温度监测范例6篇

温度监测

温度监测范文1

关键词 无线通信;ZigBee协调器;CC2430; DS1820;温度检测

中图分类号TN92 文献标识码A 文章编号 1674-6708(2011)50-0203-01

0 引言

随着温室大棚种植技术的不断发展应用,现代农业种植,大棚温室种植已成为重要手段。而温室大棚中所种植的农作物对温度的要求极高。大棚温度控制不好,会影响到各种农作物的生长,从而导致大棚的效益下降。由此,便需对大棚温度实时的、精确的监测。但是目前,国内的很多温室大棚温度监测仍然采用的是以单片机控制为核心的传统有线监测系统。这种监测系统通过采用复杂的电缆将其各部件连接并进行数据传输,系统具有布线复杂、局限性强以及设备维护困难等问题。

针对这些问题,提出了一种基于无线射频CC2430(ZigBee)技术和数字温度传感器的无线温度检测装置。设备主要由一个无线节点(接点根据需要可扩展到56个)和一个协调器组成。系统通过协调器与无线节点进行无线通信,将无线节点所采集到的温度数据信息由串口将数据显示出来,从而达到对温度检测的目的。

1 ZigBee9技术简介

ZigBee技术是一种近距离、低复杂度、低功耗、低数据速率、低成本的双向无线通信技术或无线网络技术,是一组基于IEEE批准的802.15.4无线标准研制开发的有关组网、安全和应用软件方面的技术,主要适合于承载数据流量较小的业务,可嵌入各种设备中。网络功能是ZigBee最重要的特点,也是与其他无线局域网(WPAN)标准不同的地方。在网络层方面,其主要工作在于负责网络机制的建立与管理,并具有自我组态与自我修复功能。

传统农业主要使用孤立的、没有通信能力的机械装置,主要依靠人力监测作物的生长状况。采用了由成千上万个传感器构成的比较复杂的ZigBee网络后,农业将可以逐渐地转向以信息和软件为中心的生产模式,使用更多的自动化、网络化、智能化和远程控制的装置来耕种。ZigBee技术已广泛应用于现代精确农业。

2 系统的硬件结构组成

整个无线测温装置硬件由无线节点和协调器两大部分组成。通常,一套装置只有一个协调器,其主要包括微控制器及射频收发单元、无线节点、电源模块及接口单元。

系统硬件在选用上,主要从温度监测的精确度、温度检测的范围以及所选元器件使用的便利性和经济型方面考虑。我们主要采用的是DS1820的无线温度传感器和无线射频CC2430。

DS1820的无线温度传感器内部结构主要由温度传感器、A/D转换器、信号处理器、存储器及接口电路五部分组成。其主要特点是温度测量精确,对温度的分辨率为0.5℃;测量范围广,测量范围可从-55℃到+125℃;单总线接口,只需一个接口即可完成温度转换的读写操作,可简化线路,节省I/O资源,提高经济性。系统可将检测到的温度信息数字化,采用9位数字方式直接读取温度,其典型转换时间仅为1s。

无线射频CC2430芯片的是完全符合ZigBee技术的2.4GHz射频系统单芯片,适用于各种无线网络节点。其主要特点是体积小、高性能、低功耗,具有优良的无线接收灵敏度和强大的抗干扰性。

接口单元我们采用的是目前PC与通信工业中应用最广泛的一种串行接口RS-232接口。RS-232接口采用的是串行通讯方式,具有使用线路少、成本低,特别是在远程传输时,避免了多条线路特性的不一致而被广泛采用。

3 工作原理

系统的工作主要由3部分实现:信息采集终端、信息收集终端、信息显示终端。

温度数据由DS1820采集之后传给节点,之后经两块ZigBee模块的无线通信把温度值传给协调器,最后通过串口把温度值显示出来。在进行多点通信时,装置中每个协调器可连接多达255个节点。不仅可以极大的解决传统有线设备的布线问题,还可节约大量导线,提高设备经济性。

1)信息采集终端:主要指是无线节点。从经济性及便利性方面考虑主要采用的是由数字DS1820、无线射频CC2430、电源等组成的无线节点。无线节点主要分布温室大棚中需要进行温度检测的各个地点,节点之间通过射频进行无线通信。工作中,终端在无线节点的增加或者删除时,可快速的对网络拓扑结构进行调整,实现网络的自我修复从而保证系统工作的稳定性。温度传感器在与协调器绑定进行温度检测后,检测到得温度通过无线通信发送到协调器;

2)信息收集终端:主要是指协调器。协调器主要安放在温度检测控制室,其作用主要是完成整个系统网络的建立与维护,与无线节点间实现绑定的建立,接收由无线节点通过ZigBee无线网络发送过来的温度数据,并实现数据的存储及汇总。之后,通过RS-232串口将采集到得温度数据信息传送到上机位,以便对数据进一步处理;

3)信息显示终端:主要是指上机位。通常与信息采集终端同样安放在温度检测控制室。其主要作用是将由信息采集终端传送过来的温度检测数据储存并做进一步的处理后显示。其中温度值的显示是以16进制形式显示的,再做进一步处理是可以对其十进制化。实验时,装置在室温情况下测量得到的数据温度值为16+11=27摄氏度,较为准确。

4 结论

基于ZigBee的温度检测系统实现的是温度的无线检测,设备可靠性高和功耗小,成功解决了传统有线温度检测系统布线等复杂的问题,适合工业级要求,有较高的实用价值。

参考文献

[1]李文仲,段朝玉,等. ZigBee无线网络技术入门与实战[M].北京:北京航空航天大学出版社,2007.

温度监测范文2

【关键词】电力设备;智能化;无线技术;温度;数据收集

1.智能无线温度监测系统的工作原理

智能无线温度监测系统被设定成三个子系统,分别是采集系统、汇总系统、监测系统。三个子系统通力协调工作,实现了电力设备温度的实时、准确、便捷的智能无线监测。

智能无线温度监测系统的三个子系统间的连接方式是不同的,无线通信方式是应用于采集系统和汇总系统之间,而通信线缆则是使用在汇总系统与监测 系统之间,即一个无形,另一个有形。对应部位的热感应元件将其所监测到的温度信息通过无线通信设备传输到汇总系统的总站,总站将会对收集到的所有温度信息 进行分类整理、分析并处理,再将处理完毕的数据信息传输到监测系统的监测计算机上。同时,调节端监测计算机也将收到同样的数据信息。监测计算机对接收到的 数据信息进行二次处理分析,当处理所得数据结果超高设定的极限值时,监测计算机就会发出警示信号。每个总站可以管理数百个子站,信息量的采集将是非常巨大 的。

2.智能无线温度监测系统的组成

2.1采集系统

通过将热敏电阻、传感器等热感应元件安装在容易因工作而产生不正常散热的部位,实时的对温度数据进行测量与采集工作,并将采集到的信息发送出去。交流电作为长期供能电源及太阳能电池板作为的后备电源(确保突然断电后的数据持续收集的)是采集系统的正常工作的依靠。

2.2汇总系统

信息汇总系统主要由无线接收装置构成,在收集到采集系统所传递而来的数据信息后,再传递给总站,总站接收到分站的温度数据之后,继而再将其传递给当地监视系统,与此同时还将温度数据传递给调节终端。实时温度变化同样被调节终端监视,如此便避免了无人监测的情况。

2.3监测系统

监测系统又可以细分为站级监测系统和调节端监测系统。用于监测系统的计算机直接接受总站所传递的温度信息等数据,并与总站是直接通信的关系。 监测计算机对总站所传递来的数据信息进行汇总、整理、分析后,存储于特定的数据存储库(可以对数据库进行灵活改动,比如扩容)。监测计算机可以对数据信息 进行报表统计,准确记录处于何时、何地、何种状况下的温度情况。同时,监测计算机在温度越过某一设定极限值时会有警示信号出现。监测计算机的另一个便捷之 处在于,可以根据需要进行任何时间段的任何部件的温度查询。调节端监测系统的数据信息传输用到的是汇集系统的通讯管理器,通过数据传输线缆直接传输到 PCM设备之中,在经过线缆转送给调节端,经PCM的数据信息还可以作为存储资料被下载到调节端监测计算机。

3.智能无线温度监测系统的特点

3.1免于布置排线

因为采用了无线传输设备,所以不用布置排线,热感应元件的安装更方便。

3.2免于经常的维护

智能无线温度监测系统都是整体化设计,所以免于维护。

3.3节能

智能无线温度监测系统的各个部分均采用节能、低功率消耗设置,同时应用太阳能电池板更是绿色节能。

3.4警示系统更完善

当温度过高时,总站智能终端电源,后台监控系统能够及时发出警报。

3.5稳定性更高

智能无线温度监测系统中的设备均有坚实的外壳保护,同时又有静电保护。数据在传递过程中安全、稳定,能够抵抗外界的干扰。

3.6具有较好的兼容性

能够应用更多的应用软件和控制系统。

4.智能无线温度监测系统与传统监测间的对比

4.1智能无线温度监测系统由于装有位于各个需要测量的部位的热感应元件的帮助,这使得数据的采集与监测具有了实时性、连续性和准确性的优 点,通过对每年、月、日甚至每小时的温度数据的变化情况,总结出电力设备不同部位的相应温度的变化规律,确定出其温度规律的峰值,有效的对电力设备的工作 稳定性就行预见性分析,消除潜在的威胁。而传统的电力设备温度的监测是依靠监测人员定期的监测与测量才能得出的,传统的电力设备温度的监测耗费大量的人力 物力,由于人类生理的局限性,所测得的数据存在不确定误差,甚至会出现错误,而且潜在的故障威胁不能及时发现并作出应有的处理,致使出现不必要的人员或财 力的损失。

4.2智能无线温度监测系统对数据的处理速度以及对故障的预见性分析是人类所不能比拟的,其所存储的数据信息能够被极其方便的调阅,对数据信 息的存储量也是相当的巨大。而传统的监测数据信息要进行存储就需要建立专门的存档管理机构,而且常年所存储的信息量是无妨想象的,要对某段数据进行查阅也 是极为不便的,费时费力,极不现实,而智能无线温度监测系统则解决了上述所存在的所有问题。

4.3智能无线温度监测系统的应用软件简单,操作方便,减少人员培训上岗时间。而传统的监测测量则需要专门的工作人员进行培训。

5.智能无线温度监测系统的后台监控功能

5.1热感应元器件所监测的部位的温度能够实时的传递给监控计算机并于显示屏上呈现出来,出现警示温度时的时间及故障位置都会以数据的形式保存起来,保存期限可长达数年。

5.2可设置警示音的类型,如可以以真人语音的形式播报出来或者以文字警示的方式显示到屏幕上。

5.3监测计算机所监测到数据信息可以以年、月、日等为单位用线性图或者表格的形式一目了然的展现出来,也可以直接抽查或打印出来。

5.4当智能无线温度监测系统中的任何部件出现问题时(如电源故障、信号传输中断等),都会有警示出现,及时警示给工作人员。

5.5都可以实现对监测位置的编码、命名处理,方便系统化管理。

6.智能无线温度监测系统国内外现状

在国外许多国家,智能无线温度监测技术的发展极为迅速,它被广泛应用到了人们生活中的吃穿住行。当传统的监测方式产生多年后,智能无线温度监 测系统在万众期待中登上了历史舞台,监测技术从此掀开了新的一页。现今已经不仅仅局限于电力设备的维护方面了,精密生产线、医疗系统、农业方面都已成熟融 合。智能无线温度监测系统在电力方面的应用,也是国外首创的。

在中国国内,智能无线温度监测技术的起步就相对较晚了,但凭借着多年的不懈努力终于成功由实验走到了实验。智能无线温度监测技术的应用范围之 广已不用过多阐述,将其应用在监测温度的设备上已是非常常见的了。智能无线温度监测技术最突出的优点就在于不需要布线,用智能无线温度监测技术监测温度还 突出了其准确简洁的优势。目前,智能无线温度监测技术仍在朝着攻克减小功耗、增加传输距离的技术难题努力。

参考文献

[1]高人伯.数据仓库和数据开采相结合的决策支持新技术.计算机世界.

[2]任玉珑,王建,牟刚.基于CA模型的电力设备全寿命周期成本研究.工业工程与管理,2008,(5):56-70.

[3]赵新民.智能仪器原理及设计.哈尔滨:哈尔滨工业大学出版社,1990.

[4]吴正毅.测试技术与测试信号处理.北京:清华大学出版社,1988.

[5]陈焕生.温度测试技术及仪表.北京:水利电力出版社,1987.

温度监测范文3

[关键词]单片机 数字式温度传感器 铁电存储器 单总线

[中图分类号]TP[文献标识码]A[文章编号]1007-9416(2010)02-0060-03

引言

环境温度的监测和控制是许多试验的必要条件,传统的温度监测系统多采用前端温度采集电路和后端上位机数据处理的方式,比如利用单片机对传感器输出信号进行采集,将采集到的数据送往PC机进行处理和实时显示[1]。然而这种方式由于持续的温度数据传输占用了大量的总线资源,受到PC机性能的影响,同时PC终端的不可移动性和安全性则无法满足无人值守或远程的实验。

针对这个问题,本文提出了一种具有数据存储功能的多通道温度监测系统。系统设置了数据存储功能,可以将检测到得数据存储在本地存储器中,实验完成后再和上位机联接将数据读出,也可以进行实时的数据传输而并不受到上位机的影响。这样就提高了系统的灵活性,并拓宽了其使用范围。

1 温度监测系统的构成

温度监测系统有前端多路温度采集电路和上位机数据库管理软件两部分构成。前端多路温度采集电路由温度采集模块和数据存储模块组成,如图1组成。电路由单片机C8051F410为控制核心,实现温度数据的实时采集、存储、阈值判断及报警、数据传输等功能。传感器输出的数据经电路调理后进入单片机进行处理,并存储在数据存储模块中,同时在单片机内

设置阈值并进行判断实现超限报警,如果与上位机联机时,单片机通过联线实现数据的传输控制。

2 温度采集模块设计

传统的温度传感器输出的都是模拟量,信号处理电路结构复杂,并且在实验中,往往需要同时监测多个不同点的温度变化,这会导致整个系统规模庞大而降低系统的稳定性。本系统选用美国Dallas公司出品的单总线数字式温度传感器DS18B20作为温度检测器件。DS18B20内部集成了温度信号调理和模数转换电路,可直接输出温度的数字信号,大大简化了应用电路的设计。并且数据接口采用 “1-wire”专利技术,可以在一条单总线上可以挂接多个传感器,节省了微处理器的端口资源和电路,非常适合多点组网测温。

DS18B20的检测温度范围为-55~+125℃;可以通过编程选择9-12位数据格式,选择9位时温度分辨率为0.35℃,转换时间小于100ms。每个DS18B20内部有一个64bit的标识码固化在ROM中,并且每个DS18B20的标识码都是唯一的,使用标识码,可对指定的DS18B20进行操作。

本系统由8个传感器组成测温网络。进行温度采集时,控制软件利用SKIP ROM命令,同时激活所有在线温度传感器,进行一次温度转换。转换完成后,利用MATCH ROM命令和唯一的标识码逐一读取相应的传感器温度值,直至将所有传感器的温度值都读取完,再进行下一次温度转换。

3 数据存储模块设计

根据测温系统的工作特性要求,系统采用非易失存储器,同时满足数据读写的方便,在复杂的环境中有一定的抗干扰能力,能多次重复使用等要求。系统采用具有SPI的铁电存储器FM25L512作为系统的数据存储芯片。这是一款512Kb的非易失性存储器,串行接口时钟频率可达20MHz,且数据以总线速度进行写操作,无写入延时,操作较EEPROM和FLASH存储器更为简便。此外,器件真正提供了无限次的写入次数,供电范围3.0V~3.6V,可以在-40℃~+85℃范围内工作。

将存储器的存储空间划分为若干独立的小块,分开存放各个采样通道的数据。其中,开始的256字节空间用来记录本次测试的一些条件参数,如采样起始时间,采样频率等。每个温度采集通道可以获得最大8160字节的数据存储空间。若采样频率为每分钟一次,则最多能存储68小时的温度测试数据,可以满足一般的存储测试测试要求。

4 系统控制流程设计

多通道温度监测系统的控制主要涉及系统的初始化,温度数据的采集、存储,温度超限报警、与上位机通信等功能,由一片低功耗混合信号单片机C8051F410实现。系统控制电路主要包括电压转换电路、单片机最小系统、传感器接口、上位机通信接口等部分组成,电路如图2所示。

单片机通过软件控制系统工作过程。完成一次温度采集后,单片机先将采集到的温度数据与预设的温度报警上限进行比较,若测得的温度值大于预设值,则利用蜂鸣器发声警报。比较结束后,根据所选的工作模式将温度数据通过UART接口发给PC机由相应的PC机程序进行处理和显示,或按通道存入相应的存储空间。测试完成后由PC机命令将数据读出,利用相应PC机程序进行处理和分析。

5 系统验证实验

利用本系统对高低温交变湿热试验箱的温度进行测量。将8个传感器分别布设在试验箱内的不同位置,当试验箱开始工作时开始测温,存储器记录试验箱的工作时间及相应的温度。实验结束后,将温度监测系统的记录数据和试验箱显示数据进行比对,从而检验系统的实际效果。

试验中,试验箱的起始温度为25℃,以10℃为单位升温,到预设值后保持一段时间再次进行升温,当温度达到55℃时结束。温度监测系统设定的采样频率为1次/秒,测试时间为15分钟。

实验时高低温试验箱温度记录如表1。

温度监测系统采集并存储的是DS18B20的12位数字化的温度信息,其中前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘以0.0625即可得到实际温度;如果温度小于0,这5位为1,测得的数据需要取反加1再乘以0.0625即可得到实际温度。将读出的数据转换成温度值后作图得试验箱内部温度随时间变化的曲线(图3)。

比较试验箱显示温度以及系统所测数据值可以发现,系统所测数据较好地表现了试验箱内温度随时间变化的规律,所得数据与试验箱显示温度有0.8℃左右的误差,产生误差的原因可能有试验箱自身的温度显示误差,温度传感器自身精度及滞后效应等。

6 结语

本文设计一种多通道温度监测系统,利用数字式温度传感器DS18B20的“1-wire”接口技术组成传感器网络,采用单片机控制,并在此基础上增加了数据存储模块。与传统的实时温度监测系统相比,本系统实现了对温度环境的存储测试,可以在脱离上位机的情况下独立运行,特别适合远程和无人值守实验的环境温度监测。通过实验验证,系统能够很好地实现对温度环境的存储测试,工作稳定可靠。同时,该系统具有一定的可扩展性,如增加传感器的数目或替换更大容量的存储器,可以使系统实现更复杂的实验环境下,更长时间温度监测,具有一定的应用前景。

[参考文献]

[1] 罗文广,兰红莉,陆子杰.基于单总线的多点温度测量技术[J].传感器技术,2002,21(3).

[2] 罗来邦,王述琪.小型多通道数据采集与回放测量系统[J].探测与控制学报,2005,27(1):38-40.

[3] 李群芳,肖看.单片机原理、接口及应用――嵌入式系统技术基础[M].北京:清华大学出版社,2005,3.

温度监测范文4

【关键词】 煤矿 多回路 温度 T型热电偶

Research of Temperature Monitoring and Data Transmission Technology on Mining Multi-loop Electromagnetic Starter Ma Li-shuang (CCTEG Shenyang Research Institute,Fushun Liaoning 113122)

Abstract:In order to improve the reliability of mining multi-loop electromagnetic starter, in this paper, a multi loop temperature monitoring technology was put forward based on T thermocouple. On the analysis of the T thermocouple characteristic design for monitoring system as a whole, mainly including temperature sensor, signal processing unit, DSP, CAN the power supply unit, communication unit, clock unit and programming unit, etc., the key design T thermocouple output signal processing unit. And according to demand design software program system.

Key words: Coal Mine;Multi-loop;Temperature;T thermocouple

一、引言

目前,国内煤矿大量使用电磁启动器对电动机的启动、运行和制动进行控制,同时电磁启动器具有故障检测功能,在电动机及线路发生短路、断相及漏电故障情况下,进行闭锁保护,电动机电磁启动器具不能启动,确保故障点不会出现产生火花、电弧等,避免瓦斯、煤尘爆炸事故的发生。长期工作是的温度变化是衡量电磁启动器性能的重要参数,现有电磁启动器不具有远距离温度监测功能,因此结合CAN通讯技术开展矿用多回路电磁启动器温度监测技术研究具有十分重要的意义。

二、监测系统设计

矿用多回路电磁启动器温度监测系统包括温度传感器、信号处理单元、DSP、CAN通讯单元、电源单元、时钟单元和编程单元等(如图1所示),具有同时对多回路温度变化信息进行采集、处理和数据传输的功能。温度传感器负责采集各个回路的接线端子、导线、动触头等部位的温度信息。信号处理单元负责将温度原始信息进行隔离处理,转换成DSP能够识别的信息。DSP负责数据采集、运算和传输,同时对采样频率、计算精度、传输速度等进行设置。电源单元为DSP和温度传感器提供电能。时钟单元用于为监测系统提供数据采样和传输时钟信号。编程单元实现DSP和编程计算机之间的连接,用于软件程序编译、调试和烧录。

2.1 T型热电偶

选用T型热电偶作为温度传感器监测矿用多回路电磁启动器的温度,该热电偶是由两种不同成分的导体两端接合成回路,当两接合点存在温差就会在回路内产生热电流。T型热电偶又称铜-康铜热电偶,测量温度在-200~+350℃之间,具有线性度好,热电动势较大,灵敏度较高,温度近似线性和复制性好,传热快,稳定性和均匀性较好等优点。T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制,不同规格的T型热电偶对应的最高温度不同,如表1所示。

表1 不同规格的T型热电偶对应的最高温度

2.2信号处理单元

T型热电偶的输出毫伏级电压信号,输出信号经过运算放大和光耦隔离后发送给DSP。运算放大器选择LM358,光耦隔离选用线性HCNR201光电耦合器,信号处理电路如图2所示。HCNR201是一种由三个光电元件组成的器件,具有±5%的传输增益误差和±0.05%的线性误差,DC~1MHz的带宽,绝缘电阻高达1013Ω,输入与输出回路之间的分布电容为0.4pF。

三、系统软件设计

温度监测系统软件主要实现DSP初始化(包括时钟、寄存器、事件管理器、AD转换模块等);然后开中断,监测温度传感器状态输出;最后采集温度传感器输出信号,并进行数据计算及传输。温度监测与数据通讯系统主程序如图9所示。

四、结束语

利用T型热电偶的抗干扰能力强、输出特性好等优点,开发一套分布式结构框架的矿用多回路电磁启动器温度监测系统。以DSP为核心采集温度数据,简化了系统硬件电路结构和走线,增加了可靠性及灵活性。系统并对温度传感器的数据进行运放处理、光耦隔离、运算与传输,能够对多回路的温度变化进行实时监测及数据传输,实现多回路的分散采集和集中管理,

参 考 文 献

[1] 邬宽明.CAN总线原理和应用系统设计[M].北京:北京航空航天大学出版社,2003.

[2] 胡文平,尹项根,张哲.电气设备在线监测技术的研究与发展[J].华北电力技术,2003,3:23-26.

温度监测范文5

Abstract: In order to meet the demand of low power consumption in home temperature and humidity monitoring, a wireless monitoring system based on nRF24L01 is proposed, and the hardware and software design of the system is completed. The system uses STM32F103 processor and AM2301 temperature and humidity sensor to form a wireless monitoring system with low power consumption. The practical application shows that the system has the characteristics of accurate data acquisition and can meet the design requirements.

P键词:家居;STM32F103;AM2301;无线监测系统

Key words: household;STM32F103;AM2301;Wireless monitoring system

中图分类号:TP274 文献标识码:A 文章编号:1006-4311(2017)06-0088-03

0 引言

在智能家居物联网系统中温湿度是一个重要的系统参数。我们可以根据系统测量的参数打开或关闭空调、加湿器等,调整家居的舒适度。传统有线测量系统成本高、布线复杂、系统扩展性能差,因此提出并设计了一种基于nRF24L01的无线温湿度监测系统。该系统能够完成对其准确检测。

1 系统整体设计

系统以基于STM32F103处理器为核心,在不同节点的 nRF24L01组网后,可实现家居温湿度数据无线传输;使用 AM2301 温湿度传感器完成环境节点数据采集;使用ILI9325液晶显示屏实时显示各监测节点的信息。该监测系统整体设计如图1所示。

2 系统硬件设计

该温湿度监测系统为一对多的无线数据采集系统,由多个从机将本地的采集的数据经nRF24L01无线射频模块发送到主机上,一个主机经nRF24L01无线射频模块收集多通道中的终端节点的温湿度数据,自组实现一对多的无线传感器监测系统,以实现对家居温湿度的实时监测和报警。

2.1 处理器主控模块

采用STM32F103RCT6[1]处理器为主控模块,该处理器为ARM Cortex-M3,外设包括3个12位ADC、12通道DMA控制器、11个定时器,工作频率可达72MHz,具有USB、I2C、SPI、CAN和USART等接口。芯片工作电压范围2.0V-3.6V,支持睡眠模式、停机模式和待机模式三种低功耗模式。该模块在整个电路中负责对数据采集信号进行发送与接收。

2.2 nRF24L01无线模块

NORDIC公司的nRF24L01芯片[2],采用FSK调制方式,芯片内部集成该公司的Enhanced Short Burst协议。可以达到2Mb/s的通信速度,能实现1对6的通信,内置2.4GHz天线,SPI接口可以和处理器机I/O口进行直接相连。内部集成的RF协议相关的信号处理部分,能够自动检测,自动重发功能和重发丢失的数据包,便于嵌入式应用。nRF24L01无线射频模块的电路图如图2所示。

通过对nRF241L0寄存器配置,可将模块设置为接收、发射、掉电和空闲四种工作模式,如表1所示。

2.3 温湿度采集模块

温湿度传感器(AM2301)[3]采用单总线的连接方式直接与MCU相连接,完成家居温度与湿度的采集。温湿度采集电路如图3所示,AM2301的Data端口与单片机建立同步通信,以单总线的数据格式输出40位数据,16位湿度数据、16位温度数据,8位校验和。

3 系统软件设计

系统上电,所有硬件初始化启动完成后,下位机STM32处理器发送温湿度数据采集起始信号,等待AM2301响应,STM32读取40位数据后并校验,正确的数据通过无线网络传送到上位机[4]。系统通过无线网络完成家居温湿度数据的读取。系统发送端流程如图4所示,系统接收端程序流程图如图5所示。

4 实验应用

该系统用于家居室内测试,采集三个节点的温湿度数据,发送给上位机并显示节点数据。在进行测试时,系统初始化后,完成数据采集设置和通信配置后,上位机接收下位机发回的数据;并将结果进行显示,室内采样点温湿度数据如表2所示。通过实际应用测试,该测试系统测试结果准确、稳定可靠。

5 结论

本文家居无线温湿度监控,与传统的控制方式比较,不受空间的限制,布置多个无线节点可方便组网,满足现代家居温湿度控制的需求。该系统在家居环境控制应用中,检测准确、运行良好,功耗低,模块性能稳定,人机界面好,具有广阔的应用前期。

参考文献:

[1]意法半导体.STM32F103数据手册[R].北京:意法半导体,2007.

[2]nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0[R].Nordic Semiconductor,2008.

温度监测范文6

 摘  要 介绍了在windows环境下的一种典型的分布式温湿度监测系统构建方法,利用xsl/b-08bs1巡检仪对档案馆各个库房温度、湿度进行监测,构建了系统总体结构,设计了网络系统中的数据传输协议,开发了上下位机的系统软件,并将所构建的系统应用于档案馆。     关键词 温湿度监测;网络通讯;数据传输;xsl/b-08bs1   1 引言     档案馆库房的温度、湿度变化,是影响档案材料老化变质的重要因素。因此,控制档案馆库房的温度、湿度是档案馆库房管理的重要任务,一旦档案馆库房的温湿度失控,就会对档案材料的安全管理产生重大隐患。传统的方法是通过人工进行检测,对不符合温度及湿度要求的库房进行通风、去湿和降温等工作,但这种方法费时费力,效率低并且测试的温度和湿度误差大、随机性大。为此,我们研制了档案馆库房管理的远程智能监测系统。这个系统能够对档案馆内每个库房中各库位的温度及湿度的变化情况进行实时自动监测,并可以对历史数据进行分析比较,一旦出现异常现象便于及时处理,有效地提高了档案管理的预见性和工作效率。 2 系统结构设计     本系统的硬件以xsl/b-08bs1巡检仪和主控pc为核心,其设备包括交换机、显示器、打印机、键盘、鼠标等等。系统结构图如图1所示。 图1  系统结构原理图 3 系统工作原理     各个档案馆库房通过xsl/b-08bs1巡检仪实时采集数据[1],同时,xsl/b-08bs1巡检仪通过网络将数据实时传输主控pc,供工作人员监测。其中,主控pc对xsl/b-08bs1巡检仪数据的读取主要是利用串行通信控件comport library。 3.1 comport library控件     comport library作为第三方控件可以非常方便的扩展到delphi语言环境中,其中主要的事件与方法为:comportrxchar,writestr和readstr。     writestr和readstr分别为写串行数据和读串行数据,comportrxchar为串行口接收数据事件。在使用中,通常把readstr函数设置在comportrxchar事件处理函数中,详细使用方法请阅读comport library的帮助文件。 3.2 xsl/b-08bs1巡检仪     xsl/b-08bs1数据巡检采取了基于tcp/ip协议的网络成熟技术[2],能实现中远距离数据传输。仪表的基本功能单元包括模拟量输入,输出,开关量输入,输出,参数存储器。这些单元都能通过不同的命令与计算机进行数据传送,计算机也能通过控制权转移的方法,直接操作仪表的模拟量输出和开关量输出:由于仪表内部有独立的输出缓冲区和计算机控制输出缓冲区,因而可实现控制的无扰动的切换[3]。 3.3 通信协议     xsl/b-08bs1巡检仪使用的通讯命令有很多,包括通讯和测量等参数值的设置,现以读取巡检仪测量值命令为例[3]加以说明:     命令   #aabbdd     说明   本命令读回指定仪表1个或数个通道的测量值和告警状态。     # 为定界符。     aa (范围00~99)表示指定仪表二位十进制地址;     bb (范围01~96)表示需读回测量值的开始通道号的二位十进制数;     dd可省略(范围01~96)表示需读回测量值的结束通道号的二位十进制数。     例:命令:#010103     回答:=+123.5a=-051.3b=+045.7@     本命令读取地址为01的仪表第01通道至03通道的测量值。xsl/b-08bs1的具体通讯协议请参考使用手册。 4 系统软件设计     温湿度监测系统软件采用c/s结构,以delphi作为开发环境,利用sql sever 2000作为后台数据库,并利用第三方控件comport library进行读取数据。本软件最大的好处是类似windows的图形界面和操作方法,使用多窗口管理技术,简单、易操作。其完成的主要功能是:数据实时监测,历史数据分析、报警设置、设备管理、输出报表和图形显示等。系统结构框图如图2所示。 图2  系统结构功能图  

   (1)用户管理模块:主要是对操作软件的用户进行管理,包括用户的添加删除,密码管理,用户权限管理等等。     (2)系统设置模块:是对监控系统软件基本参数的设置,例如温度、湿度的报警临界参数设置,各个库房所在传感器的地址参数的设置。     (3)数据显示模块:对档案馆各个库房温度、湿度的实时采集。实现窗体图3所示。 图3  温湿度实时采集显示窗体     (4)设备控制模块:当温度、湿度超过预设值以后,对报警开关的控制,以及对档案馆内温度调节设备,湿度调节设备的控制。     (5)历史数据分析:这个模块的主要功能是对以往各个库房温湿度记录的查看、分析、统计,可以通过软件针对每一年、每一月、每一天的平均温度或者某一天某一时刻的温度,湿度进行查询,并且包括了对历史数据温度,湿度曲线的观测,以及各个时段温度,湿度报表的打印。其中曲线绘制的功能实现窗体如图4所示。 图4  温湿度曲线的显示窗体 5 结束语     采用先进的温湿度监测系统,再加上安装优质的温湿度调制设备,是加强档案室库房温湿度管理的重要条件,分析研究温湿度变化规律,调控档案室库房的温湿度,是企业的档案安全管理的重要保证。 参考文献 [1] 郑国祥. 谈档案室库房温湿度自动监控系统的应用[j]. 浙江档案.2004,(01):34-34 [2] 张秀德.利用xsl/b-08bs1实现环境参数采集监测的应用[j]. 农机化研究. 2006,(1):199-201 [3] 张程志. 基于comport library控件的delphi串行数据采集系统的软件设计[j]. 水利科技与经济. 2007,(8):614-615 [4] 王文珍,张成利. delphi语言编程通过串口实现温度测量[j]. 计算机与现代化 2005,(7): 52-54 [5] 张秀德. 基于comport library的delphi串行数据采集系统的软件设计[j]. 工业控制计算. 2004,(12):53-57 [6] 韩兆福. 基于can总线的仓库温度湿度的自动测试系统[j]. 计量测试与技术 2001,(3):14-15 [7] 肖忠祥.数据采集原理[m].西安:西北工业大学出版社,2001

上一篇语文语法论文

下一篇客人来了