农业物联网数据管理

农业物联网数据管理

物联网(Internetofthings)的概念是在1999年提出的,2005年国际电信联盟(ITU)发榷了《ITU互联网摄告2005:物联霹》将之定义鸯萼冬各释信息传感设备葛踅联网结合藏宋而形成的一个臣大网络.奥巴马就任美国总统后在一次会议上表示:“经济刺激资金将会投入到宽带网络等新兴技术中去,毫无疑问,这就是美国在21世纪保持和夺回竞争优势的方式n吨].”激家宝总理2009年指出,要大力培育战略性毅兴产照,攘抉物联网的研发应用并将“发麟物联网,促进倍感化”作当年“两会”期间为讨论的主题之一.

当前世界各豳都投入了大鬣的人力和物力开展物联网相关技术的研究,也取得了很多成绩.丹麦运输公司采用IBM的传感器技术允许园艺供应链中的参与者跟踪鲜花和盆栽植物的运输进度(从种植者到批发商,到零售商,遍及欧洲40个国家).整条运输链的各方公司都可以利用传感器对运输的条件和气候进行跟踪.使运输过程更加透明.英国的Pachube允许给现实世界和虚拟世界中的物品、设备、建筑和环境添加标签,并分享即时传感器信息[3].

我国在物联网方面也展开研究,并取得了很好的成果.无锡传感网中心的传感器产品在上海浦东国际机场和上海世博会被成功应用,这套设备由lO万个微小的传感器组成,散布在墙头墙角墙面和周围道路上.传感器能根据声音、图像、震动频率等信息分析判断,爬上墙的究竟是人还是猫鼠等动物.远望谷开发的完全拥有自主知识产权的XC型铁路车号自动识别系统已成功应用于中国铁路车号自动识别系统,在铁路货车使用费用清算中实现了精确统计货车数量;消除了铁路运输调度管理的盲区,提高列车正点率.

然而我国当前在农业物联网应用上做的工作还比较少.本研究结合传感器网络、移动网络与智能手机实现了对农田的实时监控和数据采集,对于农业安全管理、产品溯源都有相当的指导意义.

1材料与方法

1.1概述

物联网有3个特性:全面感知、可靠的传送和智能作用[4],其控制特性与传感器网络‘51有很大不同,主要强调系统的可控性,而传感器网络则强调系统的可观测性.因此将传感器网络作为物联网的一个组成部分接入时就必须对其进行调整,使之适应物联网的要求.物联网包括3个层次:1)传感网络,即以二维码、RFID、传感器为主,实现‘物’的识别;2)传输网络,即使通过现有的互联网、广电网络、通信网络等实现数据的传输与计算;3)应用网络,即输入输出控制终端,可基于现有的手机、个人电脑等终端进行‘….

本研究中,物联网中的“物”包括4种:农田(棉田、麦田与玉米地)、传感器网络、数据管理终端和智能手机.构建物联网的目的是将这4种“物”连接起来,使农田能够成为网络中的一个可观测终端,在此一共包括3个层面的连接:

1)直接测量.通过传感器网络采集温湿度和光照;通过数据管理终端归纳并管理采集到的数据;并通过智能手机实现数据的实时查看、分析与管理.

2)多源数据集成.将当前已建成的气象监测网络获取的数据与无线传感器网络采集到的数据相结合,建立传感器网络采集到的特征点数据与大环境数据的对应关系,使研究人员能够通过此网络更好地了解农田各参数之间的关系.

3)数据的开放与共享.利用WebService将网络内的数据开放出去,使之可以为更广泛的应用提供数据支持.例如为卫星遥感数据提供地面数据支持等.

1.2网络结构与部署

网络由3部分构成:精准灌溉传感器节点——用于采集空气温度、土壤湿度和光照强度,并为邻居节点提供路由;数据服务提供者——在服务器上部署相关服务,用于连通网内成员,并对外提供数据服务;数据管理终端——包括智能手机、B/S数据管理网页和C/S客户端,用户可通过不同方式查看服务器上的数据.系统在新疆与北京分别部署,服务器设在北京.在北京主要监测种植春小麦和夏玉米的农田,采集土壤湿度、空气温度和光照,并由网关节点记录喷灌机行进数据;由于新疆采用滴灌,故仅采集棉田土壤湿度、空气温度和光照,人工记录灌溉时间与灌溉量.通过B/S网页或分布部署在智能手机和电脑上的C/S客户端,用户可以远程查看农田参数与农机使用情况,分析数据以提高灌溉效率.

1.3软硬件配置

传感器网络系统采用国家农业信息化工程技术研究中心的FieldwSNs(农田环境无线传感器网络系统),载波频段433MHz,实际部署时节点间距50~100m,每子网包含20个传感器节点构成对等网.土壤含水率传感器采用ECH20水分传感器,工作电压为2.5V.

由于部署网络区域经常出现连续阴雨天气,为方便部署传感器节点采用4节1.5VAA电池供电,通过稳压芯片t作电压3.0V;节点MAC层采用CSMA/CA协议,网络层采用洪泛协议;在能量管理上采用休眠/同步机制,使全部节点同时工作而后同时进入休眠状态以节省能量,通讯时利用网络层的洪泛机制进行全网同步[7].

网关节点采用太阳能供电,工作电压12V;为保证网关节点在雨季也能正常工作,蓄电池容量为12Ah.

基于智能手机的移动终端采用WindowsMobile操作系统,通过WebService与服务器相连.主要目的是:1)在部署时以机载GPS定位节点,将节点位置信息上传至服务器;2)在现场查看网络工作状态,方便部署与维护;3)方便管理人员远程监控农田参数、人员工作状态与农机工作状态.

1.4数据服务的设计

传感器网络在外部看来是网络化的传感器,更强调数据的采集,强调系统的可观测性【8].在传感器网络中观测的对象是传感器采集到的数据、传感器的工作状态以及网络的连接情况.而物联网则强调各个相连的事物之间的连通性,以及系统的可控性,物联网中传感器网络是连接观测者与被观测对象的渠道.因此,需要对传感器网络采集到的数据进行处理,以观测者需要的形式出去.主要包括2部分服务:滤波和插值和.观察者可以访问通过这些服务了解被观测对象,这一过程对传感器网络而言是透明的.

1.5数据滤波

由于传感器网络在传感器端没有作滤波,可能会有一些奇异数据被采集回来,在一般使用中需要进行滤波,只观测台理可靠的数据.在一些特殊的应用中,特别关心奇异数据,也可以通过滤波服务获取这些奇异数据.为方便计算,采用简单的平滑滤波∽j.#p#分页标题#e#

平滑滤波的目的是在不影响低频率分量的情况下减弱或消除图像中的高频率分量并将观测值中的细小中断连接起来.处理后的任一输出值弧均为观测值≈与相邻元素运算后的结果,如式(1)所示:Yk=≥:口:zf,

(1)t=FN滤波窗宽度为2N,ai为加权系数,k为滤波窗中值.

为方便计算采用矩阵表达,可得y=IA】X/n,

(2)其中l,为输出向量,x为输入向量,Ea-1为滤波矩阵,n为平均值参数.

针对不同情况可以使用线性平滑滤波和加权平滑滤波,线性滤波的滤波矩阵为行列元素皆为1的7阶矩阵,n为7;加权滤波的滤波矩阵为行向量为[1,6,15,20,15,6,1-1构成的矩阵,以为64.

对应服务为record[]DataProcess.Smooth(Datetimestart,Datetimeend,boollinear),其中start为起始时间,end为终止时间,linear为线性滤波标志,返回值即为滤波后的输出值.

1.6插值分析

如果观测者仅能获得传感器所在位置的数据,就无法体现被观测的农田与观测者的关系,因此有必要对传感器采集到的数据进行插值,将空间插值后的数据提供给用户,使观测者只需输入位置信息即可获得所需的数据.因为同一农田中的温度、湿度和光照都是连续变化的,所以采用插值分析获得的数据是可信的.插值方法采用简单的两点插值和全图距离倒数插值2种.

1.6.1两点插值

两点插值又叫线性插值,取最近的2个点A,B的观测值为参考值,计算任意点的值.y一丝坚≯盟,(3)L其中L为最近两点距离,z。为插值点距A点距离,z:为插值点距A点距离,Y。为A点观测值,Y:为B点观测值.两点插值非常简单,而且不受其他点干扰,通常在部署网络时用于校验观测点传感器工作情况.

1.6.2全图距离倒数插值

两点插值计算简单,但是缺乏连贯性,每次参考点发生变化时插值结果会跳变,因此提供全图距离倒数插值服务,用户可以任意选用插值方法.全图距离倒数插值公式如下‘10]:3,一∑暑/∑z1,

其中zi为观测点i的观测值'rl为观测点到插值点的距离,n为观测点集的规模.对应服务double[]DataProcess.getValue(doublelongitude,doublelatitude,boolsimple),其中longitude为插值点经度,latitude为插值点纬度,simple为两点插值标志,返回值即为插值点湿度、温度和光照观测值.

2结果与分析

网络被部署在新疆哈密、石河子和北京,图2为新疆石河子的网络实际部署图.为保证通信质量,传感器节点和网关节点被部署在2m左右的支架上.

由于距离较远,传感器节点须通过多跳方式将数据发送到网关,实验中跳数最大为6,通信距离400m左右. 

传感器网络在4个月中采集到大量的数据,通过相应的服务,可以采集区域内任意点的数据曲线.

用户观测的对象由传感器网络节点转变为被观测对象,可以通过选择位置直接获得观测值.展示了哈密实验田中经纬度与石河子实验田的土壤湿度和光照曲线,在7月4日至7月5日哈密经历了一场降雨,在降雨期间光照强度急剧下降,而土壤湿度则迅速攀升直到夜间降雨停止湿度才开始回落.而石河子则是多云问阴的天气光照强度发生变化,而土壤湿度则基本持平.

通过相关数据服务,用户可以使用装在手机上的移动客户端访问网络.定位系统包括2部分内容:1)利用手机GPS进行定位,通过服务现场记录节点经纬度,并提交服务器.2)通过服务获取网络中各节点位置及其数据,通过插值算法将数据与位置关联起来,为用户提供直接的数据支持.此时传感器网络对用户完全透明,用户可以直接获取自己所关心的位置的农田参数.