磁性材料范例6篇

磁性材料

磁性材料范文1

磁性纳米颗粒及其在生物医学领域中的应用徐星星 朱宏 (7)

软硬磁界面应变造成的畴壁钉扎郭子政 (12)

短切磁性碳纤维泡沫复合材料吸波性能研究黄小忠 黎炎图 余维敏 叶力 杨军 (15)

熔盐法制备的锶铁氧体磁粉的形貌、结构及磁性李富瑞 孟卫民 王志强 魏福林 杨正 (19)

合金Pr0.15Tb0.30Dy0.55Fe1.85Cx的结构和磁致伸缩任芝 李松涛 刘何燕 卢遵铭 安莉 张慧鹏 李养贤 (24)

ZnO-羰基铁复合纳米粒子的吸波特性 周长 方庆清 闫方亮 刘艳美 吕庆荣 吴克跃 张启平 (27)

Sn^4+取代对Ni系微波铁氧体材料性能的影响袁红兰 冯涛 (31)

Co^2+替代对NiCuZn铁氧体电磁性能的影响李旭哲 苏桦 张怀武 师凯旋 顾卫卫 (34)

面心立方结构TaNδ薄膜功率电阻研究代波 倪经 (37)

非接触式暖气表计费系统的开发李莉 张伟 邵锋 赵明富 (41)

磁性不锈钢409L合金吸波材料的电磁与吸波性能黄东 丘泰 冯永宝 (44)

CRM模式APFC电路中磁芯的设计与计算王京平 蒋胜勇 胡春元 王宏 (48)

用铁鳞制备Y33H-2永磁铁氧体预烧料工艺稳定性的探索与实践王自敏 蒋世强 谢瑞兵 喻声频 张云程 (51)

磁滞常数测量不确定度评定徐改丽 (57)

单输出有源钳位正激DC—DC变换器设计李康艺 王兴蔚 龚军勇 张怀武 (60)

锰锌铁氧体用原材料的工艺与理化性能邵峰 李晓清 (64)

基于Matlab的异步电动机间接矢量控制系统研究朱文渝 姚娅川 (67)

基于LTCC的超薄型DC/DC变换器郭海平 石玉 杨林 谢飞燕 吴廷强 (70)

线圈阻抗、磁心阻抗及材料的标准化阻抗张忠仕 汪伟 陈文 李卫 (73)

磁畴观测方法现状与展望许启明 张振彬 杨永明 (1)

微波铁氧体材料近期进展述评韩志全 (5)

低温共烧MnZn铁氧体的研究现状卢超 徐光亮 曾丽文 余洪滔 陈劲松 (14)

退火对Fe80Pt20薄膜结构和磁性的影响黎伟 李彦波 郝思坤 王颖 白建民 魏福林 (18)

交换偏置增强反铁磁FeMn薄膜稳定性研究代波 蒋庆林 倪经 (20)

Mn1.18Cr0.02Fe0.8P0.95-xGexSi0.05化合物的磁热效应哈斯朝鲁 宁君 何小龙 伊日勒图 松林 特古斯 黄焦宏 (24)

时效处理对Mn70Cu30合金的组织和磁感生应变的影响彭文屹 覃金 严明明 (27)

Fe72Co8Si15B5非晶薄带的磁阻抗效应付远 蒋达国 邬四英 (31)

锰取代LiZn铁氧体的磁性能和介电性能研究王智锟 余忠 蒋晓娜 冉燕 兰中文 (35)

钡铁氧体厚膜在自偏置微带结环行器中的应用谭科 蒋洪川 彭斌 张万里 汪渊 (38)

多晶YIG磁调滤波器研究何成潘 (42)

添加Bi2O3对锶铁氧体微观形貌及内禀矫顽力的影响乔梁 徐斌 奚巧琴 郑精武 姜力强 (45)

Sr2+取代对Z型六角铁氧体性能的影响唐英明 薛刚 罗俊 贾利军 张怀武 (50)

水基磁流变液的制备和性能魏齐龙 何建国 黄文 孟玉堂 (54)

电子镇流器中镇流电感磁芯的选择与参数计算王京平 胡春元 蒋胜勇 (58)

有源钳位开关电源中调节谐振电感实现软开关的效果分析陈鉴宇 李康艺 金立川 张怀武 (61)

基于遗传算法的数字磁罗盘误差补偿方法研究王秀 (63)

合金成份对各向同性FeCrCo合金磁性能的影响李文军 凌铨 (66)

一种L波段天线合成网络的研制袁韬韬 石玉 何泽涛 (70)

镍锌铁氧体的X射线荧光光谱分析陈鹏程 (74)

超高频软磁——平面六角铁氧体和铁氧体复合材料研发动态韩志全 (1)

磁选技术的现状与发展趋势耿洪臣 冯泉 郭小飞 (10)

多频微波信号对导波光脉冲的磁光衍射研究解宝祥 武保剑 (14)

室温磁制冷工质金属Gd的防腐研究郑志刚 余红雅 钟喜春 刘仲武 曾德长 (19)

溶剂热法制备的多边形薄片镍粉米远祝 颜学敏 (22)

Ce离子的变价行为对Pr0.1CexTb0.9-xFe1.9化合物性能的影响任芝 李松涛 刘何燕 曹春梅 卢遵铭 翟艳东 李养贤 (26)

雷达吸波材料反射系数的数值模拟陈旭华 易建政 殷 (29)

镍纳米晶微粒的显微结构及磁性周丹 刘先松 邱士星 贾道宁 胡峰 王鹏鹏 (33)

高频高直流叠加Mn-Zn铁氧体DMR50B材料研制刘亚丕 何时金 (36)

球磨时间对磁流变液性能的影响姚金光 晏华 王雪梅 (42)

NR/SBR并用磁敏橡胶材料的制备及性能虞耀君 陈先忠 (46)

磁流变阻尼器在渡槽抗震中的应用研究黄亮 侯玉洁 徐建国 (50)

绝缘粘结剂对FeSiAl磁粉芯性能的影响陈玉兰 郭东兰 连法增 李庆达 (53)

硬币识别器传感线圈参数设计及改进刘艺柱 周小川 (57)

合成瞬时带宽超宽的新型YIG调谐带通滤波器何成潘 冯辉煜 赵梓芃 (61)

超宽带低噪声放大器反馈与匹配技术研究王祖文 吴治霖 石玉 (64)

基于局部三维协同仿真技术的X波段窄带腔体滤波器设计谭士杰 (67)

缺铁量对低温烧结NiCuZn铁氧体材料性能的影响顾卫卫 苏桦 张怀武 李珣 (71)

Ta取代对纳米复合NdFeB合金的影响机理研究罗洁 陈川 刘仲武 余红雅 钟喜春 曾德长 闻立时 (11)

空心微珠表面BaFe9(Ni0.5Cu0.5Zr)3/2O19)包覆层的制备及电磁性能何才君 霍德璇 李晓光 (16)

稀土化合物ReRhZn(Re=Ce,Pr,Nd)的磁性模拟和晶场效应路莹 付宏志 薛绛琴 路庆凤 (19)

丝网印刷及磁场取向制备钡铁氧体厚膜研究陈中艳 冯则坤 熊炫 (22)

NiFe/FeCo/[FeCo]xO1-x多层膜的高频磁性能研究汪学锋 张怀武 陈栖洲 钟智勇 (25)

双复纤维的制备及厘米波段吸波性能蒋洪晖 顾兆旃 陈新来 张玉册 陈珂 (29)

用于绿色照明的宽温宽频高居里点铁氧体材料石炎 刘九皋 (34)

多级径向流动模式磁流变液减振器磁路设计李兴 廖昌荣 骆静 简晓春 (38)

可见光磁光隔离器的磁路设计与模拟黄平 韩满贵 (42)

基于磁光克尔效应的磁畴观测与处理系统张振彬 许启明 杨永明 (46)

一种新型薄片转子磁悬浮陀螺的结构设计与分析杜昌雷 张怀武 张晓涛 钟智勇 (49)

表面活性剂与触变剂对磁流变液沉降稳定性的影响陈维清 杜成斌 万发学 (55)

公交车内报站系统设计张先富 赵金周 王超 赵明富 (58)

一种蓝牙频段LTCC带通滤波器的设计与制作李正纲 徐自强 石玉 (62)

降低铁氧体椽塑磁粉Cr^6+含量的方法与效果冯爱玲 舒扬 (66)

高频高Q值Z型六角铁氧体材料研究朱华 刘颖力 任凭 张怀武 (69)

稀磁半导体Sn1-xMnxO2系列化合物的制备和表征霍国燕 任明辉 张彦远 霍国强 (12)

(SmCo7)100-x(Cr3C2)x(x=0~7)熔淬薄带的结构与磁性能张广腾 易健宏 李丽娅 (15)

沸腾回流法制备的MnZn铁氧体纳米粉末戴慧萃 刘仲武 曾德长 余红雅 (20)

张应力作用下CoFeSiB非晶丝和薄带的巨磁阻抗效应武继文 张义权 (24)

Fe73.5Cu1Nb3Si13.5B9非晶薄带的磁感应效应黄强 喻耀华 蒋达国 (27)

双复纤维排布方式对其吸波性能的影响蒋洪晖 顾兆梅 柳颖 杨国栋 (32)

有机基Fe3O4磁性液体的制备和表征黄小忠 周娟娟 周克省 杜作娟 (36)

新型高性能各向异性MQA磁粉及其粘结磁体的性能及在电机中的应用大卫·米勒 (40)

永磁电磁混合磁浮列车的永磁磁场仿真卢志远 李德胜 董天午 叶乐志 刘安琪 (43)

基于YF30预烧料的La—Co掺杂锶铁氧体的磁性能研究容胜忠 余红雅 钟喜春 刘仲武 曾德长 谢金强 (48)

软磁氮气保护隧道烧结窑炉的能量消耗分析樊成强 (51)

半硬磁性FeCrCo合金的热处理工艺及其对性能的影响李文军 凌铨 (56)

V2O5/MoO3掺杂对NiCuZn铁氧体结构和性能的影响成军平 徐全吉 杨许文 张怀武 (59)

两种分散剂在锶铁氧体预烧料中的应用丁晓锋 余进 王军伟 周升旺 杨洋 马金保 (63)

三种AMR磁头性能比较邓俊彦 邓沛然 (65)

磁性材料范文2

[关键词]酸再生 铁红 Ruthner法 软磁铁氧体 除硅

中图分类号:TM277 文献标识码:A 文章编号:1009-914X(2015)48-0158-01

1 再生工艺及除硅工艺

1.1 本钢酸再生机组工艺流程

焙烧后的气体产品中含有大量水和酸洗液中的游离酸,还含有HCI气体和烧嘴燃烧废气(主要有H2O、CO2、N2和剩余的氧气)。焙烧炉气由底部进入到吸收塔中。水从吸收塔上部进入与炉气反向冲洗。此时HCI和H2O结合成盐酸(200g/L HCI)冷凝流向底部。然后再生酸被送回酸洗槽。

1.2 酸再生机组氧化铁量的计算

1.2.1 盐酸酸洗的化学反应机理

带钢表面氧化铁皮通常是三层构成的。热轧带钢轧出的带钢表面氧化铁皮总厚度一般为10微米,其内层是疏松多孔的结晶组织,且易破坏的氧化亚铁FeO,占氧化铁皮总厚度的50%;中间层好是致密而无裂纹的呈玻璃状断口的四氧化三铁Fe3O4占铁皮总厚度的40%左右;外层是呈桩状结晶结构的三氧化二铁,占铁皮总厚度约为10%,但是,由于热轧带钢各部分冷却速度不同,导致即使同一带钢表面上其各部位的氧化铁皮结构也不同,一般带钢尾部内终轧温度低,生成的氧化铁皮也薄,对酸洗有利,而带钢头部的铁皮则较厚。

盐酸溶液与氧化铁皮的化学反应式:

盐酸溶液能较快的溶蚀各种氧化铁皮,酸洗反应可以从外层往里进行,而且盐酸洗基本不腐蚀基体。基于以上原理我们可以粗略计算出废酸液中各铁离子所占比例:

1.2.2 再生酸中氧化铁含量的计算

废酸再生的工作原理可由下面的方程准确地表达出来:

通过上式可计算出氧化铁的小时产量为:970Kg

其中:酸再生机组每小时处理废酸量6400L:

废酸中所含铁离子浓度含量均值为120g/L :

酸再生机组每月计划作业时间为670h,设备计划作业率为90%,因此Fe2O3年产量大约在7018吨左右。例如按2003年CDCM生产线设备运行状态计算,全年最长作业时间为7000h。那么Fe2O3 产量为6790吨左右。

1.3 除硅工艺流程

废酸中的Si成分对氧化铁粉的质量有着致命的影响,如果Fe203纯度不能满足软磁铁氧体生产的需要(即含SiO2、P等杂质),而只能用于永磁铁氧体的生产,那么产品的价值和应用领域就会受到了极大的限制。所以酸再生机组可以先对废酸中的Si进行去除,然后对废酸进行再生。

从酸洗机组输送过来的废酸先储存在废酸罐中,再由废酸输送泵送人溶解槽底部,利用废酸中在酸洗过程中未完全反应的盐酸与废边继续反应(废边是经过圆盘剪和碎边剪处理过的带钢废边)。

化学反应方程式为:

Fe+2HCIFeCI2+H2

为了加快上述反应的速度,我们可将废酸预先用蒸气进行加热。充分反应过后的废酸经过冷却器溢流进人氨反应罐,在此罐中按废酸流入量加入一定比例的氨水,使pH值提高到4.2~4.5,同时少量FeCI2被氧化成为FeCI3,而后转化为Fe(OH)3。Fe(OH)3为絮状沉淀物可以吸附废酸中SiO2粒子。

主要化学方程式:

FeCI2+2NH3+2H20Fe(OH)2+2NH4CI

4Fe(OH)2+O2+2H2O4Fe(OH)3

FeCI3+3NH3+3H203Fe(OH)3+3NH4CI

废酸酸液从氨反应罐流出后,进入沉淀槽,由于絮凝剂吸附SiO2颗粒形成絮团,从而增大了固体颗粒的沉降速度,在沉淀槽底部形成SiO2料层,由沉淀槽底部的泥浆泵送到压滤机进行过滤。最后压滤机的滤液和沉淀槽的溢流液一起被送入处理酸储罐内,SiO2 排入废料仓从而完成废酸酸液的除硅过程。

1.4 脱硅区域设备

(1)溶解槽

用于溶解酸轧机组产生的废边以减少废酸中的游离盐酸。槽的顶部有一个开放的锥形顶盖,顶盖上设有一个中心供料口,用于向溶解槽内填充废边,槽内还装有一个PVDF材质的支撑板。钢制壳体,内衬橡胶和耐酸砖,顶盖由FRP制成。

(2)氨反应槽

为提高反应酸的pH值,使酸中的的FeC12转化成FeC13并最终转化为Fe(OH)3,在氨反应槽中投加氨水并进行空气底部鼓吹。氨反应槽为立式结构,材质为FRP,带有低速和高速搅拌器。

(3)沉淀槽

用于沉淀Fe(OH)3吸附SiO2后的沉淀物。沉淀槽的形式为立式锥底结构,带浸没管、溢流堰及支撑装置等,附件由PP材料制成。

(4)压滤机

用于固液分离。形式为箱式,带有电动滤板移动装置和液压锁紧装置。脱水后的泥饼在从压滤机卸泥前,将进行冷凝水自动冲洗。

(5)泥浆泵

用于将沉淀槽底部的泥浆输送到压滤机。形式为活塞式隔膜泵,材质为铸铁,所有与介质接触的部件均衬胶或由耐腐蚀材料制成

(6)电磁吊

用于将废边从地面送到溶解槽内。磁铁安装在能水平移动的电动小车上,可使磁铁在指定位置装卸废切边。起重量5000 kg,最大起升高度25m。

用Ruthner法生产的Fe203产品性能国家标准(表2.2)。

结论

1)高品质的Fe2O3粉是生产高性能软磁铁氧体的根本保证。为了吸收和消化国外的先进技术,在酸再生改造期间,建议有关磁性材料专业方面的技术人员参与该项技改工作,相互配合,共同完成技改任务,确保酸再生生产的氧化铁粉,满足生产铁氧体磁性材料对原料的化学性能和物理性能的要求。

2)抓住酸再生技术改造之时间差,尽快组织有关专业技术人员,对高纯粉进行深加工的开发;对软磁铁氧体磁性材料项目进行前期调研工作并提出可行性研究报告。

3)充分利用本钢资源优势,开发高技术含量和高附加值软磁铁氧体产品,在高新技术领域方面占有一席之地,并发展成为非钢支柱产业。

参考文献

磁性材料范文3

1 中国磁体产业的发展历程

目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁(AlNiCo);50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体(Sm-Co),包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼(Nd-Fe-B)。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平均以每年10%的速度增长。 中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。

1997~2002的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 2003年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。

进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企业看好中国,如日本的TDK、FDK、EPSON、日立金属、住友特殊等,韩国的梨树、三和、磁化等,欧洲的PHILIPS、德国的VAC、EPCOS,美国的ARNORD、MAGNEQUENCH 已经转移到中国。世界磁性材料生产向中国转移,增强了中国磁性材料工业的整体实力,提高生产技术,加速了中国成为世界磁性材料生产基地和销售市场的建设。

2.中国稀土永磁――钕铁硼的发展

某个国家或地区磁体产量约占全球总产量的一半时,即成为“全球磁体产业的中心”。二次世界大战前的欧洲,二次大战后的美国,70年代以后的日本均堪称当时“全球磁体产业的中心”。新世纪伊始,“全球磁体产业的中心”已转到中国。据统计,直到1999年,铁氧体磁体的产值始终占全球磁体总值的一半以上,堪称磁体市场的主题。2000年稀土磁体(NdFeB+SmCo)产值首次超过了铁氧体的,此趋势与日俱增。换言之,稀土磁体在21世纪将唱主角。 代表当今磁体最高性能的NdFeB稀土永磁的80年代初问世时,正好赶上计算机产业的微型化,故该磁体立即成为制造诸如磁盘驱动器等计算机外设的关键材料。NdFeB更广泛用于各类音响/影像等消费电子器件中,90年代以来在全球迅速普及的移动通讯设备—手机也离不开NdFeB的重要贡献。

钕铁硼专利[1]

钕铁硼硬磁制造方法分为烧结和粘结两种,专利所有者分别为住友特殊金属株式会社(日本)和麦格昆磁(MQ)公司(美国)。同时MQI公司又是全球唯一的粘结钕铁硼原材料(磁粉)供应商。其在欧洲和日本的成分专利和生产制造工艺专利均已经失效,美国的专利在06年和07年分别失效。在中国制造、销售和使用钕铁硼磁体并不涉及任何专利问题,但是其产品不能出口到专利覆盖区,否则构成侵权。中国拥有住友与MQI覆盖全球的专利许可的烧结NdFeB磁体企业共五家:三环新材料高技术公司(三环),于1993年5月取得专利许可;北京京磁公司(BJMT),于2000年3月取得专利许可;银纳金科磁技术公司(THINOVA),于2000年9月取得专利许可;宁波韵升磁公司(韵升),于2001年3月取得专利许可;安泰科技股份有限公司(AT&M),于2003年3月继承了台湾海恩金属公司2000年5月取得的专利许可。这五家公司的烧结NdFeB磁体的生产能力将近10,000吨/年,五家公司中的三家是上市公司,即安泰科技、三环与韵升。

烧结钕铁硼

图1是全球及中国、日本、美国、欧洲烧结NdFeB磁体的总产量,其中2004年中国生产烧结NdFeB磁体27,510吨,毛坯46,1500吨。与2003年相比产量增长49%。而产量与产值存在的巨大差距正是中国稀土磁体产业面临的主要问题。改进产品性能,提高产品档次是解决此矛盾的唯一出路,就是说,要尽快消除存在于中国磁体产业与西方国家之间的技术差距[2]。

烧结NdFeB磁体在中国的用途可分为三类:

1. 高技术领域的应用,诸如MRI,VCM,CD传感器,CD-ROM,DVD-ROM,手机,电池驱动工具,EB,EAV,EV。

2. 传统用途,诸如扬声器,耳机,话筒等音响器件,磁选机/磁分离器,各类磁化器包括民用水脱垢器,油田用的脱腊器,酒厂用的陈化器等。

3. 低档用途,诸如慈溪等地生产的磁性纽扣。图2是2003年中国烧结NdFeB磁体的用途分布情况。

中国烧结钕铁硼产地遍及11个省和京津地区(见图3)。浙江省的烧结NdFeB磁体生产发展最快,其产量占全国总量的47.1%。山西地区由于得天独厚的自然和低成本条件,目前已与沪杭地区、京津地区形成了中国三角鼎立的稀土永磁产业格局。山西烧结NdFeB磁体生产占全国产量的21.7%。京津地区的产量居第三位,占全国的11.7%。其余总量19.5%则散布在华东、华北、华中和西北等苏、冀、内蒙、鲁、豫、川、陕、甘、宁九省以及东北地区。 众所周知,NdFeB对环境(温度、湿度)极为敏感,浙江产量虽大,但品质不高。一般而言,气候干燥的山西、甘肃、宁夏等地,用同样工艺设备生产磁体,其性能则优于南方的。当然,关键仍在于采用专门针对NdFeB的设备并按先进工艺进行磁体生产,才能稳定地批量生产高牌号磁体。濒临渤海的烟台首钢磁材公司,它引进先进设备大批量生产顶级烧结NdFeB磁体,就是一例。

2004年国内烧结钕铁硼行业热情空前高涨,新增生产能力大幅提高,中科三环公司通过长期努力,第一次进入到为日本、欧洲等发达国家磁材企业所垄断的钕铁硼高端应用领域――计算机硬盘驱动器音圈电机(VCM)应用市场;在另外的一个高端应用领域――汽车应用领域方面,中科三环的钕铁硼磁体也成功应用在点火线圈、电动助力转向、气囊传感器等汽车零部件中,同时还进入了核磁共振成像仪领域。对于上述几个稀土永磁高端应用市场的进入,标志着中国的稀土永磁产品结束了大部分只局限于中低端应用市场的不利局面,真正开始与日、欧发达国家磁材巨头争夺高端应用市场。

粘结钕铁硼

在激烈的市场竞争中,在粘结钕铁硼方面,美国和欧洲的生产企业基本退出了该行业,到2003年只剩下一两家生产粘结NdFeB的制造厂了,2004年美国和西欧的永磁材料产量只占全球的10%之内。因此在该行业中,全球的生产能力大部分集中在日本企业[3]。其中有代表性的两家企业,一家是精工爱普生,他们的磁材生产已经全部转到中国上海爱普生磁性器材有限公司了;另一家大的粘结磁体企业-日本大同公司。在计算机硬盘驱动器(HDD)的主轴电机应用方面,大同和上海爱普生两家企业就占据了整个市场份额的90%以上。2002年底,中科三环参股了上海爱普生磁性器件有限公司,2004年3月进一步扩大股权,目前中科三环已持有该公司的70%股权,成为其第一大股东。安泰科技2003年3月收购了海恩公司,其深圳的爱恩美格也是一个技术水平很高的粘结磁体工厂,加上国内成长起来的成都银河,粘结磁体企业除日本的大同外,其余产能基本分布在中国。

图4是日本粘结协会统计的有关资料,从图中可以看到这种优势。从2001年开始,中国粘结钕铁硼的优势逐渐显露出来,2002年后中国远远超过了日本,处于了第一位。粘结钕铁硼磁体1996年全球产量为1320顿,中国的产量仅为50吨;2000年全球粘结钕铁硼产量达到3550吨,中国的产量为620吨,虽然占世界总产量的比例仅为20%,但年平均增长率去达到了60%,有了长足的发展。据最新统计,2004年中国粘结钕铁硼磁体产量达到了1350吨。

尽管中国已经是生成粘结钕铁硼永磁的第一大国,但只是占原材料和人工成本的优势,由于设备、生产技术以及管理能力有限,只能生产一些中低档的产品,像HDD这类高档和高利润产品仍由日本企业掌控,所以在中国出现生产量增加很快,产值特别是利润的增长却不成比例。粘结钕铁硼磁体产业在我国的规模还小,还有很大的发展空间。估计年递增速率在20%以上。到2005年,我国粘结钕铁硼磁体年产量将达到2000吨左右。全球对粘结稀土永磁需求的增长幅度不是很大,其主要原因是由于粘结钕铁硼永磁的主题市场是IT行业密切相关的各种微型马达,IT行业的不景气直接影响对粘结钕铁硼永磁的需求[3]。

3 中国新型稀土永磁材料的研究开发现状[4]

在新型稀土永磁材料研究方面,我国科学家无时不出现于国际前沿。在ThMn12结构金属间化合物研究方面,我国是最早开展这方面研究的国家之一,在结构与磁性,超精细相互化合物方面,我国最早报道了RF11TiNy的研究成果,开辟了ThMn12结构间隙化合物研究领域;在Nd3(Fe,Ti)29新相研究方面,我国科学家首先发现了Sm3(Fe,Ti)29单相化合物及其氮化物,并研究了它的磁性。 近年来,利用快淬工艺制备各向异性稀土永磁材料方面做了一些探索。最近,中国科学院物理所利用快淬工艺成功的合成出具有高磁能积的磁各向异性Sm-Co稀土永磁材料,其室温磁性能可达18.2MGOe,剩磁比为0.9,并且通过球磨后制备的粘结磁体仍旧保持各向异性,具有高的磁能积。同时发现碳元素能够控制易磁化轴在快淬带中的织构方向并细化晶粒可进一步提高其硬磁性能。

北京大学,研制成功了具有自主知识产权的ThMn12结构氮化物稀土永磁材料[5]。目前,已开发出磁能积为15~20MGOe左右的R(Fe,M)12Ny(R=Pr,Nd;M=Mo,Ti,V)间隙化合物稀土永磁材料,已建成年生产能力100吨的中试生产线,进行产业化推广[6]。2004年10月 ,深圳北大双极高科技股份有限公司与深圳中核集团公司签约,合作建立新型稀土永磁材料基地,将根据市场发展需要,拟在深圳建设年产1000吨钕铁氮磁粉的产业化示范生产线。此签约项目涉及3.5亿元的巨大数额。该磁粉在质量上和性能上居世界领先地位,这项成果是把基础研究成果转化为现实生产力的成功典范。目前,国内外一些知名企业正在利用钕铁氮制造磁体产品。该项目得到了国家发改委、科技部、教育部和北京市科委的立项支持。

钢铁研究总院,开展了高使用温度稀土永磁材料的制作技术和工艺的研究,进一步研究不同材料的阶段性热处理退火工艺、胞相和胞状结构与温度磁性能的关系。获得Sm2Co17高温磁体的性能450℃时 (BH)max≥9MGOe,Hic≥7.9kOe。

上海大学材料研究所申请并承担各向异性钕铁硼磁体的国家自然基金、上海科委和教委纳米专项等多项课题,进行粘结各向异性钕铁氮复合磁体研究开发。北京科技大学利用HDDR(hydrogen disproportionation desorption recombination)工艺也进行了开发各向异性钕铁硼粘结磁体的研究。

近来有一些国外磁体专用设备厂家联合推出,按最佳工艺路线配套的一条全封闭、全自动化的完整生产线:原料从生产线的一端投入,在另一端出来的已是磁体最终产品,包括磁体的涂层。设备厂商能保证磁体产品极低的氧含量(O2≤1000 ppm)和极高的磁能积((BH)max=52MGOe))。据了解,如此先进而完备的生产线在西方国家尚不存在。更为重要的是,此生产线的报价远低于单机报价的总和!报价不仅包括设备硬件,也包括技术软件。换言之,设备厂家不仅提供成套设备,更保证用户能生产出最高牌号的稀土磁体!

值得一提的是,国内磁体专家有感于国内生产设备与国外的差距,经数年的潜心钻研与实践,终于在2003年中研制出一整套具有中国特色的烧结NdFeB磁体生产线,并付诸实施。用它可稳定生产高挡NdFeB磁体,整条年产300吨烧结NdFeB磁体生产线的价格仅是国外相应设备的1/4~1/6。此生产线的涂层完全摈弃了导致磁体氢化的电镀,而采用无污染的Dacro技术,耐蚀性良好,成本低廉。 近年来,我国的稀土永磁的生产装备也有了长足的发展。特别是在满足一些新的生产工艺方面的装备有了突破。例如国产速凝薄片炉和氢破碎炉已在一些磁体生产厂使用。一些国外发达国家的永磁设备制造商也瞄准了中国这块宝地,纷纷在中国设立生产基地,同样给我国的永磁设备制造商带来了机遇和挑战。2004年9月,沈阳中北真空技术产业开发区兴建国内先进的真空炉生产基地,引进世界最先进的液晶显示、等离子真空热处理技术,这必将对我国烧结钕铁硼的生产技术水平的提高产生积极的影响。

4 中国磁体产业发展思路和前景预测

跨入21世纪,中国的磁性材料产业得到了进一步发展,年增长超过20%[7]。初步统计,2004年中国烧结铁氧体[8]达到350,000吨(占全球总量的51%),粘结铁氧体50,000吨(占全球总量的32%);烧结钕铁硼永磁[9]达到27,510吨(占全球总量的81%),粘结钕铁硼永磁[10]达到1350吨(占全球总量的35%);铸造磁体3,500吨(占全球总量的56%)[11]。世界磁性材料生产向中国转移,增强了中国磁性材料工业的整体实力,提高了生产技术,加速了中国成为世界磁性材料生产基地和销售市场的建设。

稀土永磁的发展和前景

作为朝阳产业,稀土永磁产业是磁性材料产业的重中之重,其新的应用成长点在不断涌现,特别是信息产业为代表的知识经济的发展,给稀土永磁等功能材料不断带来新的用途。除了在计算机、打印机、移动电话、家用电器、医疗设备等方面的广泛应用外,汽车中的发电机、电动机和音响系统的应用已经开始,这将极大的带动钕铁硼产业的发展。由于我国丰富的稀土资源,较低的人工成本和广阔的市场,从而在未来的五年至十年内,国外的钕铁硼制造业继续逐步向中国转移的态势势不可挡,中国必将吸引大量国外先进的钕铁硼永磁材料制造商,比如美、日、欧等国家、地区的企业进入,一方面会对中国稀土永磁企业带来挑战,另一方面也会将先进的技术、管理经验带入中国,从而进一步推动中国稀土永磁产业的发展。 “十五”期间,我国钕铁硼磁体的总产量超过了5万吨,烧结钕铁硼磁体产业会保持继续增长的势头,年增长率仍会保持在20~30%以上,粘结钕铁硼磁体产业在我国的规模还小,还有很大的发展空间。预计到2005年,我国烧结钕铁硼磁体年产量将达到3万吨左右,粘结钕铁硼磁体年产量将达到2000吨左右。预计到2010年,我国烧结钕铁硼磁体产量将达到7万吨,占全球产量的75%;粘结钕铁硼磁体产量将达到1万吨,占全球产量的50%。 中国磁性材料行业的大发展 “十一五”时期,是中国磁性材料工业大发展时期,世界磁性材料产业中心已经转移到中国[12]。

(1) 家电领域。中国电视行业预测到2010年,中国彩电总量达到1亿台,占世界产量的63%。据此估计,全球需要软磁铁氧体6万吨,永磁铁氧体8万吨。

(2) 信息化领域。电脑的普及带动了相关外置设备的发展,尤其是硬盘驱动器(HDD),预计到2010年全球产量超过5亿只;DVD、DVD-ROM和刻录机,到2010年全球的产量超过10亿。这是钕铁硼磁体应用的大市场,全球需要量在2万吨。

(3) 汽车领域。汽车已经成为中国国民经济发展的第五大支柱工业,到2010年,中国的汽车产量达到1000万辆,如每辆汽车用电机数在30只,扬声器在5只,将需要永磁体10万余吨。由于能源的紧张和环保要求,电动汽车的开发在加速,预测到2010年全球产量在350万辆,需要钕铁硼磁体4200吨。

(4) 其他配套领域。由于世界各类磁体配套件市场向中国转移,例如电动自行车的需求量越来越大。据中国助力车专业委员会不完全统计,2004年中国电动自行车产量约达500万辆。以每辆电动自行车平均需要0.3公斤烧结钕铁硼计算,需用磁体1500吨(折合毛坯近2500吨);由于国外劳动力成本等因素,加上中国磁体价廉物美,一些涉及劳动密集型的行业,如电子变压器、电机、电感、电声,均转移到中国或第三世界国家,同时磁体的销售市场也在中国。

结 语

中国磁性材料行业要从大国向强国转变,就要加速行业内的规模经济建设,发展强强联合,要有若干个年销售收入达到100亿的企业。中国企业必须要走出国门,收购或合资国外企业,建立跨国公司,树立国际名牌。中国企业必须投入应用开发领域,配合整机开发磁性材料配套部件和组件,到2010年全行业争取达到产值400亿人民币.

我国的磁性材料产业需要通过技术创新,继续加强稀土永磁材料的探索、加强高档稀土永磁材料的开发,使我国稀土永磁材料能保持持续发展。从整体上看中国磁性材料技术水平接近国际水平,但没有自已的知识产权和创新的产品。重点扶植中国专利产品,如钕铁氮磁体,但必须要全行业和相关的配套行业一起合作。同时还有产业的结构调整,中国的磁性材料企业一定要有自己特色的产品,在某一方面(价格、质量、市场占有率)领先全行业,使国内外其他企业无法竞争。中国的磁性材料产品特点要低价优质,才能参于国际竞争。我国的磁性材料企业,加强自身的整合,不断提高管理和技术水平,通过与国外先进磁性材料企业加强合作,互助互利,使磁性材料产业更好的扎根于中国,使中国的磁性材料产业更好的服务于全球。

参考文献:

[1] 罗 阳,围绕NdFeB磁材的专利态势分析, 新世纪NdFeB磁体的发展, 北京2002.4 p80~88

[2] 罗 阳, 21世纪中国磁体产业展望, 中国磁性材料产业中长期发展战略研讨会, 上海2004.11 p1~41 [3] 蒋 龙,粘结NdFeB永磁产业及安泰科技的战略,2004年中国稀土永磁材料论坛,p24~30

[4] 王震西, 胡伯平, 稀土永磁的产业现状及应用, 2004年中国稀土永磁材料论坛, 北京2004.11 p1~7 [5] 杨应昌,开发中的新型永磁材料:稀土-铁-氮间隙型化合物, 中国稀土学报, 1994(12) p513~519 [6] 喻晓军,王冬玲等,稀土永磁材料的技术发展近况,2004年中国稀土永磁材料论坛,北京2004.11 p42~48

[7] 十一五”磁性材料行业发展规划纲要, 中国磁材商情网,

[8] Terry K. Clagett, Proc. of 2004 BM SyMPOSIUM (Tokyo, Dec. 3, 2004)

[9] 罗阳,2004中国国际新材料产业研讨会(Sept. 23.2004北京),磁性材料专业论坛文集,p.64~80.

磁性材料范文4

Abstract: Nd-Fe-B permanent magnet is the most widely used rare earth magnetic materials, but the magnetic property of current domestic Nd-Fe-B magnets always fails to meet the requirements. Based on the characteristics of rare earth magnetic material production process, the paper identifies important factors that influence the magnetic property of rare earth magnetic materials with the analysis method of fish-bone diagram, and then the author turns the fish-bone diagrams into an attribute hierarchy model with the ideal of AHP. It expresses the influencing force of each cause to the target with the method of quantitative analysis. So the main factors and secondary factors to the magnetic property of Nd-Fe-B magnets can be focused on and can put forward reasonable and feasible forecasting model.

关键词: 稀土磁性材料;质量诊断;鱼骨图;层次分析法

Key words: rare earth magnetic materials;quality diagnosis;fish-bone diagram;AHP

中图分类号:F253.3 文献标识码:A 文章编号:1006-4311(2016)32-0145-05

0 引言

近年来,稀土凭借其特殊的元素组合特性,逐渐成为支持国家新能源、新材料、节能环保、电子信息等行业特别是国防军事领域发展的重要战略资源。稀土磁性材料是一种性能优异、应用范围广阔的永磁材料,目前市场应用最为广泛的市场主流稀土磁性材料是钕铁硼材料。钕铁硼材料在减小体积的情况下大幅度提高了产品的性能、节约能耗,符合现代战略新兴产业中倡导节能、减排、环保的技术发展需求趋势。但是目前国内生产的钕铁硼磁体其磁性能与理论相差太远,烧结的钕铁硼磁性材料性能差,易被腐蚀,应用范围窄,稀土磁性材料的质量亟待提高。在此情形下,质量管理成为稀土磁性材料生产企业必须解决的关键问题之一。质量控制与诊断是质量管理的重要内容,是实现预防原则、保持生产稳定的重要手段。随着生产的发展,质量特性值已经多元化。为了更好地进行质量管理,需要将这些特性值作为一个整体进行多元控制与诊断。所以,建立多元质量控制与诊断体系,是一个迫切需要解决的问题。

本文根据稀土磁性材料生产过程的特点,借助鱼骨图分析方法,综合考虑包头市稀土永磁材料厂生产管理实际情况,找出影响稀土磁性材料磁性能的重要因素,分层绘制形成鱼骨图。然后结合层次分析法,将所绘鱼骨图转化为层次结构模型,计算各指标因素相对于所研究目标即产品磁性能的重要程度,确定影响钕铁硼磁体的主要因素和次要因素,并据此提出合理可行的预防对策,对于提高稀土磁性材料的磁性能具有重要的意义。

1 鱼骨图和层次分析法介绍

鱼骨图又称为因果图或特性要因图,是用图来表示导致质量问题具体原因的方法。鱼骨图通常是以质量问题为出发点,从人、设备、原材料、操作方法和环境五个方面入手,从大到小,逐步搜索产生质量问题的具体原因,并在同一张图上用箭头把它们的关系表示出来,以便对质量进行改进。鱼骨图分析法在定性质量诊断中使用较广。对于管理者来说,使用鱼骨图分析问题,可以做到一目了然、思路清晰并且无所遗漏。实际操作中,具体作图方法如下:①明确所要分析的质量问题并将对问题有深度了解的相关人员组成工作组;②从人、设备、原材料、操作方法和环境五个方面出发,请各成员依次列出自己认为的引起问题的主要原因;③主要原因进一步细化,尽可能列出所有原因;④对鱼骨图进行优化整理做出最终的图形。

鱼骨图能够详尽地列出影响问题的所有因素,但是由于企业各种资源的约束,往往无法全部改进这些因素,在这些因素中有些是主要因素,有些是次要因素,企业通常会选择那些主要的影响较大的因素优先解决,这就需要首先确定各个因素的重要程度,对它们进行优先排序。层次分析法就能够实现这一目的,对这些因素进行定量的更详尽的分析。层次分析法的基本原理是将所有因素按所属类型从上而下分解成若干层,通过逐层比较各关联因素的重要性,分析出所有因素对于目标问题的重要程度,从而进行优先程度排序。具体步骤如下:①将问题所包含的因素分层,建立层次结构;②对同一属性的因素两两比较,构造判断矩阵;③对判断矩阵进行正规化处理求出原始判断矩阵中各因素的相对权重;④求层次总排序即合成权重;⑤对各判断矩阵进行一致性检验;⑥根据排序结果,做出综合分析。

运用层次分析法,在传统鱼骨图的基础上加入了定量分析,通过统计方法计算出末端因素相对于“鱼头”的优先排序,排序越靠前说明其对所要研究问题的影响能力越大,越需集中精力去解决。近年来,一些学者将二者相结合用于质量诊断,取得了不错的效果。罗宜美,黄胜延,曹式有[1]应用层次分析法的思想对某工厂A12立式车床加工换件准备时间过长的传统鱼骨图进行了改进,分析出所有影响因素中机床三爪行程小是最主要的因素,要着重改进。李振福[2]将鱼骨图和AHP方法相结合对北极航线问题进行了诊断,清楚的指出问题的主要方面和次要方面,并从国家层面和社会层面提出北极航线问题的解决策略。白少雪,陈全,李宗坤[3]综合考虑烟花爆竹行业安全评价的理论和经验,运用鱼骨图法对该过程发生的爆炸事故进行定性分析,找出导致事故发生的因素;再运用层次分析法进行定量分析,确定导致事故发生的关键因素是人的不安全操作行为,将这一因素应该作为事故预防的重点。胡玉琴,王殿生等[4]针对石油静电事故影响因素的复杂性、多层次性和不确定性的特点,采用鱼骨图分析法,找出了引发石油静电事故的影响因素,确定出6个主因素25个子因素的石油静电事故评价指标体系,应用层次分析法确定了各个影响因素的重要程度,分析出导致石油静电事故的重要因素,合理地解决了石油静电事故影响因素分析难题。张征,聂俊峰,傅斌贺[5]为有效地分析乘员信息处理过程中的失误影响因素,将鱼骨图和层次分析法两种方法相结合,用鱼骨图定性地辨识出4个层面16项因素,并将其导入层次分析模型,通过总排序和影响因素等级分别筛选出3个关键因素和3个重要影响因素,为预防研究提供一定的参考。

目前,未有学者将鱼骨图和层次分析法相结合应用于稀土企业产品质量研究,本文将这一方法引入到稀土磁性材料质量诊断中,先用鱼骨图分析方法找出影响稀土磁性材料磁性能的因素,再应用层次分析法将所有影响因素进行综合排序,根据排序先后顺序确定出稀土企业在生产过程中为了控制产品质量分别需要严格控制、有效控制和一般控制的因素。

2 稀土磁性材料质量问题诊断

2.1 稀土磁性材料生产工艺

包头市磁材厂生产钕铁硼磁体的工艺流程为:①熔炼:镨钕、硼、铁及其他元素在真空感应熔炼炉加热融化,融化液体浇铸到旋转的铜棍上,快速冷却,制得钕铁硼合金片;②氢处理:常温下氢气与钕铁硼合金片发生反应,反应时体积膨胀,合金沿晶界断裂,使钕铁硼的晶粒破碎,再加热发生可逆反应(脱氢),得到破碎的钕铁硼颗粒,利于制粉;③磨粉:在气流磨机内气流高速流动,带动钕铁硼颗粒反复碰撞,制得大小均匀的钕铁硼颗粒;④压型:在压机内高强磁场取向,使钕铁硼每一颗粒平行一致排列,压制后得到一定形状的生坯;⑤烧结:在烧结炉内加热,生坯排气、收缩,高温烧结后制得钕铁硼毛坯;⑥性能测试:利用磁特性测试仪测量毛坯磁性能;⑦机械加工、表面处理、充磁、包装:按照用户的需求直接压制成为各种形状的磁性产品并充磁、包装出厂,见图1。

2.2 质量源辨识-鱼骨图

稀土磁性材料质量问题是指磁体磁性能差,表现为烧结钕铁硼合金产品一致性差、稀土磁性材料的表面镀膜质量较差,表面欠致密,易被腐蚀、成品应用范围窄。本文总结了对包头市各稀土磁性材料生产厂的调研结果,并与专家讨论分析得出影响钕铁硼磁体磁性能的因素。影响因素主要包括以下五个方面:

①人(生产操作者):操作者对与生产相关的理论掌握不充分,操作过程不顺利;工人对机器设备不熟悉,操作不熟练;企业对改进生产技术所必要的科研投入没有或不足;由于企业缺乏必要的体检程序或工时不合理等因素造成生产操作者体力不支,导致经常性的操作失误;企业对提高磁性产品磁性能缺乏有效的监督手段。

②机(机器设备):钕铁硼永磁体生产过程中每一环节都有特定的生产设备,如气流磨出粒粒度大导致磨粉不彻底,直接影响到压型形成的生坯的质量;激光粒度仪测量粉体粒度时测量不精确,导致颗粒过大无法成型;压制过程中磁场压机中橡胶模磨损严重导致压力不足等。此外对所有设备而言,机器维修保养不及时以及设备操作过于复杂等因素也会影响到各环节产品的质量进而影响到成品磁体的磁性能。

③料(原材料及生产过程中的添加剂):目前生产高性能的稀土永磁体需要解决的关键问题是钕铁硼永磁体产业中产品的稳定性和均匀性,而原材料成分不均匀、熔炼过程中引入杂质或被氧化、压型时添加剂的种类及用量不合理以及生产中的其他不同组分和微量元素的缺少控制等都是重要的影响因素。

④法(生产方法):目前国外钕铁硼磁体的研究达到较高水平,其生产工艺已经不是传统的烧结磁体制备工艺,而是采用了而是采用了速凝薄带工艺制备合金、氢处理破碎和气流磨工艺制粉、橡皮模等静压工艺成型等一系列技术,是一种全新的烧结磁体制造方法,使磁性能得到大幅度的提升。而我国大多厂家生产手段仍然落后,造成所生产的永磁材料磁性能与理论相差甚远,如:熔融合金液体冷却速度慢,导致生产中α-Fe在铸片中产生,后续还必须要做等温热处理以及缺少富稀土相;钕铁硼合金片破碎工艺水平低导致合金的晶粒破坏,且富Nd相分布非常不均匀;磨粉时含氧量不足或过高导致磨粉效率低且粒度分布非常不均匀;烧结中粘结工艺落后使成品在烧结过程中开裂或产品硬度高;镀膜工艺存在缺陷致使稀土磁性材料表面镀膜质量较差,表面欠致密,易被腐蚀。

⑤环(环境):生产车间的环境不仅影响操作者也影响机器设备尤其是某些测量设备的精确性。车间光线暗、噪音大、温度湿度波动大或者是工艺布局不合理、工人操作机器不方便等都是关键的影响因素。

基于以上分析,构造稀土磁性材料质量分析鱼骨图如图2所示。

3 层次分析法

3.1 建立层次结构模型

影响稀土磁性材料磁性能的因素很多,结合上述鱼骨图分析结果,构建层次结构模型,如表1所示,评价体系包括5个一级指标和25个二级指标。

3.2 构造判断矩阵计算权重

结合层次结构模型,采用1~9比率标度进行同层次两两因素间的相对比较,构造出判断矩阵,见表2。求解判断矩阵的特征根和特征向量,为同一层次各因素相对于上一层次某一因素相对重要性排序,然后进行一致性检验。

计算判断矩阵的最大特征值?姿max并进行一致性检验。将计算出的最大特征根?姿max导入公式进行一致性检验。

RI的取值见表3,如果CR

为了从不同角度和不同层面客观深入的对稀土磁性材料磁性能影响因素进行分析,获得准确、全面、可靠的信息和数据,采用专家法为各因素及指标打分。专家学者他们分别来自于包头稀土磁性材料相关企业生产部门主管、包钢稀土研究院、内蒙古科技大学、包头发改委、包头政府及自治区的稀土工业协会的专家,在选择过程中充分考虑了专家的知识结构、专业背景和工作经历,以最大可能地保证测评数据的客观性和可靠性。最后,在上述专家学者的评价基础上进行归纳总结。构造出如下判断矩阵:

3.3 结果分析及改进措施

根据上述计算结果,按照所求综合权重大小确定影响稀土磁性材料磁性能的一级指标中B3权重最大为0.353,表示料是影响磁性能的最主要因素,企业在生产工程中要提高产品性能应该更加注重与料相关的因素;B4次之权重为0.320,表示产品性能的影响因素中生产方法也很重要,先进的生产技术对于提高产品性能具有重要的意义,其他包括人、机器以及环境等因素权重分别为0.086,0.167,0.074,与前两个因素相比重要程度较低。

25个子因素相对于目标问题影响程度排序如下:B33,B45,B21,B34,B44,B12,B31,B54,B24,B32,B41,B14,B42,B25,B52,B43,B22,B11,B23,B53,B26,B51,B13,B15,B55。所有因素中B33,B45两个因素的综合权重大于0.1,B21,B34接近0.1,B44,B12,B31,B54权重接近0.05,是最主要的影响因素,需要企业严格控制,这意味着企业在生产过程中应该重点关注这些因素是否达到生产标准以控制磁性材料的磁性能;B24,B32,B41,B14,B42,B25综合权重均接近0.02,B52,B43,B22综合权重大于0.01,属于次要因素,需要企业有效控制,如果控制不当,也会对稀土磁性产品的质量产生一定程度的影响。B11,B23,B53,B26,B51,B13,B15,B55权重均小于0.01,这8个因素对磁性材料磁性能的影响较小,但是企业不可完全忽视,企业在生产过程中一般控制即可。

从上述结果分析中可以看出,稀土磁性材料生产企业为了提高产品性能,主要从原材料成分是否均匀、冷却工艺是否先进、所使用气流磨的出粒粒度是否合规以及生产中各种组分和微量元素的控制是否得当四个方面出发进行控制。对于这四个主要影响因素改进措施如表6所示。

4 结论

鱼骨图只能定性地找出影响稀土磁性材料磁性能的因素有哪些,而具体这些因素如何影响以及影响程度等都无法确定。在实际生产过程中,企业由于资源等各种约束无法顾及所有因素,这就需要事先了解在这些影响因素中哪些是主要因素,需要及时解决,哪些是次要因素,可以暂时搁置。本文在鱼骨图的基础上运用层次分析法将影响稀土磁性材料磁性能的所有因素进行单层排序和综合排序,确定了各种影响因素对最终问题的影响程度大小,影响程度越大,越需要优先解决。

参考文献:

[1]胡伯平.稀土永磁材料及其应用[A].第八届全国永磁电机学术交流会论文集[C].2007.

磁性材料范文5

人们通常把材料、信息和能源 人们通常把材料、信息和能源并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

磁性材料范文6

[文献标识码]A

[文章编号]1005-0019(2009)7-0034-02

[摘要]本文概述了药用磁流体的制备,磁性微粒的分散技术,提高其稳定性的方法。同时对新型热敏脂质体的研究进展作了概述。

[关键词]磁流体;分散;热敏脂质体

磁靶向给药系统(magnetictargeteddrugsdeliverysystem,MTDS)是近年来研究的一种新的靶向给药系统。该系统是将药物与适当的磁活性成分配制在药物稳定系统中,在足够强的外磁场作用下,将载体定向于靶区,使其所含药物定位释放,集中在病变部位发挥作用,从而具有高效、速效和低毒的特点[1]。

常见MTDS的几种类型为,磁性脂质体(magneticliposomes,MLP)、磁性毫微粒(magneticnanoparticles,MNP)、磁性微球(magneticmicrospheres,MMS)等[2]。作为药物载体,系统主要由磁性微粒、高分子材料和治疗药物3部分组成。磁性微粒是磁性药物载体的主要成分,是指含有磁性金属或金属氧化物的超细粉末而具有磁响应性的高分子微粒。对磁性微粒的制备及性质研究、磁性微粒分散技术、影响其稳定的因素及提高其稳定性的方法,目前国内外有较丰富的研究成果。

1药用磁流体的制备

磁流体(Magneticfluids)是指有磁性的可流动液体。磁流体本身无磁性,但在磁场作用下可被磁化而具有磁性。这种流体是将粒径为纳米(nm)计的强磁性微粒均匀地分散在液相中所得到的非常稳定的胶体溶液。磁流体是由载体、强磁性微粒子和表面活性剂3部分组成。载体一般为水、直链烃、芳香烃、硅油、氟油、酯类油和醚类等。表面活性剂因载体不同而异,常用的有油酸、亚油酸、4-氧杂环己胺、十四烯酸、琥珀酰亚胺。目前药用的主要是铁氧系,如四氧化三铁、锰铁氧体、镍铁氧体及锰锌铁氧体等,并以四氧化三铁为主[3]。

1.1磁流体制备条件的探讨:

将一定量的FeCl3•6H2O和FeCl2•4H2O分别溶于水中,混合,加入适量分散剂,再加热到所需的反应温度,在快速搅拌下滴加适当浓度的NaOH溶液,即生成黑色的Fe3O4沉淀。上述反应原理为:Fe2++2Fe3++8OH-Fe3O4+4H2O,Fe3O4再在适当的条件下氧化成α-Fe2O3。影响生成磁流体的因素有不同NaOH的浓度,NaOH的滴加速度,反应温度等对氧化铁粒子大小及饱和磁化强度的影响。

1.2磁流体制备工艺:根据实验,对磁流体的制备工艺总结如下:

取一定量FeCl3•6H2O和FeCl2•4H2O分别溶于蒸馏水中,过滤。滤液混合,将将滤波用蒸馏水稀释至-定量,搅匀,加入适量的分散剂,置于3000ml烧杯中.将烧杯置于超声波清洗器中。在搅拌速度1500r•min-1,水温40℃,用6mol•L-1NaOH溶液适量滴到烧杯中,滴加速度5ml•min-1,反应结束后,在继续搅拌下40℃保温30min。将混悬液置于磁铁上强迫磁性氧化铁粒子沉降,倾去上清液,剩下下层液,加入分散剂适量,搅匀,在超声清洗器中清洗20min,过直径1μm筛,得到黑色的胶体溶液[4]。

2磁粉的分散技术

提高磁粉分散的稳定性,增加磁层中磁性粒子的填充率,降低磁浆粘度,改善磁浆流乎性,除了改进分散设备外,人们进行的工作主要可分为三大类:①在滋浆中使用分散剂;②磁粉的表面包覆或表面改性处理;③粘结剂的改性[5]。

2.1在磁浆中使用分散剂

2.1.1表面活性剂形分散剂通过亲水基与表面自由能高的磁粉结合,使磁粉表面形成一层由疏水基团构成的表面自由能低的亲油层。磁粉表面由原来的亲水性变为亲油性,从而加速磁粉在粘结剂有机相中均匀分散,保证粘结剂对磁粉表面的润湿,排出空气,提高磁浆的稳定性,改善磁浆质量缩短制浆时间,增加磁粉填充量,提高磁带性能[6]。

用于磁粉的表面活性别型分散剂有:环烷酸锌、二辛基硫代琥珀酸、十二烷基硫酸酯等。

2.1.2偶联剂型分散剂偶联剂的主要功能是在亲水性磁性颗粒和疏水性粘结剂树脂之间以化学铰架起“桥梁”,使二者成为一体。在磁粉表面形成一界面薄膜,使磁粉表面由无机变为有机,从而使易于凝聚的磁粉变得粒子间相互没有干涉,易被粘结剂润湿,在磁浆中保持稳定的分散状态。磁浆加工粘度降低,由此形成的涂层界面不会剥离,能发挥出临界的剪切强度。同时,此单分子膜有吸收能量的能力,且临界值较大。

目前工业上使用的偶联剂主要有硅烷类、钛酸酯类、锆类、有机铬络合物四大类。

2.2磁粉的表面处理:热处理之前在粒子表面包覆有机硅化物或用二氧化硅和钛、锆、铝之类的氧化物进行表面包覆,主要是为了提高粒子耐高温性,在热处理中保持针形形貌,但对加强粒子的分散性也有意义。用KOH水溶液处理磁粉[7],增强了粒子表面的碱性,使更易与分散剂中酸性官能团结合。用离子交换树酯溶解磁粉中所含有的水溶性物质,以促进其在油性体系中的分散。更多的是用表面活性剂,如磷酸酯、脂肪酸、D-山梨糖醇及硅氧烷或钛酸酯偶联剂对磁粉进行表面改性,将粒子表面由亲水性变成亲油性。

用表面活性剂对磁粉粒子表面处理的工艺有以下几种:

(1)浸渍法。即把磁粉浸渍在表面活性剂溶液中,经搅拌、过滤、干燥和粉碎即可。处理均匀效果好,但操作较复杂。

(2)辊压喷雾法。即磁粉碾压下,将表面活性剂溶液喷雾于其中。操作简单,但处理不均匀,且对粒子尺寸被破坏性大。

(3)捏合工艺技术。这是一种较新的工艺,利用压力和剪切力一次相继完成表面处理和润湿两个步骤,表面处理均匀,对粒子尺寸破坏性小,且可缩短砂磨时间。