占未来可再生能源市场和规避农产品贸易保护则更像是其真正的目的。原油价格的高涨和大幅波动以及发展生物质能源的多重效应更为这些国家大规模发展生物质能源找到了最佳的借口,也为这些国家推行农业支持和农产品贸易保护提供了“合法”的理由。由于现行的生物质能源发展模式是一种典型的农业原料导向模式,因而其大规模发展必然对世界的粮食供求和农产品贸易自由化产生深远的影响,进一步恶化广大发展中国家的经济发展环境。

作为一个发展中国家,中国同样面临着能源安全和粮食安全的双重压力。发展生物质能源固然是中国应对国际能源危机的一个选择,但因生物质能源的开发和利用与粮食生产存在明显的资源竞争关系,这样中国就面临着一个两难境地。从实际情况看,虽然中国已经掌握了开发利用生物质能源的技术,而且大量的研究也表明中国生物质能源的开发潜力巨大。但是所有这些条件和潜力在粮食价格日益高涨后都不能成为中国目前大规模发展生物质能源的理由,只能是一种战略规划。因为目前中国的生物质能源开发除利用玉米、油料作为原料外,利用其它原料的成本远高于传统的化石能源。这样,生物质能源的开发必然会影响国内的粮食生产与供给。因此,中国必须处理好生物质能源发展与粮食安全的关系,要坚持发展能源农业必须始终将粮食安全摆在重要位置,对以粮食为原料的生物质能源发展要严格控制(li, et al, 2001)。

但是严格控制不等于中国应该放弃生物质能源的开发权利。对中国而言,生物质能源的发展必须立足于技术路线,以第二代生物质能源的开发为重点zw(第二代生物质能源主要是以非粮农作物、木本油料植物、秸秆与农林废弃物为原料。对于玉米乙醇项目,一定要在不影响粮食安全的前提下继续抓好试点工作,并就其对粮食安全的影响进行科学评估。同时,对生物质能源领域和农产品贸易领域可能出现的一些新问题要积极研究,为参与未来相关国际规则的制定奠定基础。

参考文献:

fao. 2008.飞涨的粮食价格:事实、看法、影响以及需要采取的行动[eb/ol]. hlc/08/inf/1,3-47,tp://.cn/.

夏天. 2008. 粮食真的能源化了吗?来自农产品与原油期货市场的经验证据[j]. 农业技术经济(4):11-18.

berndes g, hansson j. 2007. bioenergy expansion in the eu: costeffective climate change mitigation, employment creation and reduced dependency on imported fuels [j]. energy policy,35:5965-5979.

braun j v. 2007. the world food situation: new driving forces and required actions [r]. food policy report, no.18:1-27.

jull c, vapnek j. 2007. recent trends in the law and policy of bioenergy production, promotion and use [r]. fao legal papers, no.#68:5-18.

li jingjing, zhuang xing, delaquil p. 2001. biomass energy in china and its potential [j]. energy for sustainable development,4:73-80.

markandya a, setboonsrang s. 2008. organic crops or energy crops? options for rural development in cambodia and the lao people's democratic republic [r]. adb institute discussion paper , no. 101:29-31.

marland g, obersteiner m. 2008. largescale biomass for energy, with considerations and cautions: an editorial comment [j]. climatic change, 87:335-342.

oecd. 2008a. biofuel support policies: an economic assessment [j]. agriculture & food, 12: 1-149.

oecd. 2008b. economic assessment of biofuel support policy [eb/ol]. tp:///dataoecd/18/48/41014580.pdf:12-13.

schmidhuber j. 2007. biofuels: an emerging threat to europe's food security? impact of an increased biomass use on agricultural markets, prices and food security: a longerterm perspective [eb/ol]. tp://,iisd publications .